B Ref. Ares(2019)6775691 - 31/10/2019

I u E ss This project has received funding from the European

Union’s Horizon 2020 research and innovation
programme under grant agreement No 777533.

PROviding Computing solutions for ExaScale ChallengeS

D3.2 Performance modelling and prediction

Start / | 01 November 2017
Duration: | 36 Months

Disseminationl: | PU Nature?: | R
Due Date: | 31 October 2019 Work Package: | WP 3

PROCESS D3.2_PerformanceModellingAndPrediction-
ProgressReport_v1.0.docx

Project: | PROCESS H2020 — 777533

Filename3

ABSTRACT

This deliverable is an update of D3.1 and based on its initial content. It refines the
performance modelling and prediction approaches outlines in D3.1 based on the results
obtained in the project so far and will be completed in D3.3, the next follow up deliverable
that will be based on D3.2.

It describes the performance modelling and influences thus the design, development and
validation of the components of the PROCESS infrastructure.

1 pU = Public; CO = Confidential, only for members of the Consortium (including the EC services).
2 R = Report; R+O = Report plus Other. Note: all “O” deliverables must be accompanied by a deliverable report.
3 eg DX.Y_name to the deliverable_vOxx. v1 corresponds to the final release submitted to the EC.

Deliverable

Contributors:

Name

Organisation

Role / Title

Deliverable Graziani, Mara; Muller, Henning HES-SO Coordinator
Leader4
Meizner, Jan; AGH Writer
Nowakowski, Piotr
)) Hbb, Maximilian; LMU Writers
Contributing Schmidt, Jan
5
Authors Madougou, Souley; NLESC Writer
Maassen, Jason
Valkering, Onno; UVA Writer
Belloum, Adam
) Jungblut, Pascal LMU Reviewer
Reviewer(s)b
Maassen, Jason NLESC Reviewer
Final review and Ho6b, Maximilian LMU Coordinator
approval
Document History
Release Date Reasons for Change Status’ Distribution
0.0 31.01.2019 Final Version of D3.1 Draft
0.1 06.09.2019 Chapter definition Draft
0.2 16.10.2019 Initial Measurements Draft
0.4 28.10.2019 Review-Process In Review
1.0 31.10.2019 Release Released Public

4 Person from the lead beneficiary that is responsible for the deliverable.

5 Person(s) from contributing partners for the deliverable.

6 Typically, person(s) with appropriate expertise to assess the deliverable quality.
7 Status = “Draft”; “In Review”; “Released”.

2

D3.2: Table of Contents

Table of Contents

EXECULIVE SUMIMIAIYuiiiiieiie ettt e e e e e e e s s et e e e e e e s e e st b e e e e e eaeessaaattbeeeeeeaeeessnannreens 4
LISt Of FIQUIES .. ——— 6
IS 0 1= o 1SR 6
N {11 o o [ox 1T o PSR 7
11 Performance modelling appProachesccuviieiiiiiiieiiiee e 7
1.1.1 Overview and ClasSifiCatioN............cuiiecuiiiiiiee e 7
1.1.2 PROCESS Performance MOEloooiiiiiiiiiiiiiiiiee e 8

2 ldentification Of MEASUIANUS........ccoiiiiiiiiiiiii et e e 9
3 Development of a balanced Prediction Model.............cooociiieiiii e, 13
3.1 RUNtIME COMPOSILIONccooi e 13
3.2 MOdel VEIITICALION e e e e e e e 14
3.2.1 Benchmark APPICALIONccuviiiiiiiie et 14
3.2.2 Use Case WOIKIIOWSccoiieiiiiiiiie ettt e ee e e e e e e 15

3.3 (0] o o3 8 1o o PP 15

4 MEASUIEIMIENTSeiiiiieeiei ittt e e e e ettt e e e e e s s bbb e et e e e e e e s e a bbb e e et e e e e e s s annbbbeeeeeaeeeesannnenees 16
4.1 Platform-wide MeaSUIEMENTSccoiiiiiiiiiiiiiie et 16
4.1.1 Overhead MeasUIrEMENTS........ccciiiiiiee e erieie et ee e seee e e s e e e s e e s sneeeeeen 16
4.1.2 Scheduling MEeaSUIrEMENTS..........uuuiuiuiiiieiiriueiirrninrrrrrnrrrrrr———————————————. 17

4.2 Use case SPEeCific MEASUIEMENTSuiiiiieeeiiiiiieiee e e e reeeee e e e e e e s e e e eaeeeenes 19
0t 1 1 19
B.2.2 UG 2. it a e — e e e — e e e e e e e e e aeaeeatrraaeans 20
B.2.3 UG e — e e e e e e e e e e aa e e e arrraaeans 22
.24 UGS, . it e e e e s abr e e e an 25

5 Application of the Prediction Model to actual Measurement Results and Conclusion 26
5.1 Overhead model and ProjeCHION...........uuueuureiiieiiieieeeirirererrrrrrrrrr———————. 26
5.2 Scheduling model and ProjeCtion..............uueiiieie i 27
5.3 Data transfer model and ProjeCtion...........coccueveiiiiiieeiiiiee e 28
54 (0707 o3 [0 1] To] g 1= T Lo o [o1 1= T] o] o PR 29

I = (=T (= o T SRR 30

D3.2: Executive Summary

Executive Summary

This document presents the foundations of the performance modelling and prediction
approaches that the PROCESS project will use to steer its design, development and validation
efforts. The broad range of environments that the PROCESS software will run on presents
obvious challenges in the development of a uniform, easy-to-use and straightforward
performance model. The necessary streamlining and simplification of the approach should not
omit any relevant aspects that are determining the actual performance as observed by a user.

As a way to balance these conflicting needs, the project will use a solution based on
measurable performance metrics, complemented by a mathematical model that allows
extrapolating performance on systems that are considerably more complex than the current
ones. The extrapolation will also be necessary to understand the impact of advances in the
capacities of individual components will have in the execution speed of complex workflows.

