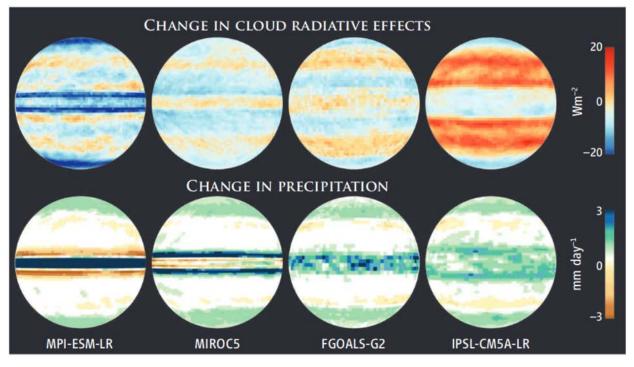


esiwace

CENTRE OF EXCELLENCE IN SIMULATION OF WEATHER AND CLIMATE IN EUROPE

Joachim Biercamp, Philipp Neumann and the ESiWACE team

The ESiWACE2 project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 823988

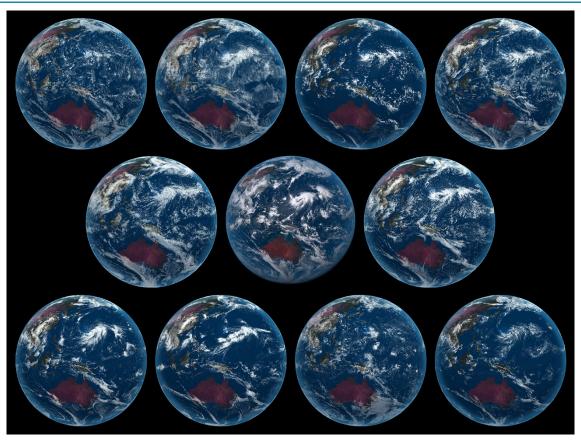


How good are current operational climate models

Parametrizations are a problem (in particular clouds and precipitation)

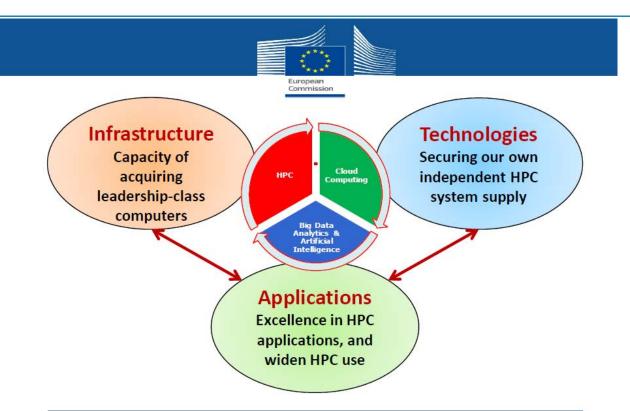
Stevens and Bony, Science, 2013.

The response pattern of clouds and precipitation for to uniform warming (4) of five climate models for a simple model configuration (aqua planet with prescribed surface temperature)



The "Palmer-Touring-Test"

There is hope and evidence that global cloud resolving models will allow significant improvements. e.g. for deep convection, gravity waves, meso-scale eddies


Stevens et al., DYAMOND: The DYnamics of the Atmospheric general circulation Modeled On Nonhydrostatic Domains. Progress in Earth and Planetary Science, accepted (2019/07/26).

Build a thriving European HPC Ecosystem (hardware, software, applications, skills, services...)

Biercamp, eScience2019

24.09.2019

Key objectives of ESiWACE

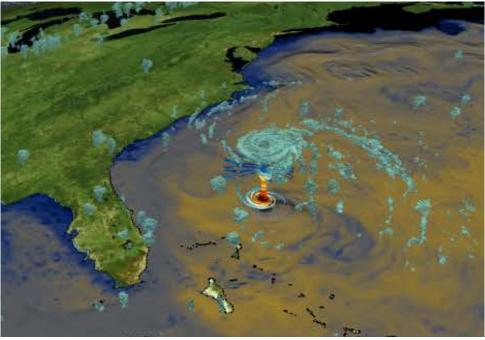
Evolution: Enable leading European weather and climate models to leverage the available performance of pre-exascale systems with regard to both compute and data capacity in 2021.

