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Learning EveryWhere: Motivation

e Current trends towards performance and scale unsustainable
o Super complex scientific alg. & code exposed to architectural churn
e Some scientific domains have refrained and survived post-Dennard!
o Biomolecular sciences still several orders of magnitude away
e Importance of effective methods critical at extreme scales
o Methods effective at low scale, but not necessary at greater scales
o Campaigns have traditionally been “static” and not used intermediate data
e Can ML enhance the effective performance of HPC simulations ?
o Argue ML can enhance HPC simulations by 10° (?) if not greater!
o Enhancement measured by science “achieved”
e Learning Everywhere: Control, Substitution and Assimiliation
o Many system & application and architecture & software challenges



Ensemble Biomolecular Simulations

Molecular Dynamics (MD): Newtons’ Laws to
integrate atoms over many timesteps

o Immense success! (Chem, Nobel 2013)
Single MD simulations not sufficient

o Time scale vs quantitative accuracy
Generate ensemble of simulations in parallel
as opposed to one realization of process

o Statistical approach: O(10° - 108) !
Specialized hardware, e.g., DE Shaw “Anton”
valuable, but can ensemble-based algorithms
do better than specialized hardware? YES
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Adaptive Ensemble Algorithms

MD

e MD ! MD
e Ensemble-based MD simulations significant U,S: N —
improvement over single MD simulations gggg—'s o
e Ensemble-based methods necessary, but not 2@  ————
sufficient ! 8 —
e Adaptive Ensemble-based Algorithms:
Intermediate data, determines next stages oo
e Adaptivity: Better, Faster or Greater Sampling 3 & m*’g"p‘
e Adaptivity: How, What _d & / \ i
o Internal data: Simulation generated data 8
used to determine “optimal” adaptation 3| ¢ l_%
o External data: Experimental or separate i qﬁ o
computational process. f DM Mgg*?é ;
o What: Task parameter(s), order, count, i

Time
*Chodera, J.D., Noe, F., Curr, QOpin, Struct, Biol. (2014)



Adaptive Ensemble Algorithms: Variation on a theme
Better, Faster, Greater sampling
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Software Systems Challenge: Specificity with Performance
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Middleware Building Blocks for Workflow Systems https://arxiv.org/abs/1903.10057
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RADICAL-Pilot: Execution Model
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Summit
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ExXTASY: Domain Specific Workflow System

Client Resource
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Adaptive Ensemble MD (MLaroundHPC)

Chignolin Villin BBA
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Deep Clustering of Protein Folding (MLafterHPC)

« Using DL to build low dimensional representations of states from simulation
trajectories.
« CVAE can transfer learned features to reveal novel states across simulations
» Deep clustering of protein folding simulations using CVAE and Bayesian
« HPC Challenge: DL approaches to achieve near real-time training & prediction!

Deep clustering of protein folding
simulations, Debsindhu Bhowmik et
al, https://doi.org/10.1101/339879




CVAE driven Ensemble-MD

Execution time
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CVAE driven Ensemble-MD

A h’ oo | B L E System Total no. Total (Shortest®, Iterations Min.
f; h sesrzre _ 4 simulations simulation  Longest) RMSD
: 3 0-151 time (us)  simulations (A)
éu. 10 (us)
20,051 Fs-peptide 31 54.198 1.01,3.4 90 1.6
H _ _ 7 7 | 0.001 = BBA (FSD-EY) | 45 18.562 0.517, 100 4.44
0.0 0.1 02 03 04 0.5 ) 10 0.873
Simulation time (:s) J Table 1. Summary statistics of simulations. *Only considering the simulations that pass the initial threshold.
C I D
P ]
: :? B 7§ .
L Sl i For BBA: 20X improvement over
Speo o8 | EXTASY!!
System DL training Time per Inference time | MD COI,I aboration with AR (ANL): see
(100 epochs; epoch (ms/frame) simulations arxiv
minutes) (seconds) (ns per minute)
Fs-peptide | 7 5 .13 1.25
BBA 11 7 1.27 1.20

Table 2. Summary statistics of time taken by the individual components of our workflow: (1) train and infer
from the CVAE for each system, and (2) running the MD simulation.



DeepDriveMD: DL driven Adpative MD

@ Generate data

-

MD Simulation 1

@ Learn representation @ Query (for outliers)
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Importance of Adaptive Execution
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DeepDriveMD: DL driven Adpative MD
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Learning EveryWhere: Classification

e HPCforML: Using HPC to execute and enhance ML performance, or using
HPC simulations to train ML algorithms (theory guided machine learning),
which are then used to understand experimental data or simulations.

e MLforHPC: Using ML to enhance HPC applications and systems; Big Data
comes from the computation

e Context: Computational Science Effective consumer of HPCforML, innovative

producers of MLforHPC



MLforHPC: Classification

MLforHPC: Using ML to enhance HPC applications and systems

MLaroundHPC: Using ML to learn from simulations and produce learned
surrogates for the simulations or parts of simulations.

MLControl: Using HPC simulations in control of experiments and in objective
driven computational campaigns. Simulation surrogates allow real-time
predictions.