The model used by the project assumes that typical exascale applications can be modelled as
pipelines consisting of the input data stage-in, processing and (result) data stage-out steps.
However, for workflows comprising several dynamically configured and deployed components,
the set of performance components need to be able to analyse the execution in a more fine-
grained manner. The full set of metrics consists of:

T1: Configuration of the workflow

T2: Deployment strategy (selection of resources)

T3: Stage-in of the data

T4: Container selection (fetching the container encompassing the executable code, as

defined in T1)

T5: Scheduling (time spent on the queue of a compute system)

e T6: Execution time

e T7: Stage-Out Strategy (choosing the approach based on required storage capacity,
type and availability)

e T8: Stage-Out (actual transfer of data).

It should be noted that some of these steps depend on user input, therefore, the overall
execution time will depend on the expertise and skills of the user. There are also considerable
differences between situations where all the necessary resources belong to a single system,
on multiple platforms controlled by a single organisation or in a federated system crossing
organisational and geographical boundaries.

To focus performance-related development efforts, the PROCESS performance model groups
the metrics into the following categories:

Overhead =T1+4+ T2+ T4+ T7
Data Transfer =T3 + T8
Scheduling = T5, Execution Time =T6

The overhead consists of factors that can be influenced by the PROCESS software, while the
data transfer and execution time components are primarily dependent on the performance of
the networking and computing hardware available. The scheduling is highly dependent on the
number of competing jobs and the policies (e.g. priority queue available for the job). However,
similar to the characteristics of the underlying hardware, scheduling is an issue that can't be
influenced by the design of the software.

4

D3.2: Executive Summary

As the relative impact of these four categories on the system-level performance as experienced
by the user can vary dramatically, the project will develop a user-configurable workflow that
will be used to complement actual use case software in the evaluation of the PROCESS
platform. However, it should be noted that the use cases already stress the different aspects
of the equation in a quite comprehensive manner. For example, UC1 performance will be highly
dependent on the data transfer and execution time components, whereas the interactive use
anticipated in the UC4 will require minimising all of the overheads in the PROCESS platform.

D3.2: List of Figures

List of Figures
Figure 1: Sequence diagram describing the steps involved in execution of a typical

oY o] o] [Tor= a0 g I=Tod =T - 14 o J S 10
Figure 2: Three measurement SCENANOS........uuuiiiieeiiiiiiiiiee e e e e e e e e e e e e e s e e e e e e e e s seaneaees 12
Figure 3: PROCESS platform overhead measurements from IEE. Currently, the only

measured is the pipeline submission delay which corresponds to T2.cccocciveeiiiiiieennnen 16

Figure 4: Overhead in current UC2 implementation using Xenon-flow for job submission.
Three types of overhead are identified and shown individually, then summed in overall

(0 YT ¢ 1= = Vo P 17
Figure 5: PROCESS scheduling overhead measurements from IEE. It consists of various
gueueing delay corresponNdiNg t0 T5uuiiiiiii e e e e e a e 18
Figure 6: Overhead in UC2 due to interaction with the HPC workload management system to
which some of this IS aCCOUNIE fOF.coiieiiiiiiie e 18
Figure 7: PROCESS general data transfer performance. The barplots are clustered by
dataset size. Each cluster consists of six bars for different number of containers and each

bar is the sum of two transfer times for stage-in and stage-out, in SEConds..............cccceeeeee. 21
Figure 8: UC4 data transfer MeasUremMENTSc.uuvieiiiiiiee it 23
Figure 9: UC4 data transfer MOGEl............oouiiiiiiiiee e e 24
Figure 10: UC4 data generator PerformManCe...........ooiiiuiiieiieee e 24
Figure 11: PROCESS overhead MOUEIS.coiiiiiiiiiiiiiiee it 26
Figure 12: PROCESS overhead model with random forest regression. Actual measures are

shown in red points whereas predictions are shown in bIUe.ccccceviiiiiiiiiiii, 27
Figure 13: PROCESS scheduling overhead models in IEE (left) and UC2 (right).................. 28

Figure 14: PROCESS data staging time models in Poznan (left) and in Poznan and
Amsterdam (right). The staging time (t) in minutes) is expressed as a linear function of data
ST €= N1 11 = PRSP 28

List of Tables

Table 1: Performance Modelling Approaches, cited from [PMO]........ccooiiiiiiiiiiiieeiiiiiiieeeenn. 8
Table 2: Description of the PROCESS Measurandscccveoiiiireiiiiiiee e 11
Table 3: measurements of copying the Camelyon16 dataset between PROCESS sites, with

gridFTP protocol. The measurements are reported in MB/S. ..., 19
Table 4: measurements of execution time vs data sizes for extracting high resolution patches
from the Camleyonl17 dataset at the PROCESS AGH Siteccccvviiiviiee e, 20
Table 5: wall clock times of the main steps of the data reduction pipelinec.cocuvnee. 21
Table 6: UC4 data generation tIMec.eviiiiiiie et e e e e e e e e e e e 22
Table 7: UC4 model generation tiMeueiiiiiiieeiiiiieee et 23

D3.2: Introduction

1 Introduction

This deliverable D3.2 updates the approach to model the performance of the PROCESS
infrastructure and its possible scalability towards exascale workflows. Based on D3.1 this
deliverable D3.2 and will prepare the final D3.3 and enhances and completes the process of
developing a performance model. It gives the opportunity to provide predictions of the
architecture behaviour towards extreme large workflow executions.

In order to achieve exascale performance, we need on the one hand local computing centres
capable of running at such an exascale level. On the other hand, one also needs software
being deployable not only across several nodes, but also across different locations across
Europe, the so-called sites. For our use cases presented in earlier and related deliverables
and based on PROCESS'’s architectural design decision, we consider this a prerequisite. In
order to technically facilitate the decision, we seek for the approach to containerize the
architectural elements as well as to push all use cases to design their execution in
containers. This will allow for deploying instances of independent executions on sub-sets of a
given data set on different local nodes and in the same time on different geographical based
sites.

However, the hardware and the software development towards exascale is an ongoing
process and we have to face the challenge to predict a behaviour that cannot be verified
within the lifetime of this project. Therefore, we need to develop a prediction model based on
measurable performance indicators and from there on extrapolating runtime behaviour
towards a much higher scale. The model needs to meet the requirements to predict the
behaviour of all our services and the PROCESS infrastructure as a whole but must also be
able to adapt new requirements coming from future and new applications.

To distinguish the most common approaches for performance prediction models, we will first
give an overview and classification of up-to-date performance modelling and prediction
methods, on basis of which we will present the approach of choice for PROCESS.