Revolution: Prepare the weather and climate community to be able to make use of exascale systems when they become available.

Funded from European Union; Horizon 2020; **Research agreement No 823988** Duration Jan. 2019 – Dec. 2022 Funding: ca 8 Mio €

24.09.2019

ESiWACE 2 work packages


- WP1 Cutting Edge Resolution in Earth system modelling
- WP2 Establish and watch new technologies for the community
- WP3 HPC services to prepare the weather and climate community for the pre-exascale
- WP4 Data Handling at Scale
- WP5 Data post-processing, analytics and visualisation
- WP6 Community engagement and Training
- WP7 Coordination, Management and Dissemination

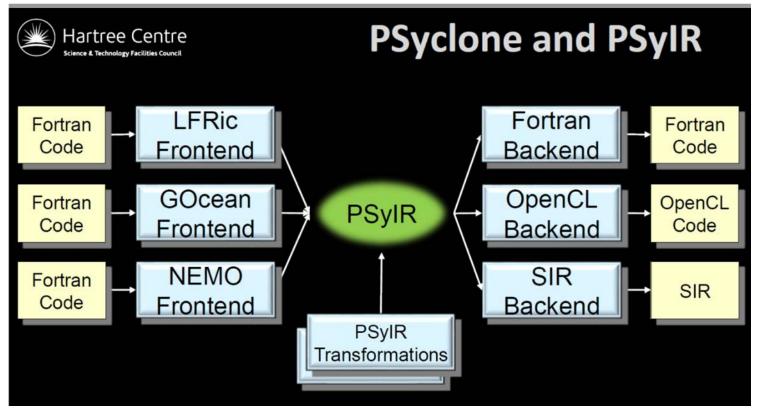
WP1 will develop coupled weather and climate models in unprecedented technical quality and performance as well as the organisational framework to assess their scientific performance.

WP2 will establish, evaluate and watch new technologies to prepare climate and weather simulation for the exascale era.

Lead: Rupert Ford, STFC; Carlos Osuna, MeteoSwiss

- Establish DSLs in the community
- Evaluate Concurrent Components to improve performance
- Evaluate Containers to port Earth system models to new hardware
- Watch emerging technologies (e.g. via Oxford machine learning workshop)

- **Enable community use** of the two main European DSLs for weather and climate:
 - gtclang toolchain (based on GridTools) for irregular grids (ICON & IFS)
 - **Psyclone-CLAW** for NEMO
- Benchmark extraction from WP1, adaptations to DSL, demonstration of usability and performance evaluations
- Performance optimizations for benchmarks from DSL
- Interoperability via High-level Intermediate Representation (HIR)


STFC, MeteoSwiss, DKRZ, ECMWF, UNIMAN, ICHEC, CMCC, METO, UREAD

Establish DSLs in the community

WP3 will develop and provide services to improve performance and portability of climate codes with respect to existing and upcoming tier1 and tier0 computers..

Lead: Ben van Werhoven, NLeSC; Erwan Raffin, Bull/ATOS

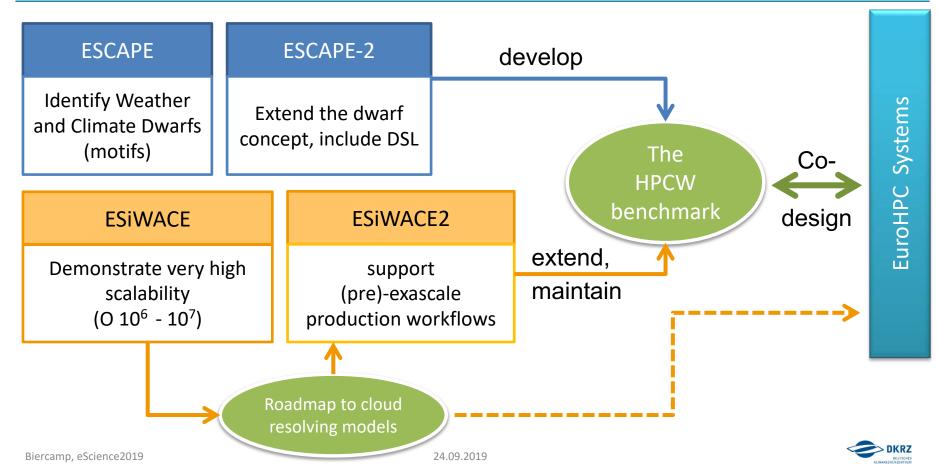
- Open call for service requests to organise support for existing Earth system models that target the European pre-exascale systems planned for 2021
 - Model portability and refactoring
 - Coupling, IO and workflows
- Weather and climate benchmarking
 - "HPCW" (V1.0 developed by ESCAPE-2)

