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Abstract—Privacy considerations obligate careful and secure
processing of personal data. This is especially true when personal
data is linked against databases from other organizations. During
such endeavours, privacy-preserving record linkage (PPRL) can
be utilized to prevent needless exposure of sensitive information
to other organizations. With the increase of personal data that is
being gathered and analyzed, scalable PPRL capable of handling
massive databases is much desired. In this work, we evaluate
Apache Spark as an option to scale PPRL. Not only is it
valuable to have a scalable PPRL implementation, but one based
on the Spark would also be commonly deployable and could
take advantage of further development of the ecosystem. Our
results show that a PPRL solution based on Spark outperforms
alternatives when it comes to handling multiple millions of
records; can scale to dozens of nodes; and is on-par with regular
record linkage implementations in terms of achieved results.

Index Terms—linkage, PPRL, privacy, scalability, Spark

I. INTRODUCTION

The insight that organizations can gain from analyzing data
may lead to a competitive advantage and/or improved decision
making. The prospect of this valuable insight can be an incen-
tive for organizations to start or extend gathering and analyzing
data on a Big Data scale [13]. It is possible that, intention-
ally or unintentionally, personal data is also captured when
operating on such a Big Data scale. When this is the case,
privacy considerations obligate careful and secure processing
of personal data. This is especially true when personal data is
linked against databases from other organizations, for example
with record linkage applications. The goal of record linkage is
to identify one and the same entities across multiple databases
[7, pp. 3-4]. When databases from different organizations are
the subject of record linkage, measures can be taken to prevent
unnecessary exposure of sensitive information to any of the
other organizations. The only information that participating
organization will learn is whether or not a certain record,
i.e. an entity, is also in the database of another organization.
From that point, optionally, the organizations can engage in
targeted data exchange preserving the privacy of entities that
are not shared among organizations. This is known as privacy-
preserving record linkage (PPRL) [7, pp. 187-207].

A. Applications of PPRL

PPRL applications are typically found in the domains of
crime and fraud detection, government services and healthcare
[33]. An interesting example is outlined in [17]. This example
describes a measure that can be taken during a virus out-
break. Namely, comparing airline passenger lists with hospital

records to be able to alert passengers in case it is retrospec-
tively discovered that another passenger aboard of the same
flight had been infected with the virus. Such an application
requires a linkage between personal data originating from
airlines and hospitals. For this part PPRL can be used.

Another possible application [10] is the identification of
terrorist suspects that enter or leave a country. This is already
done by the European Union that shares information about
inbound travelers with the United States to check if any
of them is on a terrorist watchlist [21]. Such, and similar,
surveillance and screening can make use of PPRL to prevent
privacy intrusions of those that are not on any watchlist.

PPRL can also be adapted to perform privacy-preserving
similarity search (PPSS). In this case, an entity is no longer
matched to a single other entity, but to multiple akin entities.
This may, for example, be used to find similar patients based
on their medical records. Other possible applications of PPSS
include analysis of clinical trails and healthcare software that
automatically personalizes to specific patient groups [31].

B. The PPRL process

There are two major ways to perform PPRL, with a two-
party protocol or three-party protocol [7, pp. 193-194]. When
using a two-party protocol, the participating organizations
directly and solely communicate with each other. In case of a
three-party protocol, a trusted third-party, called the linkage
unit, is involved to perform the actual linkage. Choosing
between the two protocols involves a trade-off between se-
curity and practicality. Two-party protocols are considered to
be more secure, as it is not possible for organizations to
collude with the linkage unit, but are computationally more
intensive and complex than three-party protocols. This work
only considers the more practicable three-party protocol PPRL.
In particular the process [33] defined by the following six
consecutive steps: parameter alignment, data pre-processing,
indexing, comparison, classification and evaluation (figure 1).

1) Parameter alignment: Records are encoded so that orig-
inal values of fields can’t be recovered by other partici-
pants. Still, it must remain possible to perform meaningful
comparisons of the encoded records to determine if two
records are matching, i.e. are the identical entity. To achieve
this, participants must use the same parameters for certain
tasks throughout the PPRL process. Determining and securely
sharing all of these parameters is done in the first step.
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Fig. 1. Steps of the PPRL process (three-party protocol).