1.1 Performance modelling approaches

Performance modelling is used for many computational and storage systems around Europe.
Regarding the exascale challenge, also other EU projects examine the needs and
conclusions to enable exascale performance.

The CRESTAS project (Collaborative Research Into Exascale Systemware, Tools and
Applications) proposes a framework focusing on software and tool developments for end-
user scientist. Their solution is limited to local site needs and deals mainly with hardware
decisions owners of supercomputing centres will face in the next years.

1.1.1 Overview and classification

One of the CRESTA project partners is David Henty from the Edinburgh Parallel Computing
Centre (EPCC). In his publications he gives an overview on generic performance modelling
techniques and a classification of which. In Table 1 he defines four main categories varying
from raw measurements, over benchmarking and simulations to complex analytical modelling
with a large number of parameters.

8 https://www.cresta-project.eu

D3.2: Introduction

Technique

Description

Purpose

Measurement

running full applications under various
configurations

determine how well application performs

Microbenchmarking

measuring performance of primitive
components of application

provide insight into application
performance

Simulation

running application or benchmark on
software simulation

examine “what if’ scenarios e.g.
configuration changes

Analytical Modelling

devising parameterized, mathematical
model that represents the performance
of an application in terms of the
performance of processors, nodes, and
networks

rapidly predict the expected performance
of an application on existing or
hypothetical machines

Table 1: Performance Modelling Approaches, cited from [PMO]

Any of the techniques mentioned above will be useful within the PROCESS project:

Measurement

Both simple measurements as well as complex model measurement values are the basis of
success. In Section 2 we will define at which points of the execution sequence meaningful
measurements can be taken. Measurement values are to deliver input data for further
modelling and prediction steps.

Microbenchmarking

A very simple sample application running through the complete PROCESS architecture and
gathering first results will not contribute to the fundamental performance model. Nonetheless,
microbenchmarking will be used to identify performance bottlenecks in the PROCESS
architecture and assist in debugging and verifying its correctness.

Simulation and Analytical Modelling
Executing and measuring a given application running on PROCESS in different
configurations and settings forms the input dataset for this step. The goal of this step is to
extrapolate the behaviour and runtime of the application from the given observations. The
resulting model will allow for predictions of runtime behaviour beyond the configuration
scales measured, which gives us the chance to forecast the performance on an exascale

level.

1.1.2 PROCESS Performance Model
Based on the previous description we choose a measurement-based approach with
extrapolation through analytical modelling. First the measurands are identified and
measurements are performed. In the next step a microbenchmark to evaluate these
measurands is developed. Finally, to predict the performance of PROCESS, we use these
results to create an analytical model that will allow to extrapolate the performance based on

given measurements.

D3.2: Identification of Measurands

2 ldentification of Measurands

In the previous Section we categorized the approaches to performance modelling and
prediction. One of which was a measurement-based approach with extrapolation for
performance prediction. To achieve this goal, it is necessary to identify the appropriate
measurands within the PROCESS infrastructure that can be used to model the performance
of the infrastructure and predict its scaling.

We stress that the hardware infrastructure such as computing, storage, and network have a
big impact on the performance of PROCESS services. However, as a project, we have no
real influence on this part of the infrastructure. Therefore, our performance measurands
focus on the overhead introduced by the software services, but also measure all other
relevant numbers to identify relations between them.

In the absence of true exascale systems, our objective, as stated in Section 1, is to achieve
exascale by combining the power of geographically distributed datacentres, unfortunately the
traditional configuration of compute centres is more optimized for inner data transfer rather
than for outside transfers. While technical solutions to optimize data-transfers exist such as
the Data Transfer Nodesg,10, implementing those solutions is beyond the scope of the
project. In PROCESS we try to hide the data transfers by overlapping data transfer with
computing or use pre-fetching and caching to minimize the data transfers.

Based on the five use cases defined in PROCESS, we can think of a typical application as a
pipeline of data processes which typically requires a data stage-in step followed with an
execution step, and finally a data stage-out step. The time required for stage-in and out is
expected to be significant, because of the necessary data movement between datacentres.

Figure 1 shows a sequence diagram describing all the steps involved in the execution of an
application scenario. For each step we define the time corresponding to its completion as
follows:

T1: Configuration
The Interactive Execution Environment provides an end-user web portal, where each
run of any application needs to be configured. For the different use cases, these
configurations vary as shown in the deliverables D4.2 and D5.2.

T2: Deployment Strategy
Part of T2 is the time needed to decide on which computing site[s] and storage site
the containers and their data will be deployed. It also needs to initiate the required
micro-architecture.

T3: Stage-In
Impact by the access to data services in data centre. However, if PROCESS can
make use of caching, proactive pre-fetching or pre-processing we can reduce the
impact of T3 on the overall execution performance

T4: Container selection
The workflow that has been defined in T1 specifies a container that will be executed
as well as its version. This version needs to be fetched from the container repository
and later deployed as a job in T5.

® Building User-friendly Data Transfer Nodes, https://www.delaat.net/posters/pdf/2018-11-12-DTN-SURFnet.pdf

10 pacific Research Platform https://bozeman-fiona-workshop.ucsd.edu/materials/20180303-dart-dtn-strategic-asset-v1.pptx/view

D3.2: Identification of Measurands

T5: Scheduling
The time a job spends in the queue of the compute resource. This time can vary and
will be hard to predict since it's affected by each compute site’s scheduling system
that isn’'t in the scope of PROCESS. We may however be able to estimate an upper
bound on the queue waiting time that could be added to the actual runtime prediction.

T6: Execution time
T6 is the time a job takes from leaving the queue to finishing its calculations on the
compute resource. This time is determined by the performance and scalability of the
application on the selected compute resource. To predict this time, an application
specific performance model is required.

T7: Stage-Out Strategy
After the job is done, it may have generated large amounts of output data that needs
to be transferred from the compute resource’s scratch space back to the PROCESS
storage infrastructure. Based on the amount of data and the specified workflow the
data service needs to choose a suitable stage-out strategy.

T8: Stage-Out
With the appropriate stage-out strategy the output data now needs to be transferred
to the chosen storage resource.