Call for Proposals

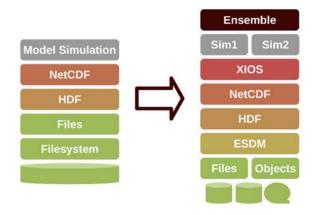
Collaborations to prepare Europe's Weather and Climate Models for pre-exascale systems (ESiWACE-S1)

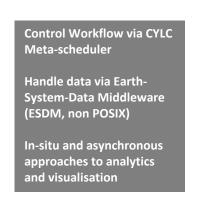
2019-2020

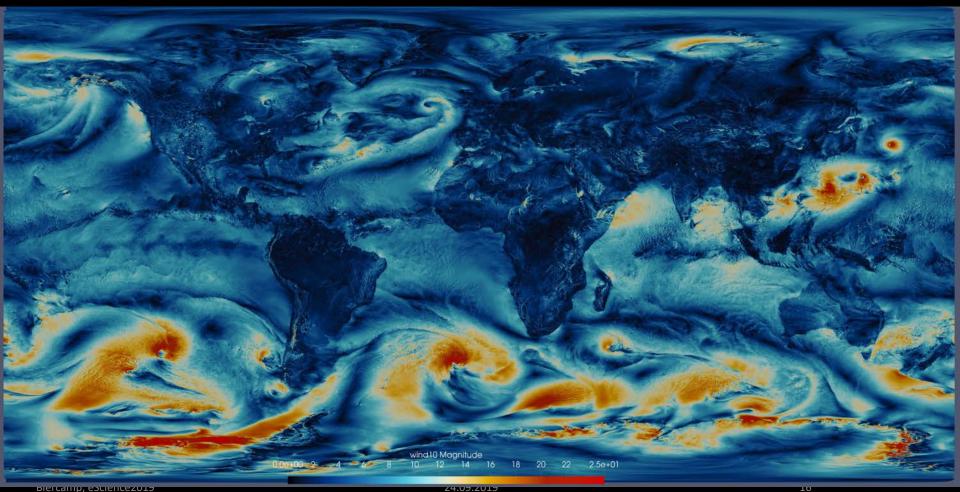
A joint call for proposals by the Netherlands eScience Center and Atos-Bull



Part of the Services provided by the ESiWACE2 Center of Excellence in Simulation of Weather and Climate in Europe Jovember ∑ Sr 13






WP4 will provide the necessary toolchain to handle data at pre-exa-scale and exa-scale, for single simulations, and ensembles Lead: Bryan Lawrence, UREAD; Julian Kunkel, UREAD

WP5 will enhance the tools to analyse and visualise these data Lead: Sandro Fiore, CMCC; Niklas Röber, DKRZ

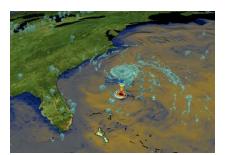
WP6 will link ESiWACE2 to the weather and climate community and the European HPC ecosystem

Lead: Sylvie Joussaume, CNRS-IPSL; Sophie Valcke, CERFACS

- Community engagement
 - HPC Workshops
 - HPC task force
 - Interface to PRACE

- Training and Schools
 - IO and HPC awareness
 - DSL
 - C++ for HPC

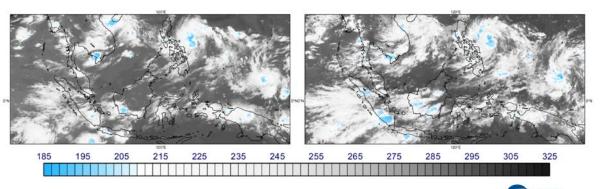
- OASIS3-MCT
- High performance Data Analytics
- Container Hackathon
- Summer school in HPC for weather and climate



WP1 will develop coupled weather and climate models in unprecedented technical quality and performance as well as the organisational framework to assess their scientific performance.

