
A Resource Usage Prediction System Using
Functional-link and Genetic Algorithm Neural

Network for Multivariate Cloud Metrics

Thieu Nguyen, Nhuan Tran, Binh Minh Nguyen∗
School of Information and Communication Technology

Hanoi University of Science and Technology
Hanoi, Vietnam

nguyenthieu2102@gmail.com, tranducnhuan1994@gmail.com,

minhnb@soict.hust.edu.vn∗

Giang Nguyen
Institute of Informatics

Slovak Academy of Sciences
Bratislava, Slovakia

giang.ui@savba.sk

Abstract—Designing prediction-based auto-scaling systems for
cloud computing is an attractive topic for scientists today.
However, there are many barriers, which must be solved before
applying these systems to practice. Some challenges include:
improving accuracy for prediction models, finding a simple and
effective forecast method instead of complex techniques, and
processing multivariate resource metrics at the same time. So far,
there are no existing proactive auto-scaling solutions for clouds
that have addressed all those challenges. In this paper, we present
a novel cloud resource usage prediction system using functional-
link neural network (FLNN). We propose an improvement for
the FLNN by exploiting genetic algorithm (GA) to train learning
model in order to increase forecast effectiveness. To deal with
multivariate input data, several mechanisms also are combined
together to enable the ability of processing simultaneously dif-
ferent resource types in our system. This enables to discover
implicit relationship among diverse metrics and based on that
realistic scaling decisions can be made closer to reality. We use
Google trace dataset to evaluate the proposed prediction system
and data preprocessing mechanisms introduced in this work.
The gained outcomes demonstrated that our system can work
effectively under practical situations with good performance as
compared with traditional techniques.

Index Terms—Cloud computing, Functional-link neural net-
work, Functional-link and Genetic algorithm neural network,
FL-GANN, Proactive auto-scaling, Multivariate time series data,
Genetic algorithm, Google trace dataset.

I. INTRODUCTION

Pay-as-you-go fashion is one of the prominent advantage

features of cloud computing. With the usage model, users

always expect their applications, which operate on cloud in-

frastructures are provided computational resources adequately

but not redundantly in real-time without any delays [1]. This

helps reduce maximally the renting resource costs. However,

it is quite difficult and complicated to meet the requirement

because clouds must have a new scaling mechanism that

can be tuned immediately and precisely offered resources on

demand of these appliances to replace the current approach

with resource usage thresholds.

∗Corresponding author.

Indeed, although the setting threshold mechanism enables

to define scaling rules easily, it cannot supply accurately

resources as compared with the changeful requirements of

applications [2]. For example, assuming CPU percentage

threshold of virtual machine (VM) is set at 80% to scale

out. When CPU utilization reaches the threshold, cloud will

automatically add one more VM for the users system. How-

ever, the scaling function needs to spend a few moments to

complete the deployment of second VM. During this time, the

CPU percentage usage has already been changed from the set

threshold to another that can be bigger or smaller than 80%.

This makes the inaccuracy issue for current cloud auto-scalers

as presented above.

Besides, due to quality of service (QoS) tie with users

(which is defined in service-layer agreements - SLA), cloud

vendors often accept the resource over-provisioning (despite

sometime the cloud users cannot acquire enough resources

like) rather than offering resource accurately in real-time [3].

This leads to the increase of infrastructure costs in general

for both cloud users and providers. It can be seen that there

is a long distance among the resource supply requirements of

users and the vendors’ capabilities with the cloud auto-scaling

solution today. Hence, proposing a better auto-scaler to resolve

the problem has significant for cloud computing adoption at

this time.