PROCESS Measurands

Job Done, Data URI

| PROCESS | | Data Service | ‘ Storage ‘ Compute Service Container Repository | Compute Ressource | Scheduler
I I 1 I I I
I | I | | | |
=] ! Configure Workflow | | | | | |
[| I | | | |
| | | | | | |
I choose Compute ! | ! | I !
I and Storage Site l : : : : :
:I | | | | | |
] _ |] | | | |
| getinput via 1D | | | | | |
4’
I | I | | | |
: | Data Stage-in I_‘F_ l : l l
o
I | | | | |
| g Done_____ = | | | |
I | I A | | | |
I | I | | | |
(PR 4 | | [| |
| | | | | |
| Execute Worflow 1 o I | |
I] =l | | |
: : l Select Container ! : :
| | | | |
| I | Container | |
[[[[|
' ' ' Submit Jol ' '
| | I »! |
| | | | | |
| I | | | Schedule Job | Y
| | | |
[| | [[ld
| | | | Start Job [
| I | | | A
Y 3
| I | I —T1 Execute Job
[I I I o
| | | [=
| | | | Al
[| (I Job complete | _______] J
| I |
|
I
|

| |

| | |

T 1 I |

| J . | | | |

——1|__Choose Storage Site | | | |
™~

) - | | | |

—“—I | | | |

| Data Stage-Out (R | | |

| ol | | |

(PR Done_____ I I I

A | | |

- Results URI___ ! ! :

| | |

| | |

1 1 1

Figure 1: Sequence diagram describing the steps involved in execution of a typical application scenario

10

D3.2: Identification of Measurands

Table 2 summarises the various identified times, we will use as performance measurands.

X Name Description

T1 | Configuration Time to configure the workflow for the application

T2 | Deployment Strategy | Time to select appropriate storage and computing site

T3 | Stage-In Time to transfer data from source to selected storage site

T4 | Container selection Time to select specified container for the workflow from repository

T5 | Schedule Time the submitted job spends in queue

T6 | Execution time Time spent executing the job on the compute resource

T7 | Stage-Out Strategy Time to select appropriate storage site for output

T8 | Stage-Out Time to transfer result to storage site

Table 2: Description of the PROCESS measurands

Using the identified performance measurands listed in Table 2 we propose a three-step
approach to the modelling and performance prediction of the PROCESS infrastructure. First,
we will show that the overhead of the PROCESS platform for a deployment on one site
(initializing the micro-infrastructure and scheduling) is negligible. Second, since the
deployment strategy of process is to deploy every application containerized, we show the
weak scaling capabilities of PROCESS by deploying multiple containers with a split of the
input data on one site. And third, since the goal is to achieve an exascale system solution,
we enable applications to scale by splitting the data and deploying containers across multiple
sites of PROCESS.

We therefore describe three measurement scenarios:

Scenario 1: Single container — single site (Figure 3-a)
In this scenario we measure the execution time of processing the input sequentially
within one container running. This container uses the maximal possible and available
number of compute resources PROCESS can use at one single site (e.g. use case 2
running only at one cluster).

Scenario 2: Multiple containers — single site (Figure 3-b)
In the second scenario we submit several containers on one cluster. Here, we either
expect a speedup, since the container in scenario 1 eventually did not fully utilize
compute resources or the same runtime as before, since the overhead to deploy
more than one container in parallel should be minimal.

Scenario 3: Multiple containers — multiples sites (Figure 3-c)
This last scenario will deploy several containers in parallel on two different sites with
an also split input data set. We expect a significant speedup since multiple containers
will be deployed on multiple sites.

11

D3.2: Identification of Measurands

(a) Scenario 1

(b) Scenario 2

Compute Site |

Compute Site |

(c) Scenario 3

Compute Site |

Compute Site Il

H

:

;

1

1

: . .

5 Application Container - Application Container
E —
H

H

H

H

Figure 2: Three measurement scenarios: (a) Single container — single site, (b) Multiple container — single site, (c)
Multiple container — multiple site. In all three scenarios Stage-In and Stage-Out will down scale the system overall
performances, unless we address the data transfer over a wide area network.

After evaluating these scenarios and measurements, we will present a generic performance
model that allows to predict the scalability of the PROCESS infrastructure for a given

application.

12

Figure 2: Three measurement scenarios

Data Storages

D3.2: Development of a balanced Prediction Model

3 Development of a balanced Prediction Model

In this section we will present our approach to determine the components of a simple
predictive model for workflow performance on the PROCESS infrastructure.

3.1 Runtime Composition
Based on Figure 2 the total runtime of an application can be defined as follows:

Runtime = Overhead + Data Transfer + Scheduling + Execution Time
Where:

Overhead =T1+ T2+ T4 +T7,Data Transfer = T3 + T8, Scheduling
= T5 and Execution Time = T6

The overhead component contains all overhead directly related to the PROCESS services.
This includes selecting the appropriate resources for data access and compute in the
Execution Environment, configuring the micro-architecture of LOBCDER for data access,
fetching the application containers, and submitting the application to the selected resource
using Rimrock.

To support exascale it is important that this overhead is low per submitted workflow and does
not dependent on the scale of the compute resource which are targeted by the services. We
expect that this overhead component is orders of magnitude smaller than the other
components and will therefore be negligible.

The data transfer, scheduling and execution time components are mostly determined by
factors outside of the control of PROCESS services, such as network capacity, queue
waiting times, and how well a workflow performs and scales on a given resource.
Nevertheless, having an estimate of the data transfer and scheduling delay is useful for
selecting a resource to which a workflow should be submitted. If execution time estimates
are available, this selection may be improved further, and a total runtime estimate may be
provided to the user.

The data transfer component is mainly determined by two parts: the time required by Dispel
to perform pre-processing of the data (if any), and the time required to transfer the resulting
data volume given the end-to-end transfer capacity between the storage and compute site.

These two components may largely overlap if the data pre-processing is simple and can be
performed on the fly, but for complex operations this may not be the case.

For the latter part, predicting large long-distance data transfers, a significant amount of
research has been performed in the last two decades. For example, [[Liu2017]] describes a
model that predicts end-to-end data transfer times with high accuracy based on logs of the
Globus transfer service.

Similarly, much research has been done on estimating queue waiting times of HPC
applications which dominates the scheduling component. For example, [[Nurmi2007]]
describes a model that provides estimates with a high degree of accuracy and correctness
for a large number of supercomputing sites.

For PROCESS we will re-use this existing work to provide estimates for both the data
transfer and scheduling components of the model.