Lead: Peter Dueben ECMWF; Kim Serradell, BSC

- Extend the ESiWACE 1km demonstrator approach to production type configurations: For fixed SYPD (=1) + full IO push resolution as high as technically feasible. Tentative goal:
 - EC-Earth: 16 km (TL1279) atmosphere coupled to a 1/12 degree (~8 km) ocean
 - ECMWF: 5 km (TCo1999) atmosphere coupled to a ¼ degree (25 km) ocean
 - ICON-ESM: 5 km atmosphere coupled to a 5 km ocean, aiming at higher resolutions for the ocean
 - The IPSL model: 10 km atmosphere coupled to a 1/12 degree (~8 km) ocean
- Reach out to global hi rez community (via DYAMOND); provide the necessary infrastructure for light weight model intercomparison

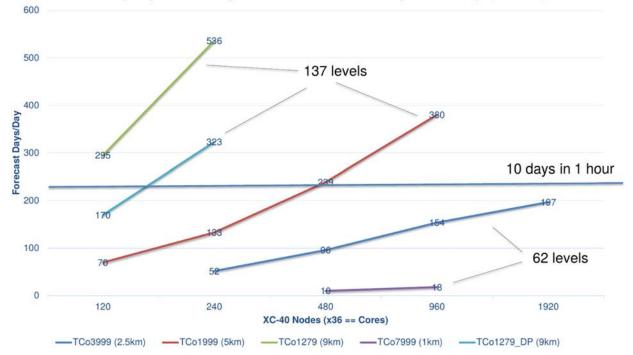

ECM

Model configuration:

- Full model complexity (high resolution topography, full physical parametrisation schemes except for deep convections which is switched off at <5km resolution).
- 62 or 137 vertical levels.
- No wave model or ocean model coupled.
- Both hydrostatic and non-hydrostatic simulations.
- Semi-implicit semi-Lagrangian timestepping scheme that allows very long timesteps: 450/240/120/120 seconds for 9/6/3.0/1.45 km resolution.
- The model is running in single precision.
- VERY limited IO.

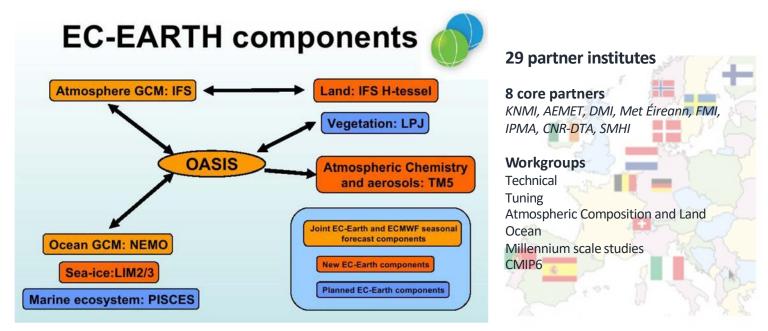
Infrastructure developments:

- We enable single precision to run at high resolution.
- We enable our data system to handle large files (MARS/MIR).
- We reduce memory consumption for large scale integrations.
- We improve the non-hydrostatic model



Scaling on CRAY@ECMWF

CECMWF


IFS single precision performance – Atmosphere only (no I/O)

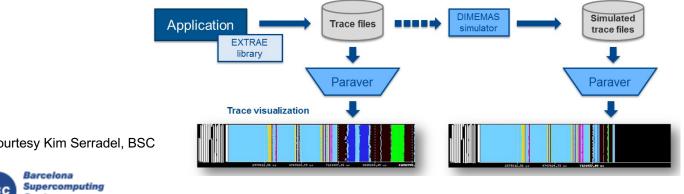
Slide courtesy Kim Serradel, BSC

Operational global, coupled ~10 km simulations (T1279 - ORCA12):