Recently, many prediction-based auto-scaling systems have

been proposed for cloud computing. While increasing predic-

tion accuracy for resource consumptions is a very attractive

challenge, the problem of processing multiple metric types

(e.g. CPU, and memory usages, disk capacity and I/O, network

throughput/throughout and so forth) at the same time have

received less attention from researchers when they develop

prediction systems. Among the resource metrics could have

some implicit relationships (e.g. between CPU and memory

usage, and between disk I/O and memory I/O) and forecasting

separately each resource type cannot discover the relation-

ships. In this way, prediction outcomes will not fit practice

requirements. To resolve the issue, cloud prediction-based

49

2018 IEEE 11th International Conference on Service-Oriented Computing and Applications

978-1-5386-9133-5/18/$31.00 ©2018 IEEE
DOI 10.1109/SOCA.2018.00014

auto-scalers has to the ability of processing different metrics

simultaneously to make the scaling decision precisely. Until

now, there are very few studies dealt with that multivariate

problem for clouds. In this paper, we focus on proposing a

new method for prediction stage using functional-link neural

network (FLNN) and genetic algorithm (GA). Our forecast

system also is designed to process multiple resource metrics

simultaneously. We use real dataset produced from Google

cluster to test and evaluate our designed model. The gained

results show that our proposals bring positive effectiveness in

predicting resource consumption.

The organization of this paper is as follows. In Section II,

we categorize and analyze existing works to highlight our

contributions. Section III presents our design cloud resource

consumption prediction system with FN-GANN - an improve-

ment of traditional FLNN using GA to train model. We also

introduce several proposed data preprocessing mechanisms

in this section. In the next Section, we describe our tests,

evaluations for the proposed system to prove the proposal

effectiveness. Section V concludes this paper and defines some

our future works.

II. RELATED WORK

The main goal of proactive resource provision techniques

is to predict precisely the resource consumptions in advance.

There are a huge research number that have dealt in forecast

models for cloud computing. In [5], several prediction meth-

ods including autoregressive (AR), moving average (MA),

autoregressive-moving average (ARMA), nonstationary, long

memory, three families of seasonal, multiple input-output,

intervention and multivariate ARMA models were evaluated

and compared in predicting cloud workloads.

Recently, deep learning has emerged as an effective solution

for prediction problem. In terms of applying to clouds, Prevost

et al. [17] used the Multi-layer neural network (MLNN) model

for prediction URL resource requests of a WWW server at

NASA and WWW server at EPA. Although deep learning

brings significant effectiveness for the cloud proactive auto-

scaling issue, these learning models often have very complex

structure and require a long time for training process. In

this way, few other artificial networks have been proposed to

overcome the disadvantages. Functional Link Neural Network

is a representation for that simple neural network group.

FLNN has a single neuron is proposed by Pao [6] in

pattern-recognition task. The author pointed out that FLNN

has less computational cost and can be easily implemented

in hardware applications. The reason is that hidden layer in

this network is eliminated. In this way, nonlinear relationship

between the inputs and outputs is processed via a set of

functional expansions (i.e. polynomials). FLNN has been used

in several applications such as stock market [7], and exchange

rate prediction [8]. In their work, Khandelwal et al. [9] used 4

datasets from 4 different areas to test the forecasting ability of

FLNN and in comparison with MLNN, the authors’ obtained

results indicate that FLNN model provides better outcomes for

all 4 datasets. In [10], Sahoo et al used efficient Chebyshev

and Legendre polynomials in combination as Functional-Link,

the FLNN’s outcomes gives better accuracy and takes less

computation time as compared to MLNN’s outcomes.

However, the proposed prediction systems using FLNN

listed above which still use back-propagation technique with

gradients descent to train learning model. S. Dehuri at

el. in [11] figured out that the main drawbacks of back-

propagation are slow training speed and local minimum traps.

In comparison with those existing works, the main difference

given in this study is that we exploit a herd evolution algorithm

to solve back propagation disadvantages in traditional FLNN.

Genetic algorithm is one of optimization mechanisms for

large and complex spaces in order to find values, which are

close to the global optimum. Hence, GA suits the problem of

training feed-forward networks [12]. In this direction, applying

GA to diverse neural network variants have been proposed

long time ago. In [15], Blanco et al. used GA-based approach

to selected the features and optimized the appropriate classifier

parameters of neural network and vector machines for bearing

fault detection from time-domain vibration signals. In their

work [4], Dehuri et al. employed GA to choose an optimal

subset of input features in FLNN and radial basis function

neural network (RBFNN). Until now, there are no works,

which use GA to train FLNN instead of back-propagation

algorithm.

