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Executive Summary 
 

This document presents the foundations of the performance modelling and prediction 

approaches that the PROCESS project will use to steer its design, development and validation 

efforts. The broad range of environments that the PROCESS software will run on presents 

obvious challenges in the development of a uniform, easy-to-use and straightforward 

performance model. The necessary streamlining and simplification of the approach should not 

omit any relevant aspects that are determining the actual performance as observed by a user.  

As a way to balance these conflicting needs, the project will use a solution based on 

measurable performance metrics, complemented by a mathematical model that allows 

extrapolating performance on systems that are considerably more complex than the current 

ones. The extrapolation will also be necessary to understand the impact of advances in the 

capacities of individual components will have in the execution speed of complex workflows. 

The model used by the project assumes that typical exascale applications can be modelled as 

pipelines consisting of the input data stage-in, processing and (result) data stage-out steps. 

However, for workflows comprising several dynamically configured and deployed components, 

the set of performance components need to be able to analyse the execution in a more fine-

grained manner. The full set of metrics consists of: 

• T1: Configuration of the workflow 

• T2: Deployment strategy (selection of resources) 

• T3: Stage-in of the data 

• T4: Container selection (fetching the container encompassing the executable code, as 
defined in T1) 

• T5: Scheduling (time spent on the queue of a compute system) 

• T6: Execution time 

• T7: Stage-Out Strategy (choosing the approach based on required storage capacity, 
type and availability) 

• T8: Stage-Out (actual transfer of data). 
 

It should be noted that some of these steps depend on user input, therefore, the overall 

execution time will depend on the expertise and skills of the user. There are also considerable 

differences between situations where all the necessary resources belong to a single system, 

on multiple platforms controlled by a single organisation or in a federated system crossing 

organisational and geographical boundaries. 

To focus performance-related development efforts, the PROCESS performance model groups 

the metrics into the following categories: 

𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 = 𝑇1 + 𝑇2 + 𝑇4 + 𝑇7 

𝐷𝑎𝑡𝑎 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = 𝑇3 + 𝑇8 

𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔 = 𝑇5,       𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 = 𝑇6 

The overhead consists of factors that can be influenced by the PROCESS software, while the 

data transfer and execution time components are primarily dependent on the performance of 

the networking and computing hardware available. The scheduling is highly dependent on the 

number of competing jobs and the policies (e.g. priority queue available for the job). However, 

similar to the characteristics of the underlying hardware, scheduling is an issue that can't be 

influenced by the design of the software.  
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As the relative impact of these four categories on the system-level performance as experienced 

by the user can vary dramatically, the project will develop a user-configurable workflow that 

will be used to complement actual use case software in the evaluation of the PROCESS 

platform. However, it should be noted that the use cases already stress the different aspects 

of the equation in a quite comprehensive manner. For example, UC1 performance will be highly 

dependent on the data transfer and execution time components, whereas the interactive use 

anticipated in the UC4 will require minimising all of the overheads in the PROCESS platform. 
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1 Introduction 
This deliverable D3.2 updates the approach to model the performance of the PROCESS 

infrastructure and its possible scalability towards exascale workflows. Based on D3.1 this 

deliverable D3.2 and will prepare the final D3.3 and enhances and completes the process of 

developing a performance model. It gives the opportunity to provide predictions of the 

architecture behaviour towards extreme large workflow executions.  

In order to achieve exascale performance, we need on the one hand local computing centres 

capable of running at such an exascale level. On the other hand, one also needs software 

being deployable not only across several nodes, but also across different locations across 

Europe, the so-called sites. For our use cases presented in earlier and related deliverables 

and based on PROCESS’s architectural design decision, we consider this a prerequisite. In 

order to technically facilitate the decision, we seek for the approach to containerize the 

architectural elements as well as to push all use cases to design their execution in 

containers. This will allow for deploying instances of independent executions on sub-sets of a 

given data set on different local nodes and in the same time on different geographical based 

sites. 

However, the hardware and the software development towards exascale is an ongoing 

process and we have to face the challenge to predict a behaviour that cannot be verified 

within the lifetime of this project. Therefore, we need to develop a prediction model based on 

measurable performance indicators and from there on extrapolating runtime behaviour 

towards a much higher scale. The model needs to meet the requirements to predict the 

behaviour of all our services and the PROCESS infrastructure as a whole but must also be 

able to adapt new requirements coming from future and new applications. 

To distinguish the most common approaches for performance prediction models, we will first 

give an overview and classification of up-to-date performance modelling and prediction 

methods, on basis of which we will present the approach of choice for PROCESS.  

