Towards Zettascale Computing on Exascale Platforms

Shantenu Jha Rutgers University and Brookhaven National Lab.

http://radical.rutgers.edu

Outline

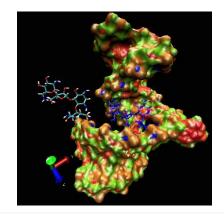
- Ensemble Computational Model Molecular Science Case Study
 - Adaptive Ensemble Execution
 - VAE driven Ensemble Execution
 - DeepDriveMD: DL driven Adaptive Ensembles on Summit
- Learning Everywhere!
 - MLaroundHPC: Classification, Examples
- MLaroundHPC: Opportunities and Challenges
 - System and Software Challenges, "Effective Performance"
 - Reference Architecture, Benchmarks

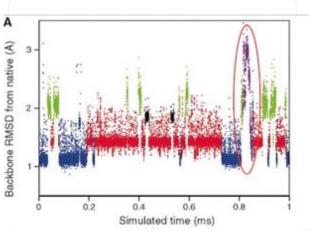
Learning EveryWhere: Motivation

- Current trends towards performance and scale **unsustainable**
 - Super complex scientific alg. & code exposed to architectural churn
- Some scientific domains have refrained and survived post-Dennard!
 - Biomolecular sciences still several orders of magnitude away
- Importance of effective methods critical at extreme scales
 - Methods effective at low scale, but not necessary at greater scales
 - Campaigns have traditionally been "static" and not used intermediate data
- Can ML enhance the **effective performance** of HPC simulations ?
 - Argue ML can enhance HPC simulations by 10^6 (?) if not greater!
 - Enhancement measured by science "achieved"
- Learning Everywhere: Control, Substitution and Assimiliation
 - Many system & application and architecture & software challenges

Ensemble Biomolecular Simulations

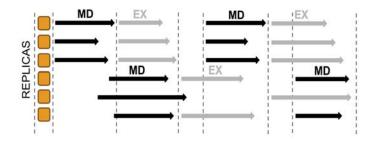
- Molecular Dynamics (MD): Newtons' Laws to integrate atoms over many timesteps
 - Immense success! (Chem, Nobel 2013)
- Single MD simulations not sufficient
 - Time scale vs quantitative accuracy
- Generate ensemble of simulations in parallel as opposed to one realization of process
 - Statistical approach: **O(10⁶ 10⁸)** !
- Specialized hardware, e.g., DE Shaw "Anton" valuable, *but can ensemble-based algorithms do better than specialized hardware*? **YES**

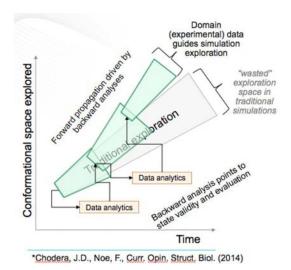




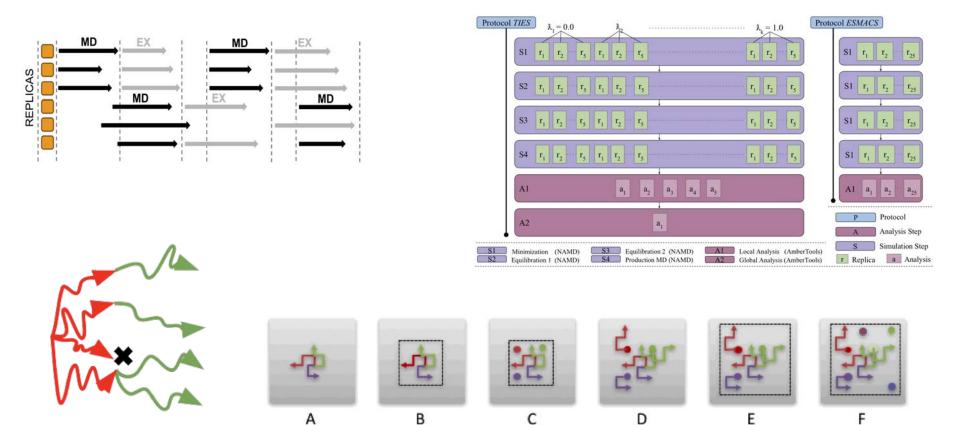
Adaptive Ensemble Algorithms

- Ensemble-based MD simulations significant improvement over single MD simulations
- Ensemble-based methods necessary, but not sufficient !
- Adaptive Ensemble-based Algorithms: Intermediate data, determines next stages
- Adaptivity: Better, Faster or Greater Sampling
- Adaptivity: How, What
 - Internal data: Simulation generated data used to determine "optimal" adaptation
 - External data: Experimental or separate computational process.
 - What: Task parameter(s), order, count,