In the aspect of dealing with multivariate time series prob-

lem in cloud computing, in [13], the authors proposed MF-

GABPNN model to mine the relationship among different

metric types in forecast process. Thus, the authors choose CPU

and memory as multivariate time-series to test their proposed

model. Going further, in [14], the authors proved that there is

a relation among different metric types and through analyzing

data correlation, the authors select appropriate time series data

metrics to put into LSTM-RNN prediction model. However,

so far, there are no any studies that use FLNN for multivariate

time series data prediction for cloud computing. As compared

with the existing works presented above, our differences and

contributions include:

1) Proposing a new approach for proactive auto-scaling

problem in clouds using FLNN.

2) Proposing a novel improvement for FLNN, in which the

network is trained by GA instead of back-propagation

mechanism called FL-GANN.

3) Proposing a prediction resource forecasting system that

can be processed multivariate data. This is an important

feature of cloud computing while designing auto-scalers

in practice.

4) Testing the proposed system performance with real

dataset produced by Google cluster.

III. FUNCTIONAL-LINK GENERIC ALGORITHM NEURAL

NETWORK

A. Designing Prediction System

Our designs for cloud resources forecasting system are

shown by figure 1 with four main modules, including Col-

lector, Preprocessor, Trainer, and Forecaster.

50

Cloud System

Servers
Servers

Servers

Cloud System

Servers
Servers

Servers

Normalized
Data

Trained
Model

Future Resource
Consumption

ForecasterCollector

 Expansion
Functions

Preprocessor

Sliding
Window

Resource
Metrics

Resource
Metrics

Averaging
with Time
Interval t

Group into
Multivariate
Time-series

DatabaseDatabase

Current Resource
Monitoring Data

Storing

Historical Resource
Monitoring Data

Training data

De-normalized
Data

Real-time Monitoring
Resource Usage

Historical
Training Data

Trainer

Trained by
Genetic

Algorithm

Neural Network

Fig. 1. Multivariate Resources Forecasting System

Through Collector module, raw resource monitoring data

is collected from VMs and stored in a repository. Currently,

there are a lot of available monitoring services for public

clouds such as CloudWatch of Amazon Web Services, IBM

cloud monitoring, and Rackspace Monitoring and so forth. In

addition, users can deploy and configure monitoring tools like

Nagios, Prometheus and Zabbix by themselves on their VMs.

The database in this module is used to store current resources

monitoring data, which is produced in form of time-series

and historical resources monitoring data, which is made by

Preprocessor module.
Preprocessor module plays the role of transforming the

collected raw time-series data to supervised data to fit the

input of neural network. There are several mechanisms that are

deployed to process cloud workload data, covering: averaging

data in long time period, normalized data, sliding window,

group into multivariate time series and expansion functions.

After preprocessing in this module, the output data is put

into database in Collector as historical resources data, which

is used to create prediction model in Trainer module. The

data also is provided for Forecaster to predict consumption

resources.
A novel learning method is proposed in our Trainer module

using FLNN that is a variant of traditional neural network

with expansion functions. Furthermore, the network also is

trained by GA to speed up the convergence and increase the

forecast accuracy. Due to combination of those mechanisms,

the proposed learning method is called by FL-GANN.
After the training process finishes, trained model is used to

predict future resource consumption in Forecaster module.

B. Preprocessing Monitoring Data
As presented before, the goal of Preprocessor is to prepare

data for Trainer and Forecaster. There are five mechanisms

deployed in this component. Firstly, the current raw data

gathered in a long period is transformed into the corresponding

time series ri(t)(i = 1, 2, ...,M) with time interval ρ. Each

point in time series ri(t) is calculated by averaging all the

values of a resource metric usage in the period of ρ as follows:

ri(n) =
∑n

i=(n−1)ρ<t<nρ Di(t)

nρ
, where Di(t) is the value of

type-i resource at time t that is monitored from cloud system,

nρ is the number of observation Di(t) in the interval ρ.

The next phase is normalization, which scales a time series

in the range of [0, 1]. Then, time-series data is transformed to

supervised data by using sliding method with window width

k that is the number of values before time t to predict value

at the time t. Then all resource metric types are grouped into

single multivariate data. Finally, the gained multivariate data

undergoes expansion functions such as Chebyshev, Legendre

or Power to enable the ability of catching the nonlinear rela-

tionship between the inputs and outputs for our neural network.