Predicting the execution time is highly application specific and must be done separately for
each of the use cases. It may be dependent on input datasets, application parameters,
number of resources used (number and type of cores, amount and speed memory,
availability and type of GPUs, etc).

13

D3.2: Development of a balanced Prediction Model

Strong scalability of the use case applications is expected to be limited well below exascale,
as currently only few applications are able to exploit a petascale level. To determine the
limits of the strong scalability of the use case workflows, traditional performance
benchmarking of the applications can be used for representative input data sets and
parameters.

To circumvent limits in strong scalability, we can exploit weak scalability, where multiple
workflows are running at the same time to process different datasets. However, doing so
may shift the bottleneck from the application to other source, such as the data service, or
local storage on the resources. Such limits can be discovered by performing weak scalability
testing, both on a single site and multiple sites.

Unfortunately, it requires a large effort to create a complete and accurate model of the
application behaviour for each of the use cases. Although users may be willing to perform
some testing in advance to tune their application, they are mostly interested in obtaining
application results. Therefore, highly accurate modelling of the application workflows is not
required, instead a rough estimate of the processing time is generally enough.

We will initially assume the user will provide an estimate for the execution time, as is
customary on HPC systems. At a later stage, this estimate may be refined based on easy to
determine parameters, such as input data size and number of resources used, which may be
extracted from the logs of previous runs of the workflow. A significant amount of research
has been done on estimating application execution time based on limited information. For
example, [Smith1998] present a technique that predicts application runtimes based on
historical information of “similar” applications. Search techniques are used to automatically
determine the best definition of similarity. In [Gaussier2015], a similar technique is used to
fine tune the execution time estimate provided by the user.

3.2 Model Verification

3.2.1 Benchmark Application

An artificial benchmark workflow will be created which allows configuration of the different
aspects of a workflow, such as the sizes and locations of in- and output data, pre- or post-
processing requirements, the number and type of compute resources required, the execution
time of the application, etc. This benchmark workflow can be used to test the functionality or
the PROCESS services, determine the initial values of the model, and validate model
predictions.

By choosing minimal values for data transfer and execution time (for example 0 bytes and 0
seconds) the lower bound for the runtime can be determined and the overhead of the
PROCESS services can be measured. By submitting large numbers of such workflows, the
scalability of the services themselves can be tested.

By choosing large values for data transfer an initial estimate of the data transfer capacity
between locations can be made. Similarly, different pre-processing patterns can be tested,
ranging from straightforward filtering or conversion to more complex operations such as
mixing or transpositions, to create an initial estimate of the Dispel overhead.

By varying the target resources of the workflow, an initial estimate of the scheduling delays in
different locations can be made.

Once an initial model is available, this benchmark application can be used to validate it by
comparing the error rates of the predictions against actual measurements. This will allow us
to iteratively refine the model during the course of the project.

14

D3.2: Development of a balanced Prediction Model

3.2.2 Use Case Workflows

As explained above, strong and weak scalability tests may be performed on the use case
workflows to determine the limits to its scalability and the initial parameters of the execution
time models. Once these parameters are available, an initial execution time model can be
created, and its predictions can be verified using the logs of subsequent workflow runs.
Consistently measuring the workflow performance and selected key parameters (such as
input data size and type and number of resources used) allow the model to be refined
further. By default, a simple placeholder model will be used by the PROCESS services. If
necessary, a more detailed use case specific model may be created for use case and
provided upon workflow submission.

3.3 Conclusion

In this section we have described the components of a simple predictive model for workflows
performance on the PROCESS infrastructure. The main goal of this model will be to verify
that the overhead incurred by the PROCESS services (the sumon T1, T2, T4 and T7 in
Figure 1) is negligible compared to the cost of data staging (T3 and T8), scheduling (T5) and
execution (T6). Using this model, we try to verify if the proposed services are capable of
scaling into the exascale range.

15

D3.2: Measurements

4 Measurements

4.1 Platform-wide measurements

In this section, we report the overhead and scheduling measurements on the PROCESS
platform in its current implementation. We also report measurements within UC2
environment which includes Xenoni1 and the common workflow language (CWL)a2 for job
submission.

4.1.1 Overhead measurements

Due to some integration issues preventing us from using certain resources, the overhead
measurements are performed for scenarios 1 and 2 and are presented together. The
measurements are taken on Prometheus and each value is the average of three consecutive
runs. For reasons detailed in D4.3, only T2 is measured and reported. The operational
conditions of the tests impose frequent polling whose consequence is a dither of +/-2.5
seconds in the data, which are plotted in Figure 3. The main observation is that, except the
erratic behaviour caused by the dithering at lower container count, the overhead is small,
almost constant and independent of the number of containers.

4.00
3.75
350

3.25

overhead (s)
]]
| (=]
w [==]

M
(%3]
=}

225

200

78 4048 240
containers (int)

Figure 3: PROCESS platform overhead measurements from IEE. Currently, the only measured is the pipeline
submission delay which corresponds to T2.

In UC2 environment, we identified a few factors contributing to overhead. As described in
D2.2, current implementation uses a Web portal to select the dataset and to launch the
processing. The latter needs to be specified as a CWL workflow whose individual steps are
run on given computing site (s) using Xenon and Xenon-flow, a CWL wrapper. Both these
tools and the Web portal introduce overhead described below.

Every container is meant to run a reduction pipeline for one observation, but because we are
focusing on the overhead, just as in deliverables D4.3 and D8.1, we are not interested in the

1 https://github.com/xenon-middleware/xenon.git
2 https://www.commonwl.org
16

D3.2: Measurements

actual computations. Consequently, each step in the pipeline involving computations is
replaced with an execution of the validation container developed for validation in D4.3. For
Scenario 2, we run consecutively 1, 2, 4, 8, 16 and 32 containers on one computing site. In
Scenario 3, we plan to use as much per patrticipating site. All measurements are repeated
three times and then averaged. The results are summarised in Figure 4. Frontend and stage-
in overhead is specific in using the Web portal and Xenon-flow and constitute T2. As of the
stage-out overhead, it corresponds to T7 and is also specific to Xenon-flow. We observe that
the individual type of overhead is quite small, but their aggregated value appears almost
linear with the number of containers. This linearity is confirmed and eventually detailed in the
modelling part in Section 5.

mmm frontend
16 w stage-in
e stage-out

14
12

10

overhead (s)

1 2 4 8 16

Figure 4: Overhead in current UC2 implementation using Xenon-flow for job submission. Three types of overhead
are identified and shown individually, then summed in overall overhead.