2) Data pre-processing: In this step, each organization
encodes their records. Records used for PPRL typically consist
of multiple fields that are quasi-identifiers (QIDs). QIDs are
attributes that, when combined, may trace back to a specific
entity [29]. Before encoding, it is customary to first clean
and format these QIDs in a uniform way. After encoding, the
records are sent to the linkage unit.

3) Indexing: Next, the linkage unit will index the encoded
records. Typically, an indexing technique is used that can effi-
ciently group potentially matching records. By only comparing
grouped records the total number of comparisons that have to
be performed can be reduced. This is a crucial step in terms of
scalability, as the number of comparisons of a naive pairwise
approach could be np in the worst case (where p is the number
of participating organizations, each supplying n records).

4) Comparison: Through a comparison of two records the
degree of (dis)similarity can be determined. Various similarity
or distance functions can be used for this purpose, the most
appropriate one depends on the encoding scheme used.

5) Classification: Once it is known how (dis)similar two
records are, a classification can be made: match or non-match.
In contrast to regular record linkage, where machine learning
is often applied [15], other decision models than a simple
threshold function have not been thoroughly explored [33].

6) Evaluation: Metrics such as accuracy, precision, and
recall can be used for evaluation. Measuring privacy itself is
more difficult [32], and is considered out of scope in this work.

C. PPRL and Big Data

When applying PPRL on a Big Data scale and/or with
an increasing amount of different databases, scalability be-
comes a challenge [33]. In recent papers [33, 28] Apache
Hadoop and related tools and framework, combined consid-
ered an ecosystem, are suggested as an option for scaling
PPRL. An important advantage of the Hadoop-ecosystem is its
widespread adoption. As such, most public cloud providers,
including Amazon Web Services1 and Azure2, offer fully
managed Hadoop clusters. This allows organizations that don’t
possess the required infrastructure to still make use of the
Hadoop-ecosystem, with a push of a button. This makes that
a PPRL implementation based on the Hadoop-ecosystem will
have the inherited advantage of being commonly deployable.

1https://aws.amazon.com/emr/
2https://azure.microsoft.com/solutions/hadoop/

It is known that Apache Spark, a prominent framework
within the Hadoop-ecosystem, can be used to achieve great
performance and scale to hundreds of nodes [35]. However,
no clear picture exists how well it can handle PPRL [33]. With
this work, we contribute to this missing evaluation. We present
a scalable PPRL implementation based on Spark and show that
it outperforms alternatives when it comes to handling millions
of records; can scale to dozens of nodes; and is on-par with
regular record linkage implementations in terms of achieved
results. The implementation and datasets are publicly available
under an open-source license3. Also, instructions and Docker
images are provided to replicate the performed experiments4.

The remainder of this paper is structured as follows. Related
work is discussed in section II. Then, the theory underlying
PPRL is described in more detail in sections III and IV.
Followed by a description and evaluation of the created PPRL
implementation in section V. Sections VI to VIII contain the
discussion, future work and conclusions.

II. RELATED WORK

A. Secure multi-party computation

With secure multi-party-computation (SMC) two or more
parties engage, without an intermediary, in a joint effort solve
computations [23]. The input from each party is not revealed
to the other parties. However, afterwards every party receives
the output of the computation intended to solve. This makes it
especially useful for calculations based on personal data from
different organizations. A drawback of SMC is the significant
computational overhead [33], limiting its ability to be used for
efficient large-scale applications, including PPRL.

B. LSHDB

LSHDB is an open-source5 database and execution engine,
developed using Java, supporting similarity search, regular
record linkage and PPRL [18]. It supports batch processing,
as well as online querying. To optimize query speed it relies
on locality-sensitive hashing for indexing of records and has
distributed and parallel capabilities. We have used LSHDB as
a comparison to our Spark implementation, as it is one of the
few, if not the only, existing open-source PPRL implementa-
tion. We used an optimized version (fork) for our evaluations6.