MLAutoTuning: Using ML to configure (autotune) ML or HPC simulations.
MLafterHPC: ML analyzing results of HPC as in trajectory analysis and
structure identification in biomolecular simulations

Focus on first two arguably most important, rewarding and difficult



MLaroundHPC: Examples

e MLaroundHPC: Learning Outputs from Inputs:
o Simulations performed to directly train an Al system, rather than Al system
being added to learn a simulation (includes SimulationTrainedML)
e MLaroundHPC: Learning Simulation Behavior
o ML learns behaviour replacing detailed computations by ML surrogates.
e MLaroundHPC: Faster and Accurate PDE Solutions
o High-dimensional non-linear PDEs such as diffusion equation using Deep
Galerkin Method
e MLaroundHPC: New Approach to Multi-scale
o Effective potential is analytic, quasi-empirical or quasi-phenomological
potential that combines multiple effects into a single potential.
O



MLaroundHPC: Functional Drivers

Three primary functional drivers of ML driving HPC

e Improving Simulations:
o Broad range of possibilities, from learning to configure and select
simulations; improving models using simulations
e Learning Structure, Theory and Model for Simulations:
o Improve the model or theory or underlying principles
o As simulations proceed, model incrementally improved
e Learn to make surrogates:
o Learn the function representing the output of a simulation to determine
either the parameters or the effective fields



MLaroundHPC: Functional Drivers

1.1 MLAutotuningHPC — 1.2 MLAutotuningHPC — 1.3 MLaroundHPC: Learning

Learn configurations Learn models from data Model Details (ML based
data assimilation)
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MLaroundHPC: Modes and Examples

Three modes and mechanisms of integrating ML with HPC

Substitution: Create a surrogate as a substitute of an essential element of an
expensive calculation. Surrogate can be used for a multi-scale
(coarse-grained) modeling or substituting the expensive part of a calculation.

o Train NN using DFT QM calculation, use NN for ab-initio MD

o Substitute FF using NN derived potential without loss of accuracy
Assimilation: External data integrated into physics-based models, which are
then assimilated into traditional simulations, e.g., improving FF.

o Approximating sub-grid processes for cloud parameterization. Training a

NN to learn from a multi-scale model all atmospheric sub-grid processes

Control and Adaptive Execution: (Ensembles) of simulation are controlled
towards important and interesting parts of phase space.

o Sometimes specifics ensembles

o Sometimes the entire campaign is governed by an objective (ODED)



MLaroundHPC: Open Questions

Algorithms Benchmarks and Methods

e Crossover point: Understand crossover points at which learning and
prediction based approaches are better than traditional HPC?
o Crossover as function of scale, algorithmic complexity, model and data
e Canonical problems: Which learning methods work, why and when?
o Towards benchmarks and proxy applications
e Measuring effective performance: Integrated performance of learning & HPC
o Comparing performance against vanilla approaches
o Interplay between raw performance, learning performance and effective
performance influence the design of applications and systems ?



MLaroundHPC: Open Questions

System Software and Runtime Systems

e Runtime flexibility of heterogeneous tasks: Concurrent & integrated
execution of simulations (S) and learning (B) over wide range of scenarios
o Simulations used to generate training data vs. ML only inference phase
o Learning after simulations (MLafterHPC) vs learning intertwined with
simulations (MLaroundHPC; surrogates)
e Single runtime to support concurrent execution of ML and HPC given
diverse coupling between S, L and Experiment (E):
o Control, data volumes / rates and latency
o All classes of MLforHPC and granularity of coupling?



MLaroundHPC: Open Questions

Hardware and Platform Issues

e Fraction of time is spent in ML vs HPC as a function of problem size:
o Ratio of L:S small: class supercomputer platform linked to separate
learning system? Ratio of L:S large: Tightly integrated systems?
o How do provide a balanced systems across application types?
e Role and importance of heterogeneous accelerators
o 3 levels of heterogeneity: CPU, GPU and ML-accelerators
o RNN for time series vs CNN



Reference Architecture: Scaling Considerations

e Strong Scaling Considerations:
o Strong Scaling of individual L: Enabling L to achieve near real-time training
and prediction to control or steer S
m Build low dimensional representation of states from trajectory analysis
o Strong Scaling of Integrated L + S: Enabling simulation-trained models to
determine where to sample in space
m RL driven approach to go through large chemical space efficiently
e \Weak Scaling Considerations:
o Weak Scaling of L: Many learning models concurrently
m Ensemble learning; multiple surrogates, may the best surrogate win
o Weak Scaling of Integrated L + S: Multiple instantiations of L and S
m Model-based design of experiments (MBDOE); objective driven
experiments and learning effective potentials



Reference Architecture: Resource Management Considerations

e Resource Management Considerations:

O

Must consider streaming data so as to include experimental and
observational data
Must support the learning on the edge, cloudlet or cloud / HPC
General Properties of applications
m Adaptive: Task graph and plan will change based upon intermediate
results and data availability
m Dynamic: Resource availability and performance is time dependent
m Heterogeneous workflows: Multiple distinct components (E, L and S),
and different instances of each component
Resource management and system software challenges are similar to
adaptive + streaming workflow!



Open Issues and Challenges

Which learning methods are most effective?
New algorithmic approaches based upon “effective learning” ?
|s there a general multi-scale approach using surrogates (MLaroundHPC) ?
Advances in Uncertainty Quantification
What are appropriate system frameworks to implement interaction between E, S
and L components?
o Single reference architecture for all 4 categories?
Runtime system challenges for balanced execution of real & surrogate models?

o Workload management, resource management and scheduling
o Strong and weak scaling challenges

Application / scenario agnostic definition of Effective Performance

29



Summary

Algorithmic and methodological advances are needed

o Current performance tightly coupled to hardware unsustainable
ML enhance the effective performance of HPC simulations

o 20x over best ensemble based approach!

o DL driven MD on Summit: 2.5x (FS-peptide)
Learning Everywhere

o Classification and Examples
o Open Issues and challenges

30



Thank You!

Learning Everywhere: G Fox
EXTASY: Cecilia Clementi Clementi
DeepDriveMD: Arvind / ANL
RADICAL Cybertools: http://radical.rutgers.edu
CANDLE-INSPIRE: Rick Stevens, Peter Coveney, John Chodera
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