4.1.2 Scheduling measurements

Overhead due to scheduling in IEE is measured as queueing times which are plotted in
Figure 5 in relation with the number of containers. We observe that scheduling does not
harm PROCESS performance as its overhead is the order of seconds to tens of seconds up
to 240 containers.

17

D3.2: Measurements

— UELE

scheduling (s)

3 4043 240
containers (nb)

Figure 5: PROCESS scheduling overhead measurements from IEE. It consists of various queueing delay
corresponding to T5

We also measure the scheduling overhead in UC2 environment. This overhead is induced by
the interaction between Xenon-flow and the HPC system workload management system
(WMS) via Xenon. While most of it can actually be accounted for the WMS, some of it is
undoubtedly due to the interaction. The variation of this overhead in function of the number of
containers is shown in Figure 6. We can see that it has the same profile as the overall
overhead above, but in a lesser extent.

&5 - — scheduling

40 -

30 -

scheduling (s)

10 -
| ' | |

1 2 4 g 16
containers (nb)

Figure 6: Overhead in UC2 due to interaction with the HPC workload management system to which some of this
is accounted for.

18

D3.2: Measurements

4.2 Use case specific measurements
4.2.1 UC1

Data transfer measurements

Measurements of data transfer rates with the SCP protocol were reported in D8.1. As
reported in the deliverable, frequent stalls and broken connections happened frequently in
head nodes. The DTN connection from LRZ to AMS and AMS to LISA showed 30% faster
transfer than a direct copy (see Table 6 in D8.1, page 11). In Table 3 we report the
measurements of copying the UC1 Camelyonl6 dataset between PROCESS sites including
our DTN using gridFTP.

Camelyon 16 30Gb transfer AMS-DTN [LISA LMU-DTN [AGH
source/destination

AMS-DTN 0 324.17 [494.51 25.53
LISA 549.62 0 324.97 0
LMU-DTN 405.32 2553 |0 19.55
AGH 51.07 0 14.71 0

Table 3: measurements of copying the Camelyon16 dataset between PROCESS sites, with gridFTP protocol. The
measurements are reported in MB/s.

The asymmetry in the measurements is due to different reasons. The lack of open ports of
sites, for example, reduced the possibility of having concurrent connections. Moreover, the
sites have different upload to download bandwidth. Direct connectivity between Lisa and
Prometheus was not possible with gridFTP, since this would require one of the sites to act as
a server and have open ports. These many restrictions further emphasize the need for a
DTN approach with more performance and programmability for data transfers.

Execution time and/or FLOPS measurements vs data size

Initial measurements of the execution time for each software layer were reported in D8.1
Table 2 and 3, pages 8-9. In Table 4 we report the execution time against the size of the data
in the data pre-processing step, for each of the two methods proposed, namely random
sampling and dense sampling. Measurements were computed on the AGH site in Krakow,
Poland. The execution time vs data size is reported in s/Mb or s/Gb to show the scalability to
increasingly large datasets and the gains in computing time which arrive up to processing 1
Gb per second.

19

D3.2: Measurements

Method # WSl data sampling | average Execution
patches | coverage size time execution time | time vs.

data size

Random 500 1 file 144 0.05s 41.75s+-7.37s | 0.29 s/Mb

sampling Mb

Random 5000 5 files 12Gb | 0.05s 263.3s5+-22.9s | 21.95/Gb

sampling (in

D8.1, Table

2)

Dense 118773 | 10% of 1 200 Gb | 0.004 s 573.31s+-47.0 |2.8s/Gb

sampling file s

Dense 6 Mill. 100% of 5 1Tb 0.004 s ~ 7500 s 1s/Gb

sampling files

Table 4: measurements of execution time vs data sizes for extracting high resolution patches from the
Camleyonl7 dataset at the PROCESS AGH site

4.2.2 UC2

Data transfer measurements

The benchmarks carried out in Section 3.2 of D8.1 are still valid since none of the involved
data service have seen any new developments. Especially, the much-awaited data transfer
nodes (DTN) that can heavily impact the transfer performance were not yet available for this
use case.

For completeness, we recall here our findings from D8.1. We performed three types of
measurement: estimating the queueing and preparation time on LOFAR LTA tape archive,
total staging time as a function of total size and data transfer speed from the archive to the
HPC sites. We have found the queueing durations quite variable in and across LOFAR LTA
locations, those variations being attributed to differing configurations and/or loads at the
respective locations. We have also found the staging durations to be variable because of the
shared nature of the tape systems and cannot be controlled. Finally, the data transfer rates
between the LTA various locations and the various computing sites are shown to be
suboptimal and constitute a bottleneck that needs to be overcome.

To conclude this section, we report on data transfer measurements using modest datasets
performed while benchmarking the platform overhead. The measurements are relative to
staging-in input data and staging-out of results for two small datasets of size 10MB and 1GB,
respectively, while varying the number of containers running on the platform. The results are
summarized in Figure 7. We know the transfer time depends on the data size and is a
challenge for PROCESS, the principal observation convoyed by this figure is that time is not
dependent on the number of containers. Finally, as in D4.3, stage-in takes longer than stage-
out as the former includes transfer time from wherever is the input data is located to Cyfronet
in opposition to the latter which does not.

20

D3.2: Measurements

175 -

150 -

125 -

time (s)
=

50 -

25 -

10M

data size (10M, 1G)

stage-in
stage-ou

1c
2c

40¢
43¢
240c

Figure 7: PROCESS general data transfer performance. The barplots are clustered by dataset size. Each cluster
consists of six bars for different number of containers and each bar is the sum of two transfer times for stage-in

and stage-out, in seconds.