 

1.1 Performance modelling approaches 

Performance modelling is used for many computational and storage systems around Europe. 

Regarding the exascale challenge, also other EU projects examine the needs and 

conclusions to enable exascale performance. 

The CRESTA8 project (Collaborative Research Into Exascale Systemware, Tools and 

Applications) proposes a framework focusing on software and tool developments for end-

user scientist. Their solution is limited to local site needs and deals mainly with hardware 

decisions owners of supercomputing centres will face in the next years. 

1.1.1 Overview and classification 
One of the CRESTA project partners is David Henty from the Edinburgh Parallel Computing 

Centre (EPCC). In his publications he gives an overview on generic performance modelling 

techniques and a classification of which. In Table 1 he defines four main categories varying 

from raw measurements, over benchmarking and simulations to complex analytical modelling 

with a large number of parameters. 

 

 
 

8 https://www.cresta-project.eu 
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Technique Description Purpose 

Measurement running full applications under various 

configurations 
determine how well application performs 

Microbenchmarking measuring performance of primitive 

components of application 
provide insight into application 

performance 

Simulation running application or benchmark on 

software simulation 
examine “what if” scenarios e.g. 

configuration changes 

Analytical Modelling devising parameterized, mathematical 

model that represents the performance 

of an application in terms of the 

performance of processors, nodes, and 

networks 

rapidly predict the expected performance 

of an application on existing or 

hypothetical machines 

Table 1: Performance Modelling Approaches, cited from [PMO] 

Any of the techniques mentioned above will be useful within the PROCESS project: 

Measurement 

Both simple measurements as well as complex model measurement values are the basis of 

success. In Section 2 we will define at which points of the execution sequence meaningful 

measurements can be taken. Measurement values are to deliver input data for further 

modelling and prediction steps. 

Microbenchmarking 

A very simple sample application running through the complete PROCESS architecture and 

gathering first results will not contribute to the fundamental performance model. Nonetheless, 

microbenchmarking will be used to identify performance bottlenecks in the PROCESS 

architecture and assist in debugging and verifying its correctness.  

Simulation and Analytical Modelling 

Executing and measuring a given application running on PROCESS in different 

configurations and settings forms the input dataset for this step. The goal of this step is to 

extrapolate the behaviour and runtime of the application from the given observations. The 

resulting model will allow for predictions of runtime behaviour beyond the configuration 

scales measured, which gives us the chance to forecast the performance on an exascale 

level. 

1.1.2 PROCESS Performance Model 
Based on the previous description we choose a measurement-based approach with 

extrapolation through analytical modelling. First the measurands are identified and 

measurements are performed. In the next step a microbenchmark to evaluate these 

measurands is developed. Finally, to predict the performance of PROCESS, we use these 

results to create an analytical model that will allow to extrapolate the performance based on 

given measurements. 
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2 Identification of Measurands 
In the previous Section we categorized the approaches to performance modelling and 

prediction. One of which was a measurement-based approach with extrapolation for 

performance prediction. To achieve this goal, it is necessary to identify the appropriate 

measurands within the PROCESS infrastructure that can be used to model the performance 

of the infrastructure and predict its scaling.  

We stress that the hardware infrastructure such as computing, storage, and network have a 

big impact on the performance of PROCESS services. However, as a project, we have no 

real influence on this part of the infrastructure. Therefore, our performance measurands 

focus on the overhead introduced by the software services, but also measure all other 

relevant numbers to identify relations between them.  

In the absence of true exascale systems, our objective, as stated in Section 1, is to achieve 

exascale by combining the power of geographically distributed datacentres, unfortunately the 

traditional configuration of compute centres is more optimized for inner data transfer rather 

than for outside transfers. While technical solutions to optimize data-transfers exist such as 

the Data Transfer Nodes9,10, implementing those solutions is beyond the scope of the 

project. In PROCESS we try to hide the data transfers by overlapping data transfer with 

computing or use pre-fetching and caching to minimize the data transfers.  

Based on the five use cases defined in PROCESS, we can think of a typical application as a 

pipeline of data processes which typically requires a data stage-in step followed with an 

execution step, and finally a data stage-out step. The time required for stage-in and out is 

expected to be significant, because of the necessary data movement between datacentres.  

Figure 1 shows a sequence diagram describing all the steps involved in the execution of an 

application scenario. For each step we define the time corresponding to its completion as 

follows:  

T1: Configuration 

The Interactive Execution Environment provides an end-user web portal, where each 

run of any application needs to be configured. For the different use cases, these 

configurations vary as shown in the deliverables D4.2 and D5.2. 