The reason is there are no a hidden layers in the network

architecture. Concept of multivariate time series is defined

by Definition 1. Meanwhile, functions link that is used in

expansion functions component is introduced by Definition 2.

Definition 1: Let X1(t), X2(t), ..., Xi(t), ..., XM (t) are M
time series (M metrics resource types), the single multivariate

time series is:

X(t) = [X1(t), X2(t), ..., XM (t)] , t = 1, 2, ..., n.

Definition 2: A functional-link is a function f ∈ RD → R
that transforms X to a scalar (X: vector input patterns). If

the input layer of the FLNN consists of functional-link fi,
i = 1, 2, ..., n then input patterns X will be transformed to Y
∈ Rn: Y = (f1(X), ...fn(X)).

There are many expansion functions, however the most

popular are Chebyshev, Legendre, Laguerre, Power Series,

Trigonometric.

51

X(1)

x (1) = xf 1 1 W (k)1

x (1) = xf 5 W (k)5
EF

X(2)

x (2) = xf 1 6 W (k)6

x (2) = xf 5 W (k)10
EF

X(I)

x (I) = xf 1 5(I-1) + 1
W (k)5(I-1)+1

x (I) = xf 5 W (k)5(I-1) + 5

EF

Encoder

5

10

5(I-1) + 5

M
ul

tiv
ar

ia
te

 In
pu

t

Initialize
Population Selection

Evaluate
Fitness

Crossover and
Mutation

Stop
Condition

Best
Chromosome

Save Trained
ModelDecoder

False

True

Training
Data

Functional-Link GANN Training

Fig. 2. FL-GANN training process

C. Trainer Module

This module consists of two main components, covering

a neural network with single unit of neuron and GA which

is used to train the network. The functional-link of FLNN

are deployed in Preprocessor presented in Subsection III-B.

Figure 2 describes general training process of our proposed

FL-GANN model, in which the encoder component is used to

encode the weights and bias of network into a chromosome

(real-value vector). Otherwise, the decoder component decodes

the chromosome into the weights and bias of network. Because

the requirement of GA is a fitness function, we calculate

Mean Absolute Error (MAE) based on error of training data

according to formula (1). The fitness function is reckoned

by equation (2). Operations of GA in FL-GANN model are

introduced via Algorithm 1.

MAE =

∑N
i=0(forecast(i)− yi)

2

N
(1)

Fitness =
1

MAE
(2)

D. Forecaster Module

Our Forecaster module uses values of real-time monitoring

data (after preprocessing process) as inputs of the trained

model to predict new values (i.e. resource consumption) in

advance. Before can be used, the obtained outputs are unnor-

malized into the real values.

IV. EXPERIMENT

In this section, we present experiments as well as evalua-

tions for our proposed system. The tests cover:

1) Comparing prediction accuracy between MLNN, tradi-

tional FLNN and FL-GANN;

2) Evaluating influence of GA Hyper-parameters on FL-

GANN performance;

3) Evaluating influence of FLNN expansion functions on

FL-GANN effectiveness.

Algorithm 1 GANN Training Algorithm

Input: ps - the population size

d - problem size / d-dimension vector of each individual,

pc - the probability of 2 individual exchanging crossovers,

pm - the probability of individual mutation,

gmax - the maximum number of generations

Output: The best chromosome.

1: Initializing population P = {C1, ..., Cps
}, each individual

is a d-dimension vector Ci = (ci1, , cid), cij ∈ [-1, 1]

2: g ← 1

3: while g ≤ gmax do
4: Calculating fitness of population based on formula (2)

5: Finding the best chromosome Cbest according to the

achieved fitness value.

6: repeat
7: Using Routtele Wheel Selection to choose two indi-

viduals (parents p1, p2) based on the fitness value to

cross-over with probability pc to make 2 offspring

(CH1, CH2) based on:

8: CH1i ← λp1i + (1− λ)p2i
9: CH2i ← λp2i + (1− λ)p1i, λ ∼ U(0, 1), i = 1, d

10: Then offspring undergo the mutation process by

replacing each CHij , i = 1, 2, j = 1, d, with proba-

bility pm by a random uniform value ∼ U(0, 1).
11: Appending offspring into a new generation.