3https://github.com/onnovalkering/pprl4s
4https://github.com/onnovalkering/pprl4s-extra
5https://github.com/dimkar121/lshdb
6https://github.com/onnovalkering/lshdb-star

https://aws.amazon.com/emr/
https://azure.microsoft.com/solutions/hadoop/
https://github.com/onnovalkering/pprl4s
https://github.com/onnovalkering/pprl4s-extra
https://github.com/dimkar121/lshdb
https://github.com/onnovalkering/lshdb-star


III. ENCODING

As mentioned in section I-B (The PPRL process), records
have to be encoded before they are sent to the linkage unit.
The Bloom filter data structure [6] has been adopted for
this purpose [27]. Because of its effectiveness, good privacy
protection and its relatively low computational costs, it has
become a widely used encoding scheme for PPRL [7, 11,
17, 19, 28, 31, 33]. Compared to directly using cryptographic
hash functions for encoding, Bloom filters encoding has the
advantageous feature that a small difference in input doesn’t
produce a completely different output. Therefore, Bloom filter
encoding can also be used for approximate matching of values
instead of only exact matching. This makes Bloom filter
encoding tolerant for modest data corruption such as typing
errors or phonetic variation. An important characteristic, as
data corruption often occurs in real-world personal data [30].
This work makes use of two Bloom filters types: field-level
Bloom filters (FBF) and record-level Bloom filters (RBF).

A. Field-level Bloom filters

Records are encoded by first separately encoding all of its
fields into FBFs. For an arbitrary textual field f , the encoding
procedure is as follows [27]. First a bit vector vFBF of length
mFBF is created. Next, the field f , padded with whitespace, is
tokenized into the set T using n-grams of size two as tokens.
Thus, for the value hello, T is { h, he, el, ll, lo, o }. Each
token is then hashed using k independent hash functions. To
reduce the success rate of dictionary attacks against FBFs,
keyed cryptographic hash functions (e.g. HMAC) must be used
[33]. The output values of these hash functions are considered
indices of vFBF . Each of the corresponding bits, i.e. those in
vFBF with an index equal to at least one of the output values,
is set to 1. After this, vFBF is the FBF for the field f .

Ideally, around 50% of the bits in a FBF are set to 1 (i.e.
a uniform distribution). This maximizes entropy and thereby
increases security in such a way that a malicious party might
infer little about the length of the field’s value and/or the value
of the parameter k [11]. To accomplish this, the value of
mFBF can be dynamically determined to ensure that about
half of the bits will remain 0. An equation for dynamically
determining the value of mFBF for FBFs of the same field,
which is called dynamic FBF sizing, is provided in [11]:

mFBF =
1

1− kg
√
p

This equation introduces two new variables: g and p. The
first, g, denotes the average amount of tokens in T for the
specific field (across all records). The variable p stands for the
probability that a bit in the resulting FBF remains 0. Because
we aim for a uniform distribution of the bit values, p is set to
a fixed value of 0.5. Figure 2 illustrates the creation of a FBF.

Encoding of numerical data can also be done using Bloom
filters. Instead of using n-grams as tokens, neighboring num-
bers are used as tokens to construct T [31]. Consider an integer
value x, in this case, the tokens are the numbers in the range
[x − b, x + b], with interval bintv (typically 1 for integers).

1 1 0 0 1 0 1 0 0 0 1 1 0 1 0 1 0 0

_h he el ll lo o_ 

Fig. 2. Creation of a dynamic FBF (g = 6, l = 18, k = 2).

A lower b value (1 ≤ b ≤ 4), increases accuracy, as T in
that case will primarily contain numbers close to x. However,
a greater degree of privacy protection is achieved by using a
higher b value. Using b = 5 offers similar accuracy and privacy
protection as the textual encoding counterpart (all considering
bintv = 1) [31]. Tokenization of floating-point values is
slightly different, as the method for integer values might result
in differently aligned neighbors for such values. For example,
take 5.5, with b = 1 and bintv = 0.5, then the tokens will
be {4.5, 5.0, 5.5, 6.0, 6.5}. The value 5.6 is very close to 5.5,
however, the corresponding token set {4.6, 5.1, 5.6, 6.1, 6.6}
has no tokens in common with the token set of 5.5. As a
result, the proximity of these two floating-point values will
not be recognized during the comparison. As a solution, the
neighboring numbers are based on x′, which is determined for
an arbitrary floating-point value x with the following function
[31]:

x′ =


x x mod bintv = 0

x− (x mod bintv) x mod bintv < bintv / 2

x+ (bintv − (x mod bintv)) x mod bintv ≥ bintv / 2

This function returns the closest number to x on an arith-
metic sequence with interval bintv . The value x′ is not included
in T , but is used to determine the neighboring numbers. Con-
sider the floating-point value 5.6, with parameters b = 1 and
bintv = 0.5. Then x′ = 5.5 and T = {4.5, 5.0, 5.6, 6.0, 6.5}.