T2: Deployment Strategy  

Part of T2 is the time needed to decide on which computing site[s] and storage site 

the containers and their data will be deployed. It also needs to initiate the required 

micro-architecture. 

T3: Stage-In  

Impact by the access to data services in data centre. However, if PROCESS can 

make use of caching, proactive pre-fetching or pre-processing we can reduce the 

impact of T3 on the overall execution performance 

T4: Container selection  

The workflow that has been defined in T1 specifies a container that will be executed 

as well as its version. This version needs to be fetched from the container repository 

and later deployed as a job in T5. 

 
 

9 Building User-friendly Data Transfer Nodes, https://www.delaat.net/posters/pdf/2018-11-12-DTN-SURFnet.pdf 

10 Pacific Research Platform https://bozeman-fiona-workshop.ucsd.edu/materials/20180303-dart-dtn-strategic-asset-v1.pptx/view 
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T5: Scheduling  

The time a job spends in the queue of the compute resource. This time can vary and 

will be hard to predict since it’s affected by each compute site’s scheduling system 

that isn’t in the scope of PROCESS. We may however be able to estimate an upper 

bound on the queue waiting time that could be added to the actual runtime prediction. 

T6: Execution time  

T6 is the time a job takes from leaving the queue to finishing its calculations on the 

compute resource. This time is determined by the performance and scalability of the 

application on the selected compute resource. To predict this time, an application 

specific performance model is required. 

T7: Stage-Out Strategy  

After the job is done, it may have generated large amounts of output data that needs 

to be transferred from the compute resource’s scratch space back to the PROCESS 

storage infrastructure. Based on the amount of data and the specified workflow the 

data service needs to choose a suitable stage-out strategy.  

T8: Stage-Out  

With the appropriate stage-out strategy the output data now needs to be transferred 

to the chosen storage resource. 

 

 

Figure 1: Sequence diagram describing the steps involved in execution of a typical application scenario 
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Table 2 summarises the various identified times, we will use as performance measurands.  

TX Name Description 

T1 Configuration Time to configure the workflow for the application 

T2 Deployment Strategy Time to select appropriate storage and computing site 

T3 Stage-In Time to transfer data from source to selected storage site 

T4 Container selection Time to select specified container for the workflow from repository 

T5 Schedule Time the submitted job spends in queue 

T6 Execution time Time spent executing the job on the compute resource 

T7 Stage-Out Strategy Time to select appropriate storage site for output 

T8 Stage-Out Time to transfer result to storage site 

Table 2: Description of the PROCESS measurands 

Using the identified performance measurands listed in Table 2 we propose a three-step 

approach to the modelling and performance prediction of the PROCESS infrastructure. First, 

we will show that the overhead of the PROCESS platform for a deployment on one site 

(initializing the micro-infrastructure and scheduling) is negligible. Second, since the 

deployment strategy of process is to deploy every application containerized, we show the 

weak scaling capabilities of PROCESS by deploying multiple containers with a split of the 

input data on one site. And third, since the goal is to achieve an exascale system solution, 

we enable applications to scale by splitting the data and deploying containers across multiple 

sites of PROCESS. 

We therefore describe three measurement scenarios: 

Scenario 1: Single container – single site (Figure 3-a) 

In this scenario we measure the execution time of processing the input sequentially 

within one container running. This container uses the maximal possible and available 

number of compute resources PROCESS can use at one single site (e.g. use case 2 

running only at one cluster). 

Scenario 2: Multiple containers – single site (Figure 3-b) 

In the second scenario we submit several containers on one cluster. Here, we either 

expect a speedup, since the container in scenario 1 eventually did not fully utilize 

compute resources or the same runtime as before, since the overhead to deploy 

more than one container in parallel should be minimal. 

Scenario 3: Multiple containers – multiples sites (Figure 3-c) 

This last scenario will deploy several containers in parallel on two different sites with 

an also split input data set. We expect a significant speedup since multiple containers 

will be deployed on multiple sites. 
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Figure 2: Three measurement scenarios 

Figure 2: Three measurement scenarios: (a) Single container – single site, (b) Multiple container – single site, (c) 
Multiple container – multiple site. In all three scenarios Stage-In and Stage-Out will down scale the system overall 
performances, unless we address the data transfer over a wide area network.   

After evaluating these scenarios and measurements, we will present a generic performance 

model that allows to predict the scalability of the PROCESS infrastructure for a given 

application. 
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3 Development of a balanced Prediction Model 
In this section we will present our approach to determine the components of a simple 

predictive model for workflow performance on the PROCESS infrastructure.  