Execution time and/or FLOPS measurements vs data size

For UC2, we only measure the execution time for the time being as the most intensive
components capable of generating high FLOPS values are either currently sequential or not
yet in place. The wall clock times of the main steps of the data reduction pipeline as given in
Table 5. The principal conclusion to draw from the very high magnitude of these values is
that the overhead due to scheduling and interaction between platform components as seen

in the previous section is negligible.

step data size (GB) execution time (s)
calibrator DI 25 8534
target DI 433 11909
init-subtract 76 37212
DD1 (DDF) 76 208800 (2d + 10h)
DD2 (FACTOR) 76 172800 (~2d)

Table 5: wall clock times of the main steps of the data reduction pipeline

21

D3.2: Measurements

4.2.3 UC4

Data transfer measurements

Since there are still ongoing negotiations with our customer about the usage of their database,
the measurement of data transfer can only happen at a later stage of the project. To be able
to run the model training container we prepared a test data generator as already mentioned
earlier in deliverable documents. The test data generator is able to generate the data directly
into the PROCESS environment running at UISAV. We have taken the measurements of how
long the data generation takes which also measures the times of inserting data into HDFS.
The average times for inserting batches of 1 million records were oscillating near 50ms. There
is a noticeable increase in the insertion time during a few first inserts which application does
where many inserts take more than 100ms and some even take about a second. There are
also occasional spikes of about 500ms inserts. But with a large number of inserts done any of
the mentioned spikes are negligible.

Records amount Generation time [min] Records generated / s
10,000,000 0.33 499,226.20
20,000,000 0.85 391,910.96
50,000,000 1.79 465,783.54

100,000,000 2.45 679,564.81
200,000,000 4.66 715,241.07
250,000,000 5.85 712,147.24
300,000,000 6.93 721,780.20
350,000,000 8.09 721,192.98
400,000,000 9.38 710,389.99
450,000,000 9.77 767,523.85
500,000,000 11.25 740,792.32
1,000,000,000 22.40 744,071.42
2,000,000,000 45.07 739,653.72

Table 6: UC4 data generation time

22

D3.2: Measurements

Generation performance

800,000.00

®

600,000.00

Records generated / s

200,000.00

0.00
0 500,000,000 000,000,000 500,000,000 2,000,000,000

Records amount

Figure 8: UC4 data transfer measurements

Execution time and/or FLOPS measurements vs data size

Based on the generated data we measured the execution time of training the machine learning
models. Two types of models were generated, a random forest model and a deep neural
network model. Both models were trained with the same dataset. Measured time was
increasing about exponentially for random forest model and linearly for deep neural network
model. The biggest issue was that both the application and the H20 cluster were deployed in
the same container. Furthermore, the H20 cluster sometimes did not have enough memory to
load all the data. The maximum amount that we were able to load were bookings and services
generated for 350 million flights.

Model generation time [H:MM:SS]
Records amount
Random Forest Total Deep Neural Network

Total
10,000,000 0:00:05 0:02:04
20,000,000 0:00:06 0:05:19
50,000,000 0:00:07 0:13:55
100,000,000 0:00:09 0:30:38
200,000,000 0:00:12 1:02:24
250,000,000 0:00:19 1:14:24
300,000,000 0:00:24 1:56:24
350,000,000 0:00:40 2:16:48

Table 7: UC4 model generation time

23

D3.2: Measurements

Model generation time

Random Forest Model

0:00:50

0:00:40

0:00:30

0:00:20

0:00:10

0:00:00
100,000,000 200,000,000 300,000,000 400,000,000

Records amount

Figure 9: UC4 data transfer model

Maodel generation time

Deep Neural Network Model

2:30:00

2:00:00

1:30:00

1:00:00

0:30:00

0:00:00
100,000,000 200,000,000 300,000,000 400,000,000

Records amount

Figure 10: UC4 data generator performance

24

D3.2: Measurements

4.2.4 UCS5

Use Case 5 is a closed source application, which is only started by the PROCESS IEE.
Therefore, the actual execution is not controlled by PROCESS and cannot be measured. The
output of Use Case 5 is not yet measured, since the application and use case owner need to
clarify how the output is delivered to the end-user of the PROCESS portal. These
measurements will be added to the final deliverable in D3.3.

25

D3.2: Application of the Prediction Model to actual Measurement Results and Conclusion

5 Application of the Prediction Model to actual
Measurement Results and Conclusion

5.1 Overhead model and projection

Using the measurement data collected in Section 4, we model the behaviour of the platform
overhead. Given the lack of sufficient data, we again use simple correlation analysis to get
insight into the data. Modelling results for overhead of both IEE and UC2 environment are
shown in Figure 11. For IEE, the linear regression in the subfigure on the left (overhead (0) =
0.0024 * (number of containers (c)) + 2.4) of the data shows a very slow variation of the
overhead in function of the number of containers, which is very important for PROCESS
scalability. Unfortunately, the very small value of the coefficient of determination R2
measuring the goodness-of-fit suggests basically that our model is not good enough for
doing prediction of future overhead. However, to put this in context, if we assume our data
can be confidently fitted by such a model than the overhead of processing the entire LOFAR
LTA archive (around 1800 observations of 16TB) would be only about 7s. For UC2
environment model shown in the subfigure on the right, the overhead would be much higher,
4683s (~1day), according to the regression equation o = 2.6 * ¢ + 3.7. In contrary to IEE,
here, the model is reliable with acceptable Rz value (0.88) giving confidence about the
predictions. Besides, one day is negligible compared to the months it would take to process
all observations in the archive, each one taking four to five days to process. A final
observation is that we use more data for UC2 than for IEE.

4.0
604

35
0=24+00024¢c R*=0.24 0=37+26¢c R2=088

40

overhead (s)
Lo
(=}
overhead (s)

20

[
2]

204 ©

0 50 100 150 200 250 4 8 12 16
containers (int) containers (int)

Figure 11: PROCESS overhead models.

As obviously the overhead data in IEE does not appear to have a linear relation with the
number of containers, we use advanced regression analysis to dig deeper into the data.
Using a random forest approach, we can fit the data with a better model, shown in Figure 12.
It appears from this model that the scheduling overhead for processing all LOFAR LTA for
UC2 is even lower (2.81s) although one could argue that the model is limited by the modest
number of data points.

26

D3.2: Application of the Prediction Model to actual Measurement Results and Conclusion

30 - @ L]
28 -
w
- 26 -
=]
[1%]
al] L] L]
i
A
QU 24 -
=
o
2.2 -
20 - & L]
| | 1] 1
Ta 40 48 240

number of containers (int)

Figure 12: PROCESS overhead model with random forest regression. Actual measures are shown in red points
whereas predictions are shown in blue.