B. Record-level Bloom filters

It is advisable to combine the FBFs of a record into a single
RBF. Since the similarity of two records can be determined
by a single comparison of the RBFs, instead of a pairwise
comparison of each FBF. Also, it makes it more difficult to
infer original field values and thereby improves the privacy
protection [8].

The procedure for constructing a RBF is as follows [11].
First, a bit vector vRBF of length mRBF is created. The
length mRBF must be set such that each FBF can take up
a proportion of space that, at least, corresponds to its own
length mFBF and the FBF’s weight wi. Consider a FBF with
mFBF = 200 and w = 0.25, the RBF in that case must be
at least of length 800 because 25% of its space is needed
for the FBF of length 200. Next, a random sample is drawn,
with replacement, from each FBF. The sample size for a FBF
is its weight wi times mRBF . In case the ith drawn bit is
1, then the bit in vRBF with index i is also set to 1. As



the last step, the bits in vRBF are randomly shuffled. The
exact shuffling must be preserved between RBF constructions,
across all the involved organizations. Otherwise, the RBFs
loose their ability to be meaningfully compared. The weights
of each field might be known in advance, or estimated in
agreement by the involved organizations. If this is not the case,
the weights can be determined based on the discriminatory
power of the fields. The Felligi-Sunter (FS) field weighting
algorithm is commonly used for this purpose [10, 12].

IV. MATCHING

After encoding, what remains for the linkage unit to operate
on is exclusively a collection of RBFs. As described in section
III (Encoding), these RBFs have the property that the relative
distance among them can be calculated. This property permits
the collection of RBFs to be considered a metric space [16].
Since RBFs are essentially bit vectors, the applicable metric
space can be defined asHn = ({0, 1}n, d), where n = mRBF .
This corresponds to a Hamming space [5], therefore it makes
sense to use the Hamming distance as the distance function d.

Finding matches within a Hamming space can be general-
ized to a k-nearest neighbour(s) (k-NN) [16] problem, where
k = 1 for PPRL or k ≥ 2 for similarity search (section I-A).
The main characteristics that still set apart PPRL are:

• a Hamming space consisting of RBFs is typically high-
dimensional, n > 2000 if not larger;

• few k-NN indexing structures are efficient for high-
dimensional Hamming spaces [25];

• the nearest neighbour(s) must additionally be within some
distance-threshold radius, instead of just being the closest.

A. Locality-sensitive hashing

To be able to efficiently search the collection of RBFs, i.e.
Hn, some preparation in the form of indexing is required.
With PPRL, an indexing method to efficiently group similar
RBFs (those in close proximity based on d) is of interest. By
only pairwise comparing RBFs in the same group the total
amount of comparisons that have to be performed can be
greatly reduced. This is called blocking [4]. Blocking creates
groups, or blocks, of items based on a blocking key [33]. To
apply blocking to RBFs, blocking keys must be created based
on RBFs in such a way that similar RBFs will have the same
blocking key, and thus end up in the same block.

To create these blocking keys we use locality-sensitive hash-
ing (LSH) [33]. In contrast to cryptographic hash functions,
that are designed to prevent collisions, LSH functions are
hashing functions that aim to collide in case of input that is
in close proximity within the metric space based on d [16].
This property makes the output of a LSH function suitable
as blocking keys. Still, when placed in the same block, it
doesn’t mean that items will match by definition in the PPRL-
sense. However, it narrows the search and thereby increases
scalability compared to a pairwise linear search.