3.1 Runtime Composition 

Based on Figure 2 the total runtime of an application can be defined as follows: 

𝑅𝑢𝑛𝑡𝑖𝑚𝑒 = 𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 + 𝐷𝑎𝑡𝑎 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 + 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔 +  𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 

Where: 

𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 = 𝑇1 + 𝑇2 + 𝑇4 + 𝑇7, 𝐷𝑎𝑡𝑎 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = 𝑇3 + 𝑇8, 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔

= 𝑇5 𝑎𝑛𝑑 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 = 𝑇6 

The overhead component contains all overhead directly related to the PROCESS services. 

This includes selecting the appropriate resources for data access and compute in the 

Execution Environment, configuring the micro-architecture of LOBCDER for data access, 

fetching the application containers, and submitting the application to the selected resource 

using Rimrock. 

To support exascale it is important that this overhead is low per submitted workflow and does 

not dependent on the scale of the compute resource which are targeted by the services. We 

expect that this overhead component is orders of magnitude smaller than the other 

components and will therefore be negligible. 

The data transfer, scheduling and execution time components are mostly determined by 

factors outside of the control of PROCESS services, such as network capacity, queue 

waiting times, and how well a workflow performs and scales on a given resource. 

Nevertheless, having an estimate of the data transfer and scheduling delay is useful for 

selecting a resource to which a workflow should be submitted. If execution time estimates 

are available, this selection may be improved further, and a total runtime estimate may be 

provided to the user.  

The data transfer component is mainly determined by two parts: the time required by Dispel 

to perform pre-processing of the data (if any), and the time required to transfer the resulting 

data volume given the end-to-end transfer capacity between the storage and compute site. 

These two components may largely overlap if the data pre-processing is simple and can be 

performed on the fly, but for complex operations this may not be the case.   

For the latter part, predicting large long-distance data transfers, a significant amount of 

research has been performed in the last two decades. For example, [[Liu2017]] describes a 

model that predicts end-to-end data transfer times with high accuracy based on logs of the 

Globus transfer service.  

Similarly, much research has been done on estimating queue waiting times of HPC 

applications which dominates the scheduling component. For example, [[Nurmi2007]] 

describes a model that provides estimates with a high degree of accuracy and correctness 

for a large number of supercomputing sites.  

For PROCESS we will re-use this existing work to provide estimates for both the data 

transfer and scheduling components of the model. 

Predicting the execution time is highly application specific and must be done separately for 

each of the use cases. It may be dependent on input datasets, application parameters, 

number of resources used (number and type of cores, amount and speed memory, 

availability and type of GPUs, etc).  
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Strong scalability of the use case applications is expected to be limited well below exascale, 

as currently only few applications are able to exploit a petascale level. To determine the 

limits of the strong scalability of the use case workflows, traditional performance 

benchmarking of the applications can be used for representative input data sets and 

parameters. 

To circumvent limits in strong scalability, we can exploit weak scalability, where multiple 

workflows are running at the same time to process different datasets. However, doing so 

may shift the bottleneck from the application to other source, such as the data service, or 

local storage on the resources. Such limits can be discovered by performing weak scalability 

testing, both on a single site and multiple sites.  

Unfortunately, it requires a large effort to create a complete and accurate model of the 

application behaviour for each of the use cases. Although users may be willing to perform 

some testing in advance to tune their application, they are mostly interested in obtaining 

application results. Therefore, highly accurate modelling of the application workflows is not 

required, instead a rough estimate of the processing time is generally enough. 

We will initially assume the user will provide an estimate for the execution time, as is 

customary on HPC systems. At a later stage, this estimate may be refined based on easy to 

determine parameters, such as input data size and number of resources used, which may be 

extracted from the logs of previous runs of the workflow. A significant amount of research 

has been done on estimating application execution time based on limited information. For 

example, [Smith1998] present a technique that predicts application runtimes based on 

historical information of “similar” applications. Search techniques are used to automatically 

determine the best definition of similarity. In [Gaussier2015], a similar technique is used to 

fine tune the execution time estimate provided by the user.  

3.2 Model Verification 

3.2.1 Benchmark Application 
An artificial benchmark workflow will be created which allows configuration of the different 

aspects of a workflow, such as the sizes and locations of in- and output data, pre- or post-

processing requirements, the number and type of compute resources required, the execution 

time of the application, etc. This benchmark workflow can be used to test the functionality or 

the PROCESS services, determine the initial values of the model, and validate model 

predictions. 

By choosing minimal values for data transfer and execution time (for example 0 bytes and 0 

seconds) the lower bound for the runtime can be determined and the overhead of the 

PROCESS services can be measured. By submitting large numbers of such workflows, the 

scalability of the services themselves can be tested.  