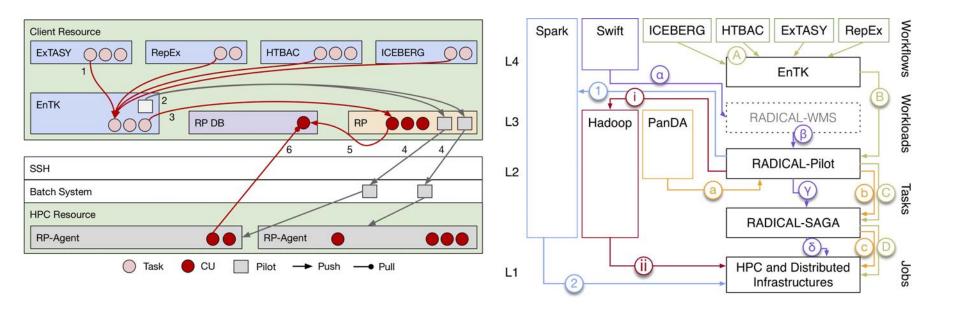




Adaptive Ensemble Algorithms: Variation on a theme Better, Faster, Greater sampling



Software Systems Challenge: Specificity with Performance

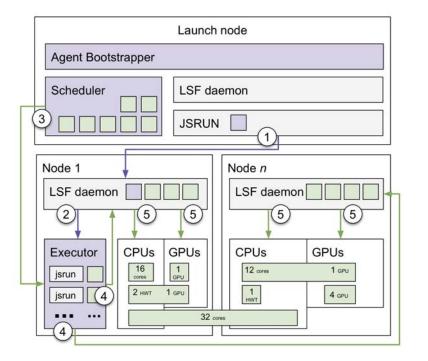


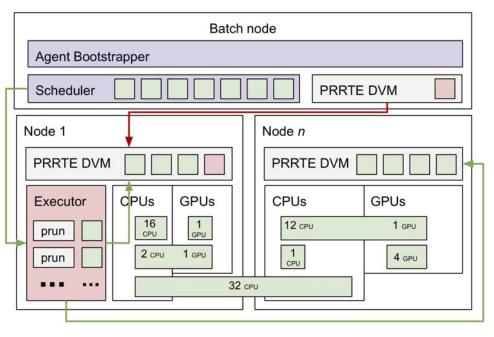
Middleware Building Blocks for Workflow Systems https://arxiv.org/abs/1903.10057