B. Hamming LSH

A LSH technique suitable for Hamming spaces is Hamming
LSH (HLSH) [10, 20]. In essence, HLSH is a function that
samples bits from a given item [10]. If items a and b are equal,
we can reason that the output of the HLSH function must also
be equal, as all sampled bits will have the same values. More
distant items will likely yield different outputs, as some or all
sampled bits are more likely to be different.

A blocking scheme for a Hamming space, with items X ,
based on HLSH is as follows [20]. We construct L number
of hash tables, that each contain mappings from xi ∈ X
to their corresponding HLSH function output h(xi). For the
construction of each hash table, a distinct HLSH function is
used that samples k bits. Each item that has the same value
h(xi) within the same hash table is considered to be in the
same block. Having more hash tables increases the probability
that items are placed in the same block one or more times.
On the other hand, too many hash tables will increase the
amount of redundant comparisons. A technique to determine
the optimal value of L is provided in [20].

Sampling k bits from a RBF, to create its blocking key(s),
can be implemented in various ways. We now describe the
used implementation based on matrix multiplication that we
have found, through benchmarks7, to be up to three times
faster than an iteration-based implementation. Suppose we
have two HLSH functions, h1 and h2, that sample the positions
{1, 3, 5} and {2, 4, 6} respectively. As input items consider:

x1 =
[
1 1 0 1 1 0

]
x2 =

[
1 0 1 0 1 0

]
A straightforward algorithm is to iterate over each input item.
At every position that is to be sampled, prepend the value of
the bit to a sequence. This sequence is then used as output. By
prepending instead of appending, we can interpret the output
value as a binary number. Converting the binary number to a
decimal number is a storage-efficient way of representing the
output compared to arrays and strings8.

h1(x1) = 101 = 5

h2(x1) = 011 = 3

h1(x2) = 111 = 7

h2(x2) = 000 = 0

Bit sampling can also be implemented using matrix multipli-
cation. For this, we need two matrices, X and K. Where X:

X =

[
x1

x2

]
=

[
1 1 0 1 1 0
1 0 1 0 1 0

]
The matrix K in turn indicates column-wise which bits are
to be sampled. To preserve to the order of sampled positions,

7A native BLAS library has been included to accelerate linear algebra
computations, with the use of low-level routines.

8Java/Scala uses 32 bits for a single integer, compared to 16 bits per
character for strings (UTF-16).
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Fig. 3. The first phase of the Spark-based PPRL implementation.

incremental values are used. For the ith position the value to
use is 2i−1. For the functions h1 and h2:

K =


20 0
0 20

21 0
0 21

22 0
0 22


The output values can be calculated as follows:

X(K) =

[
h1(x1) h2(x1)
h1(x2) h2(x2)

]
=

[
5 3
7 0

]
V. IMPLEMENTATION

We have created two Spark-based PPRL implementation
variants. One using the resilient distributed dataset (RDD) API
and the other using Spark SQL. The RDD API is a low-level
API that provides extended control over performed operations.
Spark SQL is a higher level API and allows Spark to perform
optimizations using the Catalyst optimizer [2].

Both implementations consist of two phases. In the first
phase (figure 3) the involved organizations load (and clean, if
required) their records and encode them into RBFs. Also, for
each RBF a set of L HLSH blocking keys is generated using
the matrix multiplication method as described in section IV-B.
Then, the output is stored on disk so that it can be transferred
to the linkage unit9. This first phase corresponds to the second
step of the PPRL process (Data Pre-Processing, section I-B).

The linkage unit performs the second phase (figure 4).
The steps of this phase are, for the most part (logically), the
same between the RDD API and Spark SQL implementations,
only the generation of candidates (step seven) is considerably
different and influences the implementation of the subsequent

9This step is omitted during benchmarks of the implementations.
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Fig. 4. The second phase of the Spark-based PPRL implementation.

steps. Before discussing the seventh step, let’s first describe
the preceding step that generates hash table entries.

The overarching idea is that we construct, in a distributed
fashion, L hash tables. For this purpose, each record has
a set of generated HLSH blocking keys (k1 . . . kL), where
the ith key belongs exclusively to the ith hash table. In the
sixth step, each record entry is duplicated into L separate
(hash table) entries that each has a single HLSH blocking key
associated to it. This approach allows Spark to process the
entries independently and thereby the hash tables in parallel.