By choosing large values for data transfer an initial estimate of the data transfer capacity 

between locations can be made. Similarly, different pre-processing patterns can be tested, 

ranging from straightforward filtering or conversion to more complex operations such as 

mixing or transpositions, to create an initial estimate of the Dispel overhead. 

By varying the target resources of the workflow, an initial estimate of the scheduling delays in 

different locations can be made. 

Once an initial model is available, this benchmark application can be used to validate it by 

comparing the error rates of the predictions against actual measurements. This will allow us 

to iteratively refine the model during the course of the project. 
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3.2.2 Use Case Workflows 
As explained above, strong and weak scalability tests may be performed on the use case 

workflows to determine the limits to its scalability and the initial parameters of the execution 

time models. Once these parameters are available, an initial execution time model can be 

created, and its predictions can be verified using the logs of subsequent workflow runs. 

Consistently measuring the workflow performance and selected key parameters (such as 

input data size and type and number of resources used) allow the model to be refined 

further. By default, a simple placeholder model will be used by the PROCESS services. If 

necessary, a more detailed use case specific model may be created for use case and 

provided upon workflow submission. 

3.3 Conclusion 

In this section we have described the components of a simple predictive model for workflows 

performance on the PROCESS infrastructure. The main goal of this model will be to verify 

that the overhead incurred by the PROCESS services (the sum on T1, T2, T4 and T7 in 

Figure 1) is negligible compared to the cost of data staging (T3 and T8), scheduling (T5) and 

execution (T6). Using this model, we try to verify if the proposed services are capable of 

scaling into the exascale range.  
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4 Measurements 
 

4.1 Platform-wide measurements 

In this section, we report the overhead and scheduling measurements on the PROCESS 

platform in its current implementation. We also report measurements within UC2 

environment which includes Xenon11 and the common workflow language (CWL)12 for job 

submission. 

4.1.1 Overhead measurements 
Due to some integration issues preventing us from using certain resources, the overhead 

measurements are performed for scenarios 1 and 2 and are presented together. The 

measurements are taken on Prometheus and each value is the average of three consecutive 

runs. For reasons detailed in D4.3, only T2 is measured and reported.  The operational 

conditions of the tests impose frequent polling whose consequence is a dither of +/-2.5 

seconds in the data, which are plotted in Figure 3. The main observation is that, except the 

erratic behaviour caused by the dithering at lower container count, the overhead is small, 

almost constant and independent of the number of containers. 

 

Figure 3: PROCESS platform overhead measurements from IEE. Currently, the only measured is the pipeline 
submission delay which corresponds to T2. 

In UC2 environment, we identified a few factors contributing to overhead. As described in 

D2.2, current implementation uses a Web portal to select the dataset and to launch the 

processing. The latter needs to be specified as a CWL workflow whose individual steps are 

run on given computing site (s) using Xenon and Xenon-flow, a CWL wrapper. Both these 

tools and the Web portal introduce overhead described below.  

Every container is meant to run a reduction pipeline for one observation, but because we are 

focusing on the overhead, just as in deliverables D4.3 and D8.1, we are not interested in the 

 
 

11 https://github.com/xenon-middleware/xenon.git 
12 https://www.commonwl.org 



D3.2: Measurements 
 

17 
 

actual computations. Consequently, each step in the pipeline involving computations is 

replaced with an execution of the validation container developed for validation in D4.3. For 

Scenario 2, we run consecutively 1, 2, 4, 8, 16 and 32 containers on one computing site. In 

Scenario 3, we plan to use as much per participating site. All measurements are repeated 

three times and then averaged. The results are summarised in Figure 4. Frontend and stage-

in overhead is specific in using the Web portal and Xenon-flow and constitute T2. As of the 

stage-out overhead, it corresponds to T7 and is also specific to Xenon-flow. We observe that 

the individual type of overhead is quite small, but their aggregated value appears almost 

linear with the number of containers. This linearity is confirmed and eventually detailed in the 

modelling part in Section 5. 

 

Figure 4: Overhead in current UC2 implementation using Xenon-flow for job submission. Three types of overhead 
are identified and shown individually, then summed in overall overhead. 

 

4.1.2 Scheduling measurements 
Overhead due to scheduling in IEE is measured as queueing times which are plotted in 

Figure 5 in relation with the number of containers. We observe that scheduling does not 

harm PROCESS performance as its overhead is the order of seconds to tens of seconds up 

to 240 containers. 
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Figure 5: PROCESS scheduling overhead measurements from IEE. It consists of various queueing delay 
corresponding to T5 

We also measure the scheduling overhead in UC2 environment. This overhead is induced by 

the interaction between Xenon-flow and the HPC system workload management system 

(WMS) via Xenon. While most of it can actually be accounted for the WMS, some of it is 

undoubtedly due to the interaction. The variation of this overhead in function of the number of 

containers is shown in Figure 6. We can see that it has the same profile as the overall 

overhead above, but in a lesser extent. 