12: until new generation has ps individuals

13: Replacing the old generation by the new generation.

14: g ← g + 1
15: end while
16: Return Cbest

A. Experimental Setup

In our experiments, we use a real workload dataset provided

by Google [16] in one month of 2011. In the dataset, each job

is a collection of many tasks that are run simultaneously on

multiple machines. Resource utilization of tasks are measured

by several metrics such as CPU, and memory usage, disk

52

TABLE I
MAE COMPARISON OF MLNN, TRADITIONAL FLNN AND FL-GANN MODELS

Input Type Model CPU RAM

k = 2 k = 3 k = 5 k = 2 k = 3 k = 5

MLNN 0.3327 0.3514 0.3570 0.0288 0.0265 0.0273

Univariate FLNN 0.2944 0.2999 0.3054 0.0210 0.0201 0.0215

FL-GANN 0.2829 0.2812 0.2843 0.0195 0.0197 0.0202

MLNN 0.3314 0.3387 0.3448 0.0266 0.0271 0.0289

Multivariate FLNN 0.2971 0.2903 0.3201 0.0218 0.0202 0.0226

FL-GANN 0.2815 0.2814 0.2902 0.0194 0.0207 0.0212

I/O mean time, and so on. According to the analyses also

presented in [16], only less than 2% of jobs run for longer

than one day, even though such jobs contribute to over 80%
of the recorded resource utilization in the Google cluster. In

order to evaluate the generalization of our prediction model,

we select a long running job with ID 6176858948. The job

consists of 60171 divergent tasks during the 20-day period

(from 1st to 20th day). We set average time t = 5 minutes,

forecast horizon k = 1 in all experiments. The data from 1st

to 15th day is used to train neural networks. Meanwhile, the

data from 16th to 20th day is employed to test the prediction

performance of these networks. For the multivariate input case,

both CPU and memory usage data is used simultaneously for

the learning models. Meanwhile, in the case of univariate, only

one metric (CPU or memory) is put into the prediction models.

To show the effectiveness of our proposed model, we compare

performance of MLNN, traditional FLNN and FL-GANN in

the tests below.

The MLNN thus is configured with 5 layers (1 input, 1

output and 3 hidden). The neuron number for layers is set in

succession as follows: k, 10, 15, 5, and 1. Traditional FLNN

and FL-GANN have only one input and output layer with

structure (k, 1). Here, k is the sliding window value used in

the Preprocessor module. Activation function used for all three

networks are Exponential Linear Unit (ELU).

B. Forecasting Resource Consumption with Multivariate Input
Data

In this test, we evaluate the efficiency of FL-GANN against

MLNN, and traditional FLNN in forecasting resource con-

sumption. For each model, we also compare univariate (single

input metric) and multivariate (multiple input metrics) data.

We change sliding windows size k from 2 to 5 (k = 2, 3, 5)

in this test. Our achieved MAE outcomes are given in Table I.

The results point out that MAE accuracy of FL-GANN are

almost smaller than FLNN and MLNN model with different

sliding window values as well as input types. Concretely,

in the case of univariate data input, FL-GANN brings the

best results in comparison with traditional FLNN and MLNN.

For multivariate data, there is only one case of k = 3 and

memory consumption prediction, MAE of FL-GANN is lower

than traditional FLNN. Otherwise, the FL-GANN has better

performance as compared with other models.

Figure 3 and 4 show the predicted results between FLNN

and FL-GANN models for CPU and memory with multivariate

input data. While, the blue line is the actual usage, orange

line is the predicted values. It can be seen that prediction

curve of FL-GANN tends to closer to the actual value curve

in comparison with forecast FLNN curve for both CPU and

memory with multivariate input data. Also, for the weirdo

points (both high and low), the results also show that the FL-

GANN model is better than FLNN and MLNN.

C. Influence of GA hyper-parameter on FL-GANN

In this experiment, we focus on evaluating the influence

of different GA hyper-parameters on our FL-GANN with

multivariate input data. The parameters are pre-set for this

test as follows.