The goal of the next step (7) is to find record pairs that
have at least one HLSH blocking key, with matching index,
in common, i.e to find collisions in the L hash tables. Only
these records will be considered for the future steps, and are
therefore called candidate records. Based on the hash table en-
tries, the RDD API implementation generates candidate record
pairs by performing a cogroup on the HLSH blocking keys.
This transformation results in a collection of groups (i.e. hash
table), one for every distinct HLSH blocking key. All groups
contain two records lists, one for each of the two databases.
The pairwise combinations of the lists of records within each
group (hash table) are the generated candidate record pairs.
The Spark SQL implementation generates candidate record
pairs differently based on the hash table entries. Namely,
it performs an INNER JOIN based on the HLSH blocking
keys. This results in the same candidate records pairs as the
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Fig. 5. Singe-node runtimes (records per database; two databases).

RDD API implementation, but they are not grouped by HLSH
blocking keys and thus can be processed independently.

The remaining three steps (8-10) are very similar between
the two implementations. Comparing records, i.e. calculating
the Hamming distance, is done using optimized bitwise oper-
ations. Assigning classifications is done based on a threshold
function, where the threshold is a parameter. Storing records
is done using the Parquet format, but could be replaced by any
other format compatible with Spark and Hadoop (HDFS).

A. Single-node evaluation

The two implementations variants have been benchmarked
against LSHDB (section II-B), using a single-node setup10

since LSHDB doesn’t support cluster deployments. As the
benchmark dataset we’ve used the North Carolina voting
register (NCVR)11. From the NCVR dataset, different two-
database configurations, of varying sizes, have been generated.
Parts of the generated databases have been corrupted using
GeCo to simulate dirty data [30]. The average of four runs is
used as the final result for each configuration (figure 5).

What stands out is that LSHDB is faster than both the
Spark variants for up to a million records. This can be
explained by the overhead of Spark, that, in addition to the
actual work, also performs job scheduling and other cluster-
related tasks, even on a single-node setup. LSHDB is more
lightweight in that area, it’s a pure Java implementation that
immediately and solely will work on the PPRL task. The
RDD API implementation performs worse than both the Spark
SQL implementation and LSHDB for all database sizes. Spark
seems to optimize the Spark SQL implementation better as the
database size increases, from around 2 million records a mod-
erate runtime reduction, compared to LSHDB, is observable.
Thereby making the Spark SQL implementation the fastest
option for handling multiple millions of records, and LSHDB
the fastest option for databases with sub-million records.

10Machine contained a Intel i7-6700, 32GB RAM and a SSD for storage.
11https://s3.amazonaws.com/dl.ncsbe.gov/data/list.html

TABLE I
EVALUATION METRICS FOR RL TOOLKIT, LSHDB AND SPARK.

Impl. Records Precision Recall Accuracy F1 Score
RL Toolkit 50,000 0.99 0.89 0.98 0.94
LSHDB 50,000 0.99 0.95 0.99 0.98
Spark 50,000 0.99 0.88 0.99 0.93
RL Toolkit 100,000 0.99 0.89 0.98 0.94
LSHDB 100,000 0.99 0.95 0.99 0.97
Spark 100,000 0.99 0.88 0.98 0.94
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Fig. 6. RDD API cluster runtimes (records per database; two databases).

Between LSHDB and the Spark implementation variants,
the precision, accuracy and F1-score are all on-par (table I).
Except for recall. This means that although the Spark SQL
implementation, compared to LSHDB, is becoming faster as
more records are added, it comes with a compromise of finding
fewer of the total true matching records, i.e. there are more
false-negatives. Compared to the RL Toolkit12, an open-source
library for regular record linkage, both LSHDB and Spark are
on-par in terms of the aforementioned evaluation metrics.

B. Cluster deployment evaluation

To measure how well the created Spark implementation
variants can scale, they have been benchmarked after being
deployed on a Hadoop cluster13. The same generated two-
database configurations (NCVR) as before have been used.
Different cluster sizes are considered, namely: 10, 20, 40,
80 and 160 worker nodes14. The averages of four runs for
each configuration (number of records/nodes) for the RDD
and Spark SQL implementation variants have been plotted in
figure 6 and figure 7 respectively. Only runtime improvement
is considered here, as it is assumed that the accuracy stays the
same as in section V-A, since the computations are the same.