 

Figure 6: Overhead in UC2 due to interaction with the HPC workload management system to which some of this 
is accounted for. 
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4.2 Use case specific measurements 

4.2.1 UC1 

 

Data transfer measurements 

Measurements of data transfer rates with the SCP protocol were reported in D8.1. As 
reported in the deliverable, frequent stalls and broken connections happened frequently in 
head nodes. The DTN connection from LRZ to AMS and AMS to LISA showed 30% faster 
transfer than a direct copy (see Table 6 in D8.1, page 11). In Table 3 we report the 
measurements of copying the UC1 Camelyon16 dataset between PROCESS sites including 
our DTN using gridFTP.  
 

Camelyon 16 30Gb transfer 
source/destination  

AMS-DTN LISA LMU-DTN AGH 

AMS-DTN 0 324.17 494.51 25.53 

LISA 549.62 0 324.97 0 

LMU-DTN 405.32 25.53 0 19.55 

AGH 51.07 0 14.71 0 

Table 3: measurements of copying the Camelyon16 dataset between PROCESS sites, with gridFTP protocol. The 
measurements are reported in MB/s. 

 

The asymmetry in the measurements is due to different reasons. The lack of open ports of 
sites, for example, reduced the possibility of having concurrent connections. Moreover, the 
sites have different upload to download bandwidth. Direct connectivity between Lisa and 
Prometheus was not possible with gridFTP, since this would require one of the sites to act as 
a server and have open ports. These many restrictions further emphasize the need for a 
DTN approach with more performance and programmability for data transfers.  

 

Execution time and/or FLOPS measurements vs data size 

 

Initial measurements of the execution time for each software layer were reported in D8.1 

Table 2 and 3, pages 8-9. In Table 4 we report the execution time against the size of the data 

in the data pre-processing step, for each of the two methods proposed, namely random 

sampling and dense sampling. Measurements were computed on the AGH site in Krakow, 

Poland. The execution time vs data size is reported in s/Mb or s/Gb to show the scalability to 

increasingly large datasets and the gains in computing time which arrive up to processing 1 

Gb per second. 
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Method # 
patches 

WSI 
coverage  

data 
size  

sampling 
time 

average 
execution time  

Execution 
time vs. 
data size 

Random 
sampling 

500  1 file 144 
Mb 

0.05 s 41.75 s +-7.37 s 0.29 s/Mb 

Random 
sampling (in 
D8.1, Table 
2) 

5000 5 files 12 Gb 0.05 s 263.3 s +-22.9 s 21.9 s/Gb 

Dense 
sampling  

118773 10% of 1 
file 

200 Gb 0.004 s 573.31 s +-47.0 
s 

2.8 s/Gb 

Dense 
sampling  

6 Mill. 100% of 5 
files 

1 Tb 0.004 s ~ 7500 s 1 s/Gb 

Table 4: measurements of execution time vs data sizes for extracting high resolution patches from the 
Camleyon17 dataset at the PROCESS AGH site 

4.2.2 UC2 

Data transfer measurements 

The benchmarks carried out in Section 3.2 of D8.1 are still valid since none of the involved 

data service have seen any new developments. Especially, the much-awaited data transfer 

nodes (DTN) that can heavily impact the transfer performance were not yet available for this 

use case. 

For completeness, we recall here our findings from D8.1. We performed three types of 

measurement: estimating the queueing and preparation time on LOFAR LTA tape archive, 

total staging time as a function of total size and data transfer speed from the archive to the 

HPC sites. We have found the queueing durations quite variable in and across LOFAR LTA 

locations, those variations being attributed to differing configurations and/or loads at the 

respective locations. We have also found the staging durations to be variable because of the 

shared nature of the tape systems and cannot be controlled. Finally, the data transfer rates 

between the LTA various locations and the various computing sites are shown to be 

suboptimal and constitute a bottleneck that needs to be overcome. 