1) For population size ps changing experiment: ps value is

put out in turn from {50, 100, 200, 300, 400, 500, 600},

sliding window = 3, expansion functions is Power Series,

gmax = 650, pc = 0.95, and pm = 0.025.

2) For probability of two individual exchanging crossover

pc changing experiment: pc value is put out in turn from

{0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 0.98}, sliding window

= 3, expansion functions is Power Series, gmax = 650,

ps = 500, and pm = 0.025.

3) For probability of individual mutation pm chang-

ing experiment: pm value is put out in turn

from {0.005, 0.01, 0.025, 0.05, 0.065, 0.80, 0.10}, slid-

ing window = 3, expansion functions is Power Series,

gmax = 650, ps = 400, and pc = 0.95.

Population size changing experiment. For each ps, we

carry on 20 times of MAE and RMSE measurements then

calculate average values, which are shown in Table II. The

evident observation is that with ps = 50, MAE’s and RMSE’s

average values reach the biggest numbers at 0.2988, and

0.4913, respectively. When ps = 600, the both average error

accuracy values are the smallest number at 0.2899, and 0.4821,

respectively. Moreover, the MAE results are produced by ps
at 400, and 500 that approximate the value is produced by ps
at 600 although population size is increased by 100 and 200,

respectively. Based on figure 5, we also recognize that MAE

53

Fig. 3. CPU prediction outcomes of FLNN and FL-GANN with multivariate input data

Fig. 4. Memory prediction outcomes of FLNN and FL-GANN with multivariate input data

values of ps at 400, and 500 are smaller than MAE values of

ps at 600. This infers that the smaller population, the worse

of outcomes and if the population is large, the results may be

better. However, in that case, the proposed model will take

time to learn. Hence, the population size is from 300 to 600

producing acceptable performance for the tested data.
Figure 5 indicates the MAE range of population sizes with

diverse ps parameters using box-and-whisker plots. While the

intermittent lines in the middle of boxes represent the mean

values, the upper and lower boundaries of the boxes represents

upper and lower quantiles of the distributions. Via those results

shown by this figure, a remark could be brought forward as

follow. The population size has the smallest average MAE

accuracy at ps = 600 (average MAE is equal to 0.2898 in this

case).
Probability of two individual exchanging crossover

changing experiment. For this test, we change pc from 0.7 to

0.98 to evaluate error accuracy via MAE and RMSE measures.

Table III gives the average accuracy values of the measure-

ments after 20 running times with each pc. An observation can

be made from those outcomes. When pc = 0.95, average MAE

accuracy gets 0.2897, which is minimum value as compared to

others. The better pc range for FL-GANN is 0.9 to 0.98. This

means the probability of two individual exchanging crossovers

to create offspring gets higher value, the results may get

better. More specifically, figure 6 presents the achieved MAE

ranges with diverse pc. Through the figure, it can conclude

TABLE II
COMPARISON OF AVERAGE MAE WITH DIFFERENT POPULATION SIZES

Population size Error Accuracy

MAE RMSE

ps = 50 0.2988 0.4913

ps = 100 0.2940 0.4846

ps = 200 0.2925 0.4860

ps = 300 0.2924 0.4833

ps = 400 0.2907 0.4834

ps = 500 0.2908 0.4823

ps = 600 0.2899 0.4821

that the probability of two individual exchanging crossover in

the range of [0.9, 0.98] producing acceptable results for the

tested data.

Probability of individual mutation changing experiment.
Table IV shows the MAE and RMSE average values obtained

after 20 running times with each pm. The average MAE

accuracy is 0.2911 when pm = 0.025. In the case of pm value is

increased to 0.08 or even higher, the average MAE and RMSE

values are bigger. This proves that the higher probability of

individual mutation gets, the results may worse. Figure 7

is used to illustrate MAE range with different pm. Via this

54

Fig. 5. MAE accuracy fluctuation comparison of with different
population sizes Fig. 6. MAE accuracy fluctuation comparison with different proba-

bility of two individuals exchanging crossovers

Fig. 7. MAE accuracy fluctuation comparison with different proba-
bility of individual mutation Fig. 8. Comparison of expansion functions influence on FL-GANN