The runtime of the RDD implementation for the 1m dataset
can be halved, compared to the single-node deployment, when
using 10 nodes. This reduction steadily increases to two-thirds
for the largest 4m dataset. Doubling the number of nodes to

12https://github.com/J535D165/recordlinkage
13A Hortonworks Data Platform (HDP) v2.3.4 deployment.
14Each worker node (container) had 2 CPU cores and 8 GB RAM.

https://s3.amazonaws.com/dl.ncsbe.gov/data/list.html
https://github.com/J535D165/recordlinkage
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Fig. 7. Spark SQL cluster runtimes (records per database; two databases).

20, has only a modest effect for the 1m dataset (one-quarter
runtime reduction), but for the other datasets again halves the
runtime. Further doubling the number of nodes decreases the
runtime, but in lesser quantities. With 40 nodes the runtime is
almost halved, compared to 20 nodes, with 45% on average
across all datasets. This is reduced with on average 40% by
again doubling the number of nodes to 80 nodes. Using 160
nodes doesn’t noteworthy decrease the runtime anymore, it
even is slightly slower than using 80 nodes for the 2m dataset.
The maximum reduction is 18% for the largest 4m dataset. We
can conclude that for the RDD implementation, doubling the
nodes up to 40 nodes has favorable runtime reductions, but
beyond that the cost-benefit becomes effectively less to none.

The Spark SQL implementation has a similar relation be-
tween runtime reduction and doubling the number of worker
nodes. However, the reduction between the single-node de-
ployment and a 10-node cluster deployment is much greater
with on average 58 % for the 2m, 3m, and 4m datasets. The 1m
dataset is the exception, with the Spark SQL implementation
it seems that this size of dataset doesn’t fully take advantage
of the extra nodes. For number of nodes larger than 40, the
1m dataset is processed even slower than the 2m, 3m, and 4m
datasets. It is hard to pinpoint the exact reason, since Spark’s
SQL optimizer, Catalyst, is used as a black box.

For both implementations we don’t observe a significant
runtime improvement between the 80-nodes and 160-nodes
clusters, despite doubling the number of nodes. We reason
that this has to do with the used dataset being relatively small
for these cluster sizes. When extrapolating these runtimes, we
expect that the two lines will diverge, as the 20-node and 40-
node lines, when using a sufficiently large dataset. In that case,
it becomes beneficial again to use the larger amount of nodes.

VI. DISCUSSION

A drawback of the HLSH approach is that blocking keys
are generated individually for each record without considering
any of the other records in the database(s), i.e HLSH is
data-oblivious [1]. Thus, it is not known after generating a

blocking key if that key will ensure that all the true matching
records will be encountered through collision. Furthermore,
with HLSH only records with the exact same blocking key(s)
are considered candidate record pairs. For example, if the
generated HLSH blocking keys, for a certain hash table, of two
true matching records differ only by one bit, the two records
won’t end up as a candidate record pair based on that hash
table. As a consequence multiple HLSH blocking keys have
to be generated in advance for every record to increase the
probability of colliding with true matching records. Having
multiple HLSH blocking keys blows-up, in terms of total
amount of items that flow through the application, the dataset
in the second phase of the Spark implementation, as duplicates
are created so that hash tables can be processed in parallel.
This burdens the RAM requirement and increases the amount
of (redundant) comparisons that have to be performed. Other
indexing structures exist, such as LSH Forest [1, 3], that are
data-dependent and generally are less burdened by the afore-
mentioned drawback. However, these data-dependent indexing
structures often rely heavily on iteration and recursion that are
difficult to efficiently implement in Spark.

The runtime improvement over LSHDB in a single-node
configuration is minimal. Still, in some scenarios even a
runtime improvement of 15 minutes is advantageous. Think,
for example, of streaming contexts with high throughput.
However, Spark isn’t meant for single-node deployments and
comes out better when deployed on a cluster, as our results
show. There even might be more runtime improvement to be
gained by tuning the setup and parameters. The total runtime
is also influenced by the dataset. For example, datasets that
contain many similar but not equal entities will generate much
more candidate record pairs than datasets where the majority
is completely different and only a few entities are similar
and/or equal. The first case will result in more comparisons
that prolong the runtime, compared to the latter case.

