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Abstract
The paper describes the machine learning in medical imaging which represent one of the
exascale  services  prepared  in  the  PROCESS  project.  It  also  presents  the  architecture
capable to handle such services with quantitative analysis performed at two computing
sites.
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1. Introduction
Digital histopathology is the automatic analysis of a biopsy or surgical tissue specimens
that are captured by a high-resolution scanner and stored as Whole Slide Images (WSIs).
WSIs are usually stored in a multi-resolution pyramid structure, where each layer contains
down-sampled versions of the original image. The amount of information in WSIs is large,
since it includes tissue that is not relevant for cancer diagnosis (e.g. background, healthy
tissue,  etc.)  For this  reason,  machine learning and deep learning models  are built  to
detect Regions of Interest (ROIs) within WSIs. ROIs are portions in the WSI where the
cancer is visible and therefore contain relevant information to train the network.

2. Use case description
Figure 1 shows a data pre-processing pipeline. As a first step the raw WSIs are analysed
at a very low resolution, and tissue is filtered from the background. Based on physician’s
annotations, tumor regions are isolated. These regions represent ROIs that are used to
perform network  training.  From the normal  tissue and from tumor  ROIs,  patches are
extracted  at  a  higher  level  of  magnification.  Higher  resolution  highlights  qualitative
features  of  the  nuclei  which  are  essential  for  cancer  detection.  For  instance,  recent
research  has  shown  that  performance  of  classifiers  improves  with  higher  resolution
patches.

Figure 1: WSIs preprocessing pipeline - Normal tissue and tumor tissue masks are extracted and high-resolution patches are
sampled from the selected regions.

The use case application is organized in three layers. Layer I implements the extraction of
patches of dimensions 224x224 pixels from the gigapixel  slides of breast lymph node



tissue.  Patches are randomly sampled from the slide,  in  which areas of  tumour  were
annotated by a physician. Patches belonging to a tumorous region are assigned a ‘tumor’
label (a Boolean variable equals to true). The extracted data are stored in an intermediate
dataset with the corresponding labels. Layer II loads the intermediate dataset of patches
and labels and trains a state-of-the-art deep convolutional network to classify the two
patch  types.  Different  models  can  be  chosen  by  a  configuration  parameter.  Layer  III
focuses  on  network  robustness  and  interpretability.  A  summary  of  the  use  case
application layers can be found in Table 1.

Table 1: Camnet - Interchangeable networks for Camelyon.

Layer I:
Data pre-processing and 
patch extraction

Layer II:
Local and distributed 
training

Layer III:
Performance boosting and 
interpretability

Creation of normal and 
tumour tissue masks from 
the physician’s annotations

State of the art deep 
convolutional networks 
currently implemented: 
Resnet50, Resnet101, 
InceptionV3

Generation of intermediate 
visualizations

Random sampling of high-
resolution patches and 
labelling

Local training on single 
and multiple GPUs Feature importance analysis

Intermediate storage of the 
patches on H5DS Training on HPC clusters Perturbation robustness 

analysis
Distributed training

3. PROCESS platform
The reference exascale architecture (see Figure 2) is divided into the following parts (from
top to bottom):

 Users of the exascale scientific applications (in yellow) - the exascale system
has to support functionalities required by its user communities. The best way is to
build it on containerization. All of the applications are stored in a containerized
repository that is available to use communities.

 Virtualization layer (in blue) - is situated between the containerized application
repository  and  platform  infrastructure  managers.  Interoperability  of  data  and
computing  infrastructures  is  the  key  and  critical  requirement  of  the  exascale
systems.

 Data  management (in  green)  -  could  be  divided  into  two  main  groups:
distributed  data  federation  and  metadata.  The  metadata  module  has  to  be
federated  and  distributed  as  well  as  the  management  system  for  the  data
infrastructure itself. At this level of the infrastructure, the system architect has to
be careful  whether the component will  be containerized,  or  not.  Micro-services
serve as adapters and connectors to infrastructural services. They are integrated
into  a  containerized  micro-infrastructure,  which  is  customized  according  to
requirements coming from a use case and connecting them to a distributed virtual
file system. 

 Computing Management (in red) - this part of the infrastructure is related to
scheduling  and  monitoring  computing  resources.  Two  kinds  of  resources  are
supported,  namely:  high-performance  computing  (HPC)  resources,  and  cloud
resources. HPC manager is based on a queuing approach. The manager of the
cloud resources is based on the REpresentational State Transfer (REST) Application
Programming  Interface  (API).  Both  types  of  resources  are  often  enriched  by
support from high-throughput resources or accelerated resources.



Figure 2:Reference exascale architecture.

4. Results
Experiments  were  computed  on  UvA  (University  of  Amsterdam)  and  AGH  (Akademia
Górniczo-Hutnicza im. Stanisława Staszica w Krakowie) computing sites for Layer I and
Layer II of the use case software. The use case application handling of the resources and
access to CPU and GPU memory was intensively optimized. Table 2 and Table 3 illustrate
the current status of the application layers I and II. First order statistics of computational
requirements  for  Layer  I  are  reported  in  Table  2.  First  order  statistics  for  the  time
requirements of Layer II are reported in Table 3. Performance of Layer II is also reported in
Table 3 in the form of model accuracy.

Table 2: Time baselines of the first layer: Data Preprocessing and Patch Extraction.

Location Hes-so UvA AGH
Patch sampling time [s/patch] 0.41 - -
Data loading time  [ms/patch] 2.0 1.5 0.5

Table 3: Performance baselines for model 1 (ResNet50) of the second layer: Interchangeable Network Model.

Resource (Location) Hes-so UvA AGH
Training accuracy 96,91±0,45 96,1±0,24 84.3
Validation accuracy 85,6±6,2 83,1±0,14 93.7
Training time [s/epoch] 2440,80 1203,68 17277
10 epochs time [h] 7 h 3.34 h 47 h

The performance evaluation highlights very efficient data extraction and loading at AGH,
with only 0.5 ms to load a single patch. The high-performance GPUs available at UVA, by
contrast, provide fast computations on a single GPU, halving the computational time of
the model training (from 7 hours to 3.34 hours).

5. Conclusion



The paper presents the medical  use case of  the PROCESS project that is  focused on
exascale learning on medical image data. The requirements coming from the use case are
handled by the exascale reference architecture. It is based on containerization and virtual
machines  supported  by  an  exascale  capable  distributed  virtual  file  system,  and
computing manager. The last section presents experimental results that were performed
at two computing sites and show their advantages and disadvantages within the use case
scenario.
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