RADICAL-Pilot: Execution Model

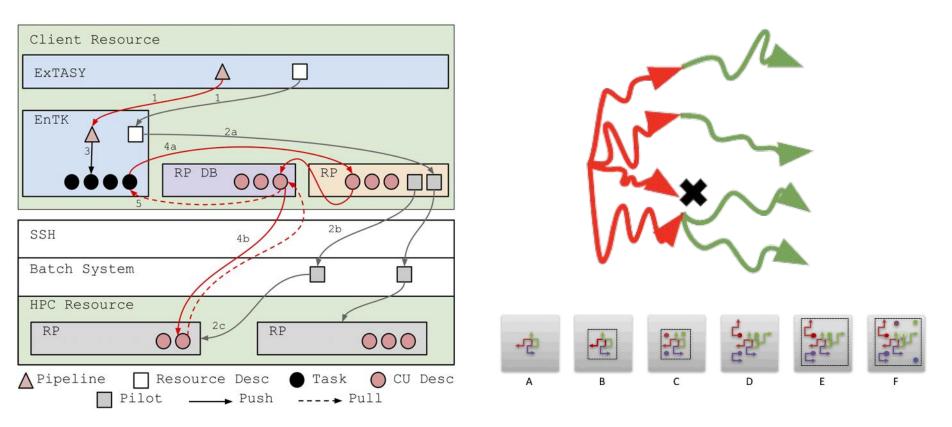


Summit

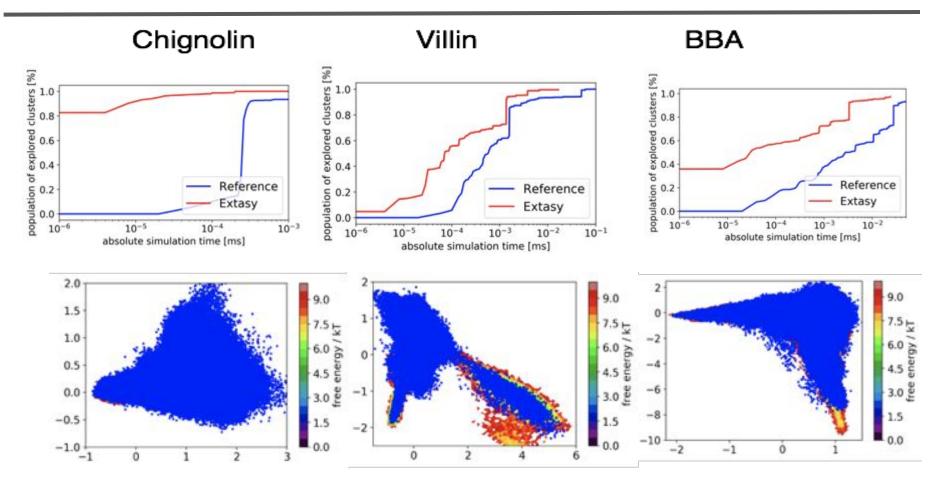




ExTASY: Domain Specific Workflow System

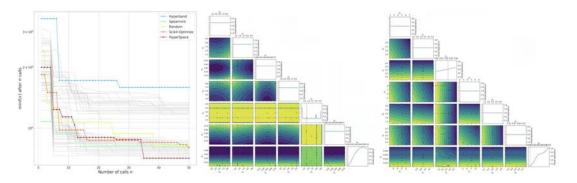


Adaptive Ensemble MD (MLaroundHPC)



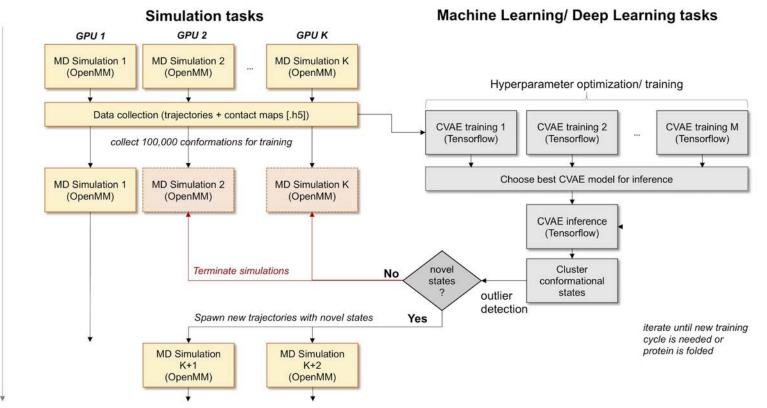
Deep Clustering of Protein Folding (MLafterHPC)

- Using DL to build low dimensional representations of states from simulation trajectories.
 - CVAE can transfer learned features to reveal novel states across simulations
 - Deep clustering of protein folding simulations using CVAE and Bayesian
 - HPC Challenge: DL approaches to achieve near real-time training & prediction!



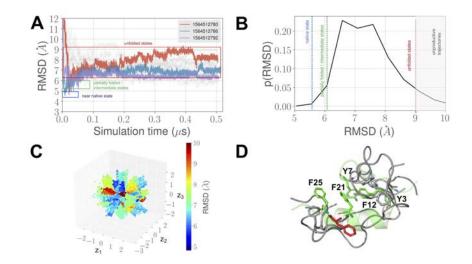
Deep clustering of protein folding simulations, Debsindhu Bhowmik et al, https://doi.org/10.1101/339879

CVAE driven Ensemble-MD



Execution time

CVAE driven Ensemble-MD



System	Total no. simulations	Total simulation time (μ s)	(Shortest*, Longest) simulations (µs)	Iterations	Min. RMSD (Å)
Fs-peptide	31	54.198	1.01, 3.4	90	1.6
BBA (FSD-EY)	45	18.562	0.517, 0.873	100	4.44