5.2 Scheduling model and projection

Similar to the general overhead, we use the measurements in Section 4 to model the behaviour
of the platform scheduling overhead. We did our best to exclude the overhead due to WMS,
but somehow it impacts the queueing delays reported above and modelled here. As illustrated
in Figure 13, for both IEE (left) and UC2 environment (right), the value of the goodness-of-fit is
pretty high (>= 0.90) bringing trust to the corresponding models. Again, IEE model shows a
slow variation of the scheduling overhead proportionally to the number of containers (o = 0.044
* ¢ + 1.9) whereas for UC2, the variations of both dimensions are of the same order (0o = ¢ +
1.4). The take-away message is that the scheduling due to PROCESS creates some burden,
the latter is moderate and does not a show-stopper. Of course, this needs to be supported by
robust models from more data.

27

D3.2: Application of the Prediction Model to actual Measurement Results and Conclusion

20

0=19+0.044¢c R*=09 o=14+1¢c RZ=094

=

scheduling (s)
scheduling (s)

0 50 100 150 200 250 4 8 12 16
containers (int) containers (int)

Figure 13: PROCESS scheduling overhead models in IEE (left) and UC2 (right).

5.3 Data transfer model and projection

We model and summarize data staging and transfer measurements done in this deliverable
and in D8.1.

In D8.1, section 3.2, pages 13-14, we showed the data staging times in function of the size at
two LOFAR LTA locations, Amsterdam, NL and Poznan, PL. Here we model the average

behaviour of the staging on these two sites as illustrated in Figure 14.

30 25

204
t=8.2+0.045s R?=0.99

t=6.4+0061s R*=0.98

[~
(=]

staging (mn)
staging (mn)

100 200 300 100 200 300
data size (GB) data size (GB)

Figure 14: PROCESS data staging time models in Poznan (left) and in Poznan and Amsterdam (right). The
staging time (t) in minutes) is expressed as a linear function of data size (s) in GB.

According to the average model, it would take 745.480 minutes (half a day) to stage a
LOFAR observation of 16 TB.

28

D3.2: Application of the Prediction Model to actual Measurement Results and Conclusion

Transfer speed measurements between LOFAR LTA locations and PROCESS computing
sites on one hand (D8.1), and between the computing sites on another (see section 4.2.1
above), have also been conducted. The first approach which did not use DTNs showed poor
average transfer performance (5-12MB/s), whereas the second approach with DTNs shows
promising transfer rates of up to 550MB/s. The latter experimented only on UC1 needs to be
extended to the other use cases, for instance UC2 requiring data transfers from LTA
locations to the computing sites.

5.4 Conclusion and discussion

In this section we model the measurements detailed in section 4. Mainly, three models have
been built, for PROCESS platform overhead, scheduling overhead and data staging and
transfer.

The platform overhead model validates the choices made in PROCESS architecture and
implementation by exhibiting quite a low burden even in case of high load in terms of number
of concurrently running containers. However, this needs to be supported by more robusts
models from much more data than currently.

The scheduling overhead model also shows that the scheduling due to PROCESS creates a
moderate burden and does not constitute a bottleneck. Just as for the platform overhead, we
need more data to confirm this trend.

Finally, the staging model shows that staging can take quite some time, especially for UC2.
Unfortunately, it is beyond the control of PROCESS. In opposition, the data transfers crucial
to PROCESS performance can be improved by the use of DTNs or similar
approaches/protocols.

29

D3.2: References

6 References

[PMO] Performance Modelling, David Henty, EPCC, The University of Edinburgh [online:
http://www.archer.ac.uk/training/course-material/2018/07/ScaleMPI-MK/Slides/Performance
Modelling.pdf]

[Liu2017] Liu, Z., Balaprakash, P., Kettimuthu, R. and Foster, 1., 2017, June. Explaining wide
area data transfer performance. In Proceedings of the 26th International Symposium on High-
Performance Parallel and Distributed Computing (pp. 167-178). ACM.

[Nurmi2007] Nurmi, D., Brevik, J. and Wolski, R., 2007, June. QBETS: queue bounds
estimation from time series. In Workshop on Job Scheduling Strategies for Parallel Processing
(pp. 76-101). Springer, Berlin, Heidelberg.

[Smith1998] Smith, W., Foster, I. and Taylor, V., 1998, March. Predicting application run times
using historical information. In Workshop on Job Scheduling Strategies for Parallel Processing
(pp. 122-142). Springer, Berlin, Heidelberg.

[Gaussier2015] Gaussier, E., Glesser, D., Reis, V. and Trystram, D., 2015, November.
Improving backfilling by using machine learning to predict running times. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage and Analysis
(p. 64). ACM.

30

	Executive Summary
	List of Figures
	List of Tables
	1 Introduction
	1.1 Performance modelling approaches
	1.1.1 Overview and classification
	Measurement
	Microbenchmarking
	Simulation and Analytical Modelling

	1.1.2 PROCESS Performance Model

	2 Identification of Measurands
	T1: Configuration
	T2: Deployment Strategy
	T3: Stage-In
	T4: Container selection
	T5: Scheduling
	T6: Execution time
	T7: Stage-Out Strategy
	T8: Stage-Out
	Scenario 1: Single container – single site (Figure 3-a)
	Scenario 2: Multiple containers – single site (Figure 3-b)
	Scenario 3: Multiple containers – multiples sites (Figure 3-c)

	3 Development of a balanced Prediction Model
	3.1 Runtime Composition
	3.2 Model Verification
	3.2.1 Benchmark Application
	3.2.2 Use Case Workflows

	3.3 Conclusion

	4 Measurements
	4.1 Platform-wide measurements
	4.1.1 Overhead measurements
	4.1.2 Scheduling measurements

	4.2 Use case specific measurements
	4.2.1 UC1
	Data transfer measurements
	Execution time and/or FLOPS measurements vs data size

	4.2.2 UC2
	Data transfer measurements
	Execution time and/or FLOPS measurements vs data size

	4.2.3 UC4
	Data transfer measurements
	Execution time and/or FLOPS measurements vs data size

	4.2.4 UC5

	5 Application of the Prediction Model to actual Measurement Results and Conclusion
	5.1 Overhead model and projection
	5.2 Scheduling model and projection
	5.3 Data transfer model and projection
	5.4 Conclusion and discussion

	6 References