VII. FUTURE WORK

This work considered a limited scope, in terms of tools,
techniques, and implementations. In each of these areas lie
opportunities for improvements. First, in this work only Spark
has been used. However, the Hadoop-ecosystem consists of
several other frameworks. An alternative, for example, is
Apache Flink, as also suggested in recent other work [14, 33].
Flink provides a similar abstraction of computation as Spark,
but focuses primarily on stream processing. This fits with use
cases that have a real-time inbound flow of records, as, for
example, in the border security application (section I-A).

Also, using a dedicated database to store records and/or
intermediate values is worth exploring. In our implementa-
tions, all data is managed by Spark itself. However, it might
be the case that certain data operations are performed more
efficient when using an optimized big data store, such as
Apache Cassandra15 or Apache HBase16.

15https://cassandra.apache.org
16https://hbase.apache.org



In term of techniques, the effectiveness of HLSH (section
IV-B) depends on the parameters used in combination with the
dataset. This can become an inconvenience when frequently
dealing with new datasets. As each dataset will require manual
parameter tuning. A new development are hash functions based
on the Learning to Hash (L2H) principle [34]. Based on this
principle the LSH functions most appropriate to the specific
characteristics of the dataset can be learned, typically using
deep learning [9]. Thus, by using L2H, manual parameter
tuning can be avoided. In the same area, applying dimen-
sionality reduction functions might be effective. Applying
dimensionality reduction can speed up PPRL applications, as
it will reduce the dimension of RBFs and thereby making the
needed data operations to be able to run more efficient [16].
An applicable dimensionality reduction technique is Logistic
Principal Component Analysis (LPCA) [26]

Implementation-wise there are also opportunities to ex-
plore. For instance, experimenting with native components
(e.g. C/C++). The benefit of using native components is that
operations can be performed more efficient, through low-level
routines. This includes resorting to the graphical processing
unit (GPU). Most of the required computations can be be
defined as a vector- or matrix-operation. Such operations can
be performed more efficient by utilizing the parallel nature of
GPUs [24]. GPUs can also be used to accelerate the creation
of RBFs, by performing the needed cryptographic hashing on
GPUs instead of CPUs [22].

VIII. CONCLUSIONS

In this work, we have made the case that PPRL is important,
and that is it beneficial to have a PPRL implementation
that runs on the widespread adopted Hadoop-ecosystem. We
considered two Spark-based implementations, with the aim to
find an implementation that scales sufficiently to a big data
scale. As a baseline, for the benchmark we have used the open-
source LSHDB. From the performed single-node experiments,
we have learned that a Spark-based implementation (Spark
SQL) of HLSH is able to outperform LSHDB, in terms of
total runtime, when processing multiple millions of records.
However, it comes at the cost of finding fewer true matches.
In terms of achieved accuracy, the two considered Spark
implementations both perform slightly worse than LSHDB.
However, the Spark-based implementations can be deployed
on a cluster, which in turn reduces the runtime even further.

We can conclude that, when performance is essential, cre-
ating custom-tailored applications in Java or C++ is advisable
when a single-node deployment is the only option. Using
Spark for such deployments has non-negligible overhead. This
doesn’t mean Spark is not a good option for PPRL applica-
tions. When there is a cluster available, even with a few modest
worker nodes, using Spark can greatly reduce the runtime of
PPRL applications. Even if single-node deployments do not
take tens of hours or days to complete processing millions of
record, there might be scenarios where matches have to be
made as fast as possible, justifying the use of a cluster. For
example in streaming scenarios with an real-time inbound flow

of records that have to be checked. Furthermore, both Spark
implementations do not under-perform in terms of accuracy
compared to regular linkage libraries. This makes it a viable
and accessible option when considering PPRL. We believe this
can take away the threshold to start using PPRL, because in
contrast to the scarce non-Spark implementations, the Hadoop-
ecosystem and Spark have the benefit of having a community
with expert knowledge and is supported by cloud providers.
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