To conclude this section, we report on data transfer measurements using modest datasets 

performed while benchmarking the platform overhead. The measurements are relative to 

staging-in input data and staging-out of results for two small datasets of size 10MB and 1GB, 

respectively, while varying the number of containers running on the platform. The results are 

summarized in Figure 7. We know the transfer time depends on the data size and is a 

challenge for PROCESS, the principal observation convoyed by this figure is that time is not 

dependent on the number of containers. Finally, as in D4.3, stage-in takes longer than stage-

out as the former includes transfer time from wherever is the input data is located to Cyfronet 

in opposition to the latter which does not. 
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Figure 7: PROCESS general data transfer performance. The barplots are clustered by dataset size. Each cluster 
consists of six bars for different number of containers and each bar is the sum of two transfer times for stage-in 
and stage-out, in seconds. 

Execution time and/or FLOPS measurements vs data size 

For UC2, we only measure the execution time for the time being as the most intensive 

components capable of generating high FLOPS values are either currently sequential or not 

yet in place. The wall clock times of the main steps of the data reduction pipeline as given in 

Table 5. The principal conclusion to draw from the very high magnitude of these values is 

that the overhead due to scheduling and interaction between platform components as seen 

in the previous section is negligible. 

step data size (GB) execution time (s) 

calibrator DI 25 8534 

target DI 433 11909 

init-subtract 76 37212 

DD1 (DDF) 76 208800 (2d + 10h) 

DD2 (FACTOR) 76 172800 (~2d) 

Table 5: wall clock times of the main steps of the data reduction pipeline 
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4.2.3 UC4 

 

Data transfer measurements 

Since there are still ongoing negotiations with our customer about the usage of their database, 

the measurement of data transfer can only happen at a later stage of the project. To be able 

to run the model training container we prepared a test data generator as already mentioned 

earlier in deliverable documents. The test data generator is able to generate the data directly 

into the PROCESS environment running at UISAV. We have taken the measurements of how 

long the data generation takes which also measures the times of inserting data into HDFS. 

The average times for inserting batches of 1 million records were oscillating near 50ms. There 

is a noticeable increase in the insertion time during a few first inserts which application does 

where many inserts take more than 100ms and some even take about a second. There are 

also occasional spikes of about 500ms inserts. But with a large number of inserts done any of 

the mentioned spikes are negligible. 

 

Records amount Generation time [min] Records generated / s 

10,000,000 0.33 499,226.20 

20,000,000 0.85 391,910.96 

50,000,000 1.79 465,783.54 

100,000,000 2.45 679,564.81 

200,000,000 4.66 715,241.07 

250,000,000 5.85 712,147.24 

300,000,000 6.93 721,780.20 

350,000,000 8.09 721,192.98 

400,000,000 9.38 710,389.99 

450,000,000 9.77 767,523.85 

500,000,000 11.25 740,792.32 

1,000,000,000 22.40 744,071.42 

2,000,000,000 45.07 739,653.72 

Table 6: UC4 data generation time 



D3.2: Measurements 
 

23 
 

 

Figure 8: UC4 data transfer measurements 

Execution time and/or FLOPS measurements vs data size 

Based on the generated data we measured the execution time of training the machine learning 

models. Two types of models were generated, a random forest model and a deep neural 

network model. Both models were trained with the same dataset. Measured time was 

increasing about exponentially for random forest model and linearly for deep neural network 

model. The biggest issue was that both the application and the H2O cluster were deployed in 

the same container. Furthermore, the H2O cluster sometimes did not have enough memory to 

load all the data. The maximum amount that we were able to load were bookings and services 

generated for 350 million flights. 

 
Records amount 

Model generation time [H:MM:SS] 

Random Forest Total Deep Neural Network 
Total 

10,000,000 0:00:05 0:02:04 

20,000,000 0:00:06 0:05:19 

50,000,000 0:00:07 0:13:55 

100,000,000 0:00:09 0:30:38 

200,000,000 0:00:12 1:02:24 

250,000,000 0:00:19 1:14:24 

300,000,000 0:00:24 1:56:24 

350,000,000 0:00:40 2:16:48 

Table 7: UC4 model generation time 
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Figure 9: UC4 data transfer model 

 

Figure 10: UC4 data generator performance 
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4.2.4 UC5 
Use Case 5 is a closed source application, which is only started by the PROCESS IEE. 