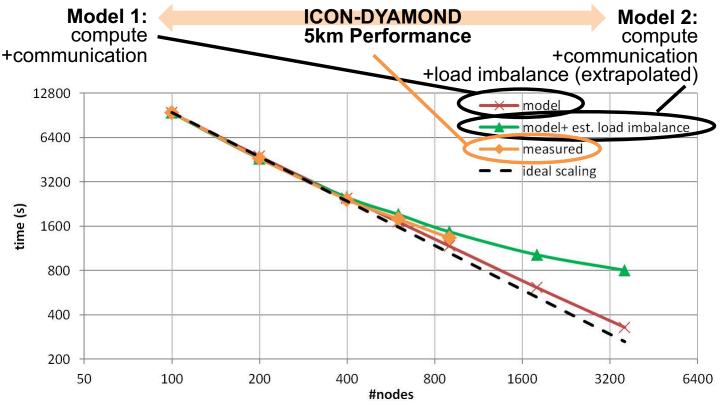
- EC-Earth 3.2 (IFS36r4 + NEMO 3.6 + OASIS3-MCT)
- 5,040 MPI tasks 0.44 SYPD, 160 SDPD
 - 3,209 NEMO
 - 1,584 IFS
 - 69 XIOS
 - 1 runoff mapper
- MareNostrum4 @ BSC

Slide courtesy Kim Serradel, BSC

Kim Serradel, BSC: A Major benefit created through ESiWACE: create a framework where different institutions can work together to technically improve a community model like EC-Earth



- Since 1991 •
- Based on traces
- Open Source: https://tools.bsc.es •
- Extrae: Package that generates Paraver trace-files for a post-mortem analysis
- Paraver: Trace visualization and analysis browser
- Dimemas: Message passing simulator


Slide courtesy Kim Serradel, BSC

P. Neumann, P. Düben, et al. Assessing the Scales in Numerical Weather and Climate Predictions: Will Exascale be the Rescue? Phil Trans Roy Soc A, 2018

A roadmap to the Implementation of 1 km Earth System Model Ensembles

Joachim Biercamp, Peter Bauer, Peter Düben, Bryan Lawrence Contributions by Sylvie Joussaume, Jochem Marotzke, Philipp Neumann, Erwan Raffin

ESiWACE Deliverable D1.2 https://zenodo.org/record/3361229#.XXc0aPxS_M0

We need to ...

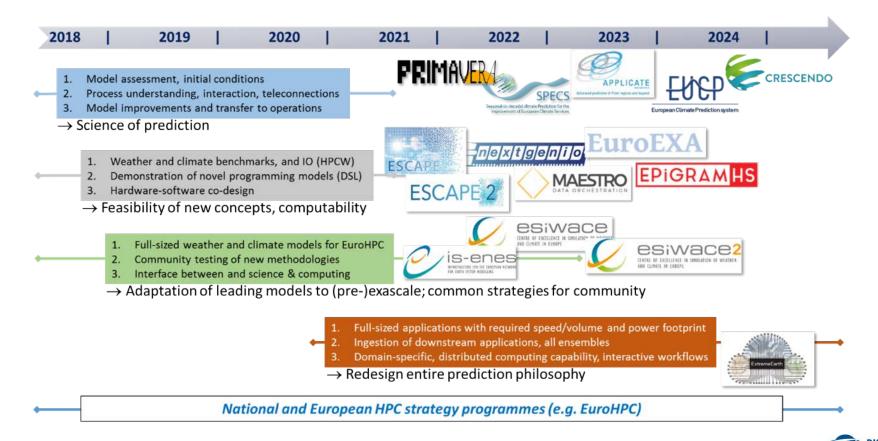
...make efficient use of millions of processing units in parallel;

...run efficiently on very different hardware (CPUs, GPGPUs, FPGAs, machine learning accelerators such as TPUs, embedded system/RISC hardware...) while keeping a single realisation of the source code which is easy to read by domain scientists;

...allow for energy aware executions that are maximising simulated years per Joule or throughput, depending on the requirements of runs;

...be fault resilient in a computing environment that can suffer from hardware faults or soft-errors;

...minimize model IO to disc/tape via trade-offs between re-computation and storage of model fields, online evaluation of model diagnostics, and the capability to perform output at different levels of resolution;


The way forward:...

- Refactoring, using domain specific languages and new programming models
- Performance modelling, data-flow and co-design
- Algorithmic developments
- Workflow management, dynamic allocation of compute nodes and test suites
- Machine learning
- Mixed precision
- Reduced resolution output
- Tiered storage
- On-the-fly diagnostics
- Ensemble analysis
- Active storage

- ▶ 100eds of person years
- international collaboration

24.09.2019