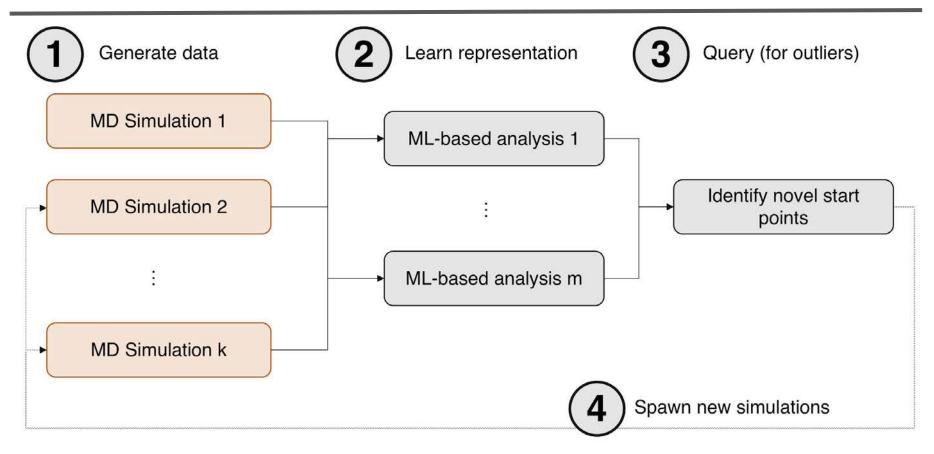
Table 1. Summary statistics of simulations. *Only considering the simulations that pass the initial threshold.

For BBA: 20X improvement over ExTASY!!

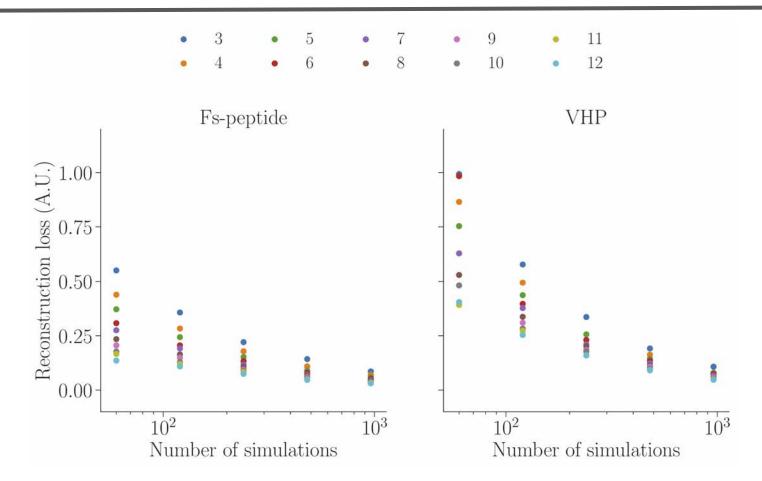
System	DL training (100 epochs; minutes)	Time per epoch (seconds)	Inference time (ms/frame)	MD simulations (ns per minute)	Collaboration with AR (ANL): see arxiv
Fs-peptide	7	5	5.13	1.25	-
BBA	11	7	1.27	1.20	_

Table 2. Summary statistics of time taken by the individual components of our workflow: (1) train and infer from the CVAE for each system, and (2) running the MD simulation.