TABLE III
COMPARISON OF AVERAGE MAE AND RMSE WITH DIFFERENT

PROBABILITY OF TWO INDIVIDUALS EXCHANGING CROSSOVERS

Crossover Probability Error Accuracy

MAE RMSE

pc = 0.70 0.2968 0.4818

pc = 0.75 0.2943 0.4854

pc = 0.80 0.2946 0.4852

pc = 0.85 0.2931 0.4858

pc = 0.90 0.2913 0.4855

pc = 0.95 0.2897 0.4836

pc = 0.98 0.2915 0.4869

experiment, it can remark that MAE and RMSE results which

are produced by the probability of individual mutation in the

range of [0.01, 0.08] is acceptable with the tested data.

TABLE IV
COMPARISON OF AVERAGE MAE AND RMSE WITH DIFFERENT

PROBABILITY OF INDIVIDUAL MUTATION

Mutation Probability Error Accuracy

MAE RMSE

pm = 0.005 0.2959 0.4921

pm = 0.01 0.2922 0.4847

pm = 0.025 0.2911 0.4829

pm = 0.05 0.2918 0.4830

pm = 0.065 0.2926 0.4843

pm = 0.08 0.2938 0.4847

pm = 0.10 0.2952 0.4868

D. Influence of Expansion Functions on FL-GANN

The goal of this experiment is to evaluate the influence

of different expansion functions on our FL-GANN in the

55

TABLE V
COMPARISON OF EXPANSION FUNCTION INFLUENCE ON FL-GANN

Expansion CPU RAM

Functions k = 2 k = 3 k = 5 k = 2 k = 3 k = 5

Chebyshev 0.3208 0.3654 0.3424 0.0205 0.0244 0.0288

Legendre 0.2932 0.2908 0.3347 0.0211 0.0227 0.0211

Laguerre 0.4102 0.4889 0.4485 0.0283 0.0333 0.0342

Power 0.2860 0.2915 0.2914 0.0215 0.0206 0.0228

Trigo∗ 0.3069 0.3257 0.4388 0.0346 0.0233 0.0261

∗Trigonometric function

learning phase. In this way, we test five popular expansion

functions including Chebyshev, Legendre, Laguerre, Power,

and Trigonometric. The input data is multivariate. The sliding

window k in this experiment is set to 2, 3, and 5. The gained

MAE outcomes with CPU and memory are given through

Table V. In which, Power Series function produces the smallest

MAE values, which are 0.2860 with k = 2, 0.2914 with k = 5

(CPU prediction), and 0.0206 with k = 3 (memory forecast).

On the other hand, Legendre function brings two minimum

MAE values, which are 0.2908 with k = 3 (CPU prediction)

and 0.0211 with k = 5 (memory forecast). Unfortunately,

Laguerre and Trigonometric functions do not yield any the

smallest MAE in our evaluations.

In order to more objectively evaluate Power Series and

Legendre functions with FL-GANN, we carry on a small

additional experiment for CPU prediction with k = 3. Thus,

we run 20 times for each the function, obtained MAE values

of these all runs are shown by the box-and-whisker diagram 8.

It can be conclude that MAE fluctuation of the Power Series

function is the smallest, also the average MAE (intermittent

line in the box) is also the smallest as compared to Legendre

function.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented our designs for a novel cloud

resource prediction system using functional-link neural net-

work. We also proposed the use of genetic algorithm in-

stead of back-propagation technique with gradients descent

to overcome drawbacks of the training process for traditional

FLNN. Besides, in our system, the multiple resource metrics

are processed simultaneously using several proposed data

preprocessing mechanisms. This helps the prediction system

can forecast more precisely resource consumptions in advance

because the metrics often have relationship each other. We

tested our FL-GANN model with a real dataset provided by

Google. The achieved results show that although the forecast

method is simple but it can bring good performance in pre-

diction process even though the system exploits multivariate

data. The outcomes also prove our proposals can be applied to

practice. In the near future, we plan to evaluate several other

variants of FLNN and to develop an auto-scaler service with

decision phase for clouds using this prediction technique.