Therefore, the actual execution is not controlled by PROCESS and cannot be measured. The 

output of Use Case 5 is not yet measured, since the application and use case owner need to 

clarify how the output is delivered to the end-user of the PROCESS portal. These 

measurements will be added to the final deliverable in D3.3. 
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5 Application of the Prediction Model to actual 

Measurement Results and Conclusion 

5.1 Overhead model and projection 

Using the measurement data collected in Section 4, we model the behaviour of the platform 

overhead. Given the lack of sufficient data, we again use simple correlation analysis to get 

insight into the data. Modelling results for overhead of both IEE and UC2 environment are 

shown in Figure 11.  For IEE, the linear regression in the subfigure on the left (overhead (o) = 

0.0024 * (number of containers (c)) + 2.4) of the data shows a very slow variation of the 

overhead in function of the number of containers, which is very important for PROCESS 

scalability. Unfortunately, the very small value of the coefficient of determination R2 

measuring the goodness-of-fit suggests basically that our model is not good enough for 

doing prediction of future overhead. However, to put this in context, if we assume our data 

can be confidently fitted by such a model than the overhead of processing the entire LOFAR 

LTA archive (around 1800 observations of 16TB) would be only about 7s. For UC2 

environment model shown in the subfigure on the right, the overhead would be much higher, 

4683s (~1day), according to the regression equation o = 2.6 * c + 3.7. In contrary to IEE, 

here, the model is reliable with acceptable R2 value (0.88) giving confidence about the 

predictions. Besides, one day is negligible compared to the months it would take to process 

all observations in the archive, each one taking four to five days to process. A final 

observation is that we use more data for UC2 than for IEE. 

 

Figure 11: PROCESS overhead models. 

As obviously the overhead data in IEE does not appear to have a linear relation with the 

number of containers, we use advanced regression analysis to dig deeper into the data. 

Using a random forest approach, we can fit the data with a better model, shown in Figure 12. 

It appears from this model that the scheduling overhead for processing all LOFAR LTA for 

UC2 is even lower (2.81s) although one could argue that the model is limited by the modest 

number of data points. 
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Figure 12: PROCESS overhead model with random forest regression. Actual measures are shown in red points 
whereas predictions are shown in blue. 

 

5.2 Scheduling model and projection 

Similar to the general overhead, we use the measurements in Section 4 to model the behaviour 

of the platform scheduling overhead. We did our best to exclude the overhead due to WMS, 

but somehow it impacts the queueing delays reported above and modelled here. As illustrated 

in Figure 13, for both IEE (left) and UC2 environment (right), the value of the goodness-of-fit is 

pretty high (>= 0.90) bringing trust to the corresponding models. Again, IEE model shows a 

slow variation of the scheduling overhead proportionally to the number of containers (o = 0.044 

* c + 1.9) whereas for UC2, the variations of both dimensions are of the same order (o = c + 

1.4). The take-away message is that the scheduling due to PROCESS creates some burden, 

the latter is moderate and does not a show-stopper. Of course, this needs to be supported by 

robust models from more data. 
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Figure 13: PROCESS scheduling overhead models in IEE (left) and UC2 (right). 

 

5.3 Data transfer model and projection 

We model and summarize data staging and transfer measurements done in this deliverable 

and in D8.1. 

In D8.1, section 3.2, pages 13-14, we showed the data staging times in function of the size at 

two LOFAR LTA locations, Amsterdam, NL and Poznan, PL. Here we model the average 

behaviour of the staging on these two sites as illustrated in Figure 14. 

 

Figure 14: PROCESS data staging time models in Poznan (left) and in Poznan and Amsterdam (right). The 
staging time (t) in minutes) is expressed as a linear function of data size (s) in GB. 

 

According to the average model, it would take 745.480 minutes (half a day) to stage a 

LOFAR observation of 16TB. 
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Transfer speed measurements between LOFAR LTA locations and PROCESS computing 

sites on one hand (D8.1), and between the computing sites on another (see section 4.2.1 

above), have also been conducted. The first approach which did not use DTNs showed poor 

average transfer performance (5-12MB/s), whereas the second approach with DTNs shows 

promising transfer rates of up to 550MB/s. The latter experimented only on UC1 needs to be 

extended to the other use cases, for instance UC2 requiring data transfers from LTA 

locations to the computing sites. 

5.4 Conclusion and discussion 

In this section we model the measurements detailed in section 4. Mainly, three models have 

been built, for PROCESS platform overhead, scheduling overhead and data staging and 

transfer.  

The platform overhead model validates the choices made in PROCESS architecture and 

implementation by exhibiting quite a low burden even in case of high load in terms of number 

of concurrently running containers. However, this needs to be supported by more robusts 

models from much more data than currently. 

The scheduling overhead model also shows that the scheduling due to PROCESS creates a 

moderate burden and does not constitute a bottleneck. Just as for the platform overhead, we 

need more data to confirm this trend. 

Finally, the staging model shows that staging can take quite some time, especially for UC2. 

Unfortunately, it is beyond the control of PROCESS. In opposition, the data transfers crucial 

to PROCESS performance can be improved by the use of DTNs or similar 

approaches/protocols. 
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