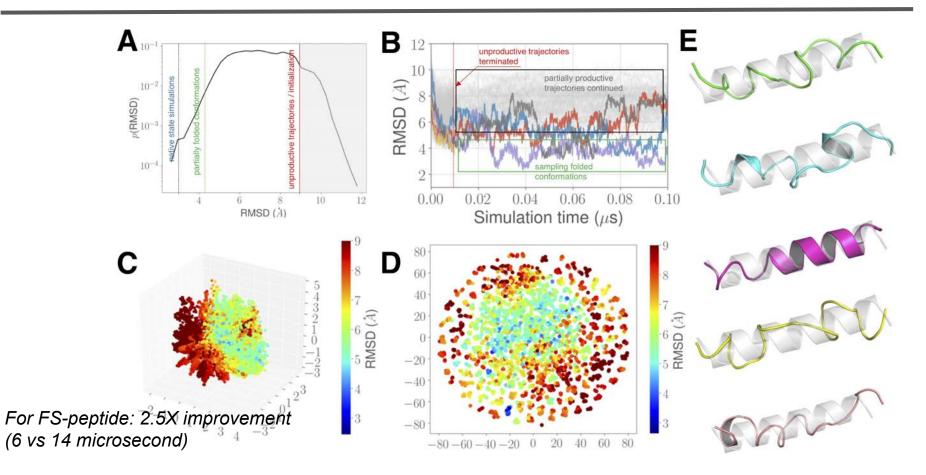
DeepDriveMD: DL driven Adpative MD



Importance of Adaptive Execution



DeepDriveMD: DL driven Adpative MD



Learning EveryWhere: Classification

- **HPCforML**: Using HPC to execute and enhance ML performance, or using HPC simulations to train ML algorithms (theory guided machine learning), which are then used to understand experimental data or simulations.
- **MLforHPC**: Using ML to enhance HPC applications and systems; Big Data comes from the computation
- Context: Computational Science Effective consumer of **HPCforML**; innovative producers of **MLforHPC**

MLforHPC: Using ML to enhance HPC applications and systems

- **MLaroundHPC:** Using ML to learn from simulations and produce learned surrogates for the simulations or parts of simulations.
- **MLControl:** Using HPC simulations in control of experiments and in objective driven computational campaigns. Simulation surrogates allow real-time predictions.
- **MLAutoTuning:** Using ML to configure (autotune) ML or HPC simulations.
- **MLafterHPC:** ML analyzing results of HPC as in trajectory analysis and structure identification in biomolecular simulations
- Focus on first two arguably most important, rewarding and difficult

MLaroundHPC: Examples

- MLaroundHPC: Learning Outputs from Inputs:
 - Simulations performed to directly train an AI system, rather than AI system being added to learn a simulation (includes SimulationTrainedML)
- MLaroundHPC: Learning Simulation Behavior
 - ML learns behaviour replacing detailed computations by ML surrogates.
- MLaroundHPC: Faster and Accurate PDE Solutions
 - High-dimensional non-linear PDEs such as diffusion equation using Deep Galerkin Method
- MLaroundHPC: New Approach to Multi-scale
 - Effective potential is analytic, quasi-empirical or quasi-phenomological potential that combines multiple effects into a single potential.
 - 0

MLaroundHPC: Functional Drivers

Three primary functional drivers of ML driving HPC

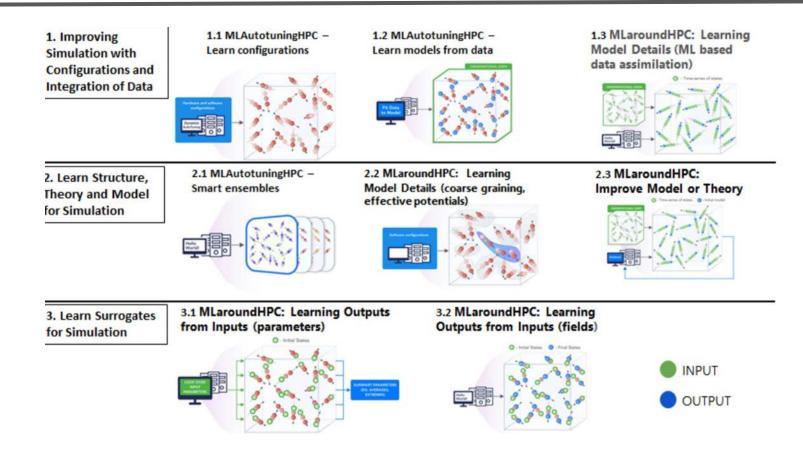
• Improving Simulations:

- Broad range of possibilities, from learning to configure and select simulations; improving models using simulations
- Learning Structure, Theory and Model for Simulations:
 - Improve the model or theory or underlying principles
 - As simulations proceed, model incrementally improved

• Learn to make surrogates:

 Learn the function representing the output of a simulation to determine either the parameters or the effective fields

MLaroundHPC: Functional Drivers



MLaroundHPC: Modes and Examples

Three modes and mechanisms of integrating ML with HPC

- **Substitution:** Create a surrogate as a substitute of an essential element of an expensive calculation. Surrogate can be used for a multi-scale (coarse-grained) modeling or substituting the expensive part of a calculation.
 - Train NN using DFT QM calculation, use NN for ab-initio MD
 - Substitute FF using NN derived potential without loss of accuracy
- Assimilation: External data integrated into physics-based models, which are then assimilated into traditional simulations, e.g., improving FF.
 - Approximating sub-grid processes for cloud parameterization. Training a NN to learn from a multi-scale model all atmospheric sub-grid processes
- **Control and Adaptive Execution:** (Ensembles) of simulation are controlled towards important and interesting parts of phase space.
 - Sometimes specifics ensembles
 - Sometimes the entire campaign is governed by an objective (ODED)