ACKNOWLEDGMENTS

This research is supported by the Vietnamese MOET’s

project No. B2017-BKA-32 “Research on developing software

framework to integrate IoT gateways for fog computing de-

ployed on multi-cloud environment”, Slovak VEGA 2/0167/16

project “Methods and algorithms for the semantic processing

of Big Data in distributed computing environment”, and EU

H2020-777533 project PROCESS “PROviding Computing so-

lutions for ExaScale ChallengeS”.

REFERENCES

[1] Nguyen Minh, B., Tran, V., and Hluchy, L. (2012). Abstraction layer
for development and deployment of cloud services. Computer Science,
13, 79-88.

[2] Nguyen, B. M., Tran, D., and Nguyen, G. (2016). Enhancing service
capability with multiple finite capacity server queues in cloud data
centers. Cluster Computing, 19(4), 1747-1767.

[3] Hluch, L., Nguyen, G., Astalo, J., Tran, V., ipkov, V., and Nguyen,
B. M. (2017). Effective computation resilience in high performance and
distributed environments. Computing and Informatics, 35(6), 1386-1415.

[4] Dehuri, Satchidananda, Bijan Bihari Mishra, and Sung-Bae Cho. ”Ge-
netic feature selection for optimal functional-link artificial neural net-
work in classification.” International Conference on Intelligent Data
Engineering and Automated Learning. Springer, Berlin, Heidelberg,
2008.

[5] Hipel, Keith W., and A. Ian McLeod. Time series modelling of water
resources and environmental systems. Vol. 45. Elsevier, 1994.

[6] Pao, Yohhan. ”Adaptive pattern recognition and neural networks.”
(1989).

[7] Majhi, Ritanjali, Ganapati Panda, and Gadadhar Sahoo. ”Development
and performance evaluation of FLANN based model for forecasting of
stock markets.” Expert systems with Applications 36.3 (2009): 6800-
6808.

[8] Majhi, Babita, Minakhi Rout, Ritanjali Majhi, Ganapati Panda, and
Peter J. Fleming. ”New robust forecasting models for exchange rates
prediction.” Expert Systems with Applications 39, no. 16 (2012): 12658-
12670.

[9] Khandelwal, Ina, Udit Satija, and Ratnadip Adhikari. ”Forecasting
seasonal time series with functional link artificial neural network.” Signal
Processing and Integrated Networks (SPIN), 2015 2nd International
Conference on. IEEE, 2015.

[10] Sahoo, Deepti Moyi, and Snehashish Chakraverty. ”Functional link
neural network learning for response prediction of tall shear buildings
with respect to earthquake data.” IEEE Transactions on Systems, Man,
and Cybernetics: Systems 48.1 (2018): 1-10.

[11] Dehuri, Satchidananda, and Sung-Bae Cho. ”A comprehensive survey
on functional link neural networks and an adaptive PSOBP learning for
CFLNN.” Neural Computing and Applications 19.2 (2010): 187-205.

[12] Montana, David J., and Lawrence Davis. ”Training Feedforward Neural
Networks Using Genetic Algorithms.” IJCAI. Vol. 89. 1989.

[13] Tran, D., Tran, N., Nguyen, G., and Nguyen, B. M. (2017). A proactive
cloud scaling model based on fuzzy time series and SLA awareness.
Procedia Computer Science, 108, 365-374.

[14] Tran, N., Nguyen, T., Nguyen, B. M., and Nguyen, G. (2018). A
Multivariate Fuzzy Time Series Resource Forecast Model for Clouds
using LSTM and Data Correlation Analysis. Procedia Computer Science,
126, 636-645.

[15] Blanco, Armando, Miguel Delgado, and Maria C. Pegalajar. ”A real-
coded genetic algorithm for training recurrent neural networks.” Neural
networks 14.1 (2001): 93-105.

[16] Reiss, Charles, et al. ”Heterogeneity and dynamicity of clouds at scale:
Google trace analysis.” Proceedings of the Third ACM Symposium on
Cloud Computing. ACM, 2012.

[17] Prevost, J. J., Nagothu, K., Kelley, B., & Jamshidi, M. (2011, June).
Prediction of cloud data center networks loads using stochastic and
neural models. In System of Systems Engineering (SoSE), 2011 6th
International Conference on (pp. 276-281). IEEE.

56