MLaroundHPC: Open Questions

Algorithms Benchmarks and Methods

- **Crossover point:** Understand crossover points at which learning and prediction based approaches are better than traditional HPC?
 - Crossover as function of scale, algorithmic complexity, model and data
- Canonical problems: Which learning methods work, why and when?
 - Towards benchmarks and proxy applications
- Measuring effective performance: Integrated performance of learning & HPC
 - Comparing performance against vanilla approaches
 - Interplay between raw performance, learning performance and effective performance influence the design of applications and systems ?

MLaroundHPC: Open Questions

System Software and Runtime Systems

- **Runtime flexibility of heterogeneous tasks:** Concurrent & integrated execution of simulations (S) and learning (B) over wide range of scenarios
 - Simulations used to generate training data vs. ML only inference phase
 - Learning after simulations (MLafterHPC) vs learning intertwined with simulations (MLaroundHPC; surrogates)
- Single runtime to support concurrent execution of ML and HPC given diverse coupling between S, L and Experiment (E):
 - Control, data volumes / rates and latency
 - All classes of MLforHPC and granularity of coupling?

MLaroundHPC: Open Questions

Hardware and Platform Issues

• Fraction of time is spent in ML vs HPC as a function of problem size:

- Ratio of L:S small: class supercomputer platform linked to separate learning system? Ratio of L:S large: Tightly integrated systems?
- How do provide a balanced systems across application types?
- Role and importance of heterogeneous accelerators
 - 3 levels of heterogeneity: CPU, GPU and ML-accelerators
 - RNN for time series vs CNN

Reference Architecture: Scaling Considerations

- Strong Scaling Considerations:
 - Strong Scaling of individual L: Enabling L to achieve near real-time training and prediction to control or steer S
 - Build low dimensional representation of states from trajectory analysis
 - Strong Scaling of Integrated L + S: Enabling simulation-trained models to determine where to sample in space
 - RL driven approach to go through large chemical space efficiently
- Weak Scaling Considerations:
 - Weak Scaling of L: Many learning models concurrently
 - Ensemble learning; multiple surrogates, may the best surrogate win
 - Weak Scaling of Integrated L + S: Multiple instantiations of L and S
 - Model-based design of experiments (MBDOE); objective driven experiments and learning effective potentials

• Resource Management Considerations:

- Must consider streaming data so as to include experimental and observational data
- Must support the learning on the edge, cloudlet or cloud / HPC
- General Properties of applications
 - Adaptive: Task graph and plan will change based upon intermediate results and data availability
 - Dynamic: Resource availability and performance is time dependent
 - Heterogeneous workflows: Multiple distinct components (E, L and S), and different instances of each component
- Resource management and system software challenges are similar to adaptive + streaming workflow!

Open Issues and Challenges

- Which learning methods are most effective?
- New algorithmic approaches based upon "effective learning"?
- Is there a general multi-scale approach using surrogates (MLaroundHPC)?
- Advances in Uncertainty Quantification
- What are appropriate system frameworks to implement interaction between E, S and L components?
 - Single reference architecture for all 4 categories?
- Runtime system challenges for balanced execution of real & surrogate models?
 - Workload management, resource management and scheduling
 - Strong and weak scaling challenges
- Application / scenario agnostic definition of Effective Performance

Summary

Algorithmic and methodological advances are needed

- Current performance tightly coupled to hardware unsustainable
- ML enhance the **effective performance** of HPC simulations
 - 20x over best ensemble based approach!
 - DL driven MD on Summit: 2.5x (FS-peptide)

• Learning Everywhere

- Classification and Examples
- Open Issues and challenges

Thank You!

Learning Everywhere: G Fox ExTASY: Cecilia Clementi Clementi DeepDriveMD: Arvind / ANL RADICAL Cybertools: <u>http://radical.rutgers.edu</u> CANDLE-INSPIRE: Rick Stevens, Peter Coveney, John Chodera