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ABSTRACT 

This deliverable is the foundation for the PROCESS performance modelling and prediction 
approaches. With this foundation, it will become possible to steer the future design, 
development and validation efforts. A special challenge in the PROCESS project is the 
variety of environments the developed software is supposed to support, requiring an 
uniform, easy-to-use and straightforward performance model. 
Hence, this deliverable first determines all relevant measurands for the different workflows. 
Heron, we present an initial approach to compose the components for predictively 
modelling a workflow’s performance on the PROCESS architecture.  
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Executive Summary 
 

This document presents the foundations of the performance modelling and prediction 

approaches that the PROCESS project will use to steer its design, development and validation 

efforts. The broad range of environments the PROCESS software will run on presents obvious 

challenges in the development of a uniform, easy-to-use and straightforward performance 

model. The necessary streamlining and simplification of the approach should not omit any 

relevant aspects that are determining the actual performance as observed by a user.  

As a way to balance these conflicting requirements, the project will use a solution based on 

measurable performance metrics, complemented by a mathematical model that allows 

extrapolating performance on systems that are considerably more complex than the existing 

ones. The extrapolation is necessary to understand the impact of advances in the capacities 

of individual components on the execution speed of complex workflows. 

The model used by the project assumes that exascale applications can be modelled as 

pipelines consisting of the input data stage-in, processing and (result) data stage-out steps. 

However, for workflows composed of several dynamically configured and deployed 

components, the set of performance components need to be able to analyse the execution in 

a more fine-grained manner. The full set of metrics is detailed in Section 2. 

It should be noted that some of these steps depend on user input, therefore, the overall 

execution time will depend on the expertise and skills of the user. There are also considerable 

differences between situations where all the necessary resources belong to a single system, 

on multiple platforms controlled by a single organisation or in a federated system crossing 

organisational and geographical boundaries. 

To focus performance-related development efforts, the PROCESS performance model groups 

the metrics into the categories Overhead, Data Transfer, Scheduling and Execution Time. 

In the performance model presented in Section 2, the overhead represents the times 

introduced by the use of the PROCESS software, while the data transfer and execution time 

components are primarily dependent on the performance of the networking, storage and 

computing hardware available. Scheduling is highly dependent on the number of competing 

jobs and the policies (e.g. priority queue available for the job). However, similar to the 

characteristics of the underlying hardware, scheduling is an issue that cannot be influenced by 

the design of the software.  

The relative impact of these four categories on the system-level performance as experienced 

by the user can vary dramatically. Therefore, the ultimate goal of the project is to develop a 

user-configurable workflow that can be used to complement actual use case software in the 

evaluation of the PROCESS platform. However, it should be noted that the use cases already 

stress the different aspects of the equation in a quite comprehensive manner. 

The conceptual model presented in this deliverable will be updated and further elaborated with 

the actual measurement data based on the use cases and the benchmark workflow being 

available. The updated performance modelling and prediction results will be the focus of 

deliverable D3.2. 
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1 Introduction 
This deliverable provides an initial approach to model the performance of the PROCESS 

infrastructure and its possible scalability towards exascale workflows. Based on D3.1 the 

upcoming deliverables D3.2 and D3.3 will enhance and complete the process of developing a 

performance model and provides the opportunity to present predictions of the architecture’s 

behaviour towards extreme large workflow executions.  

Given that no single high performance computing system currently available or contemplated 

is expected to provide exascale performance, we need, on the one hand, access to multiple 

computing centres capable of running federated computational workflows, while on the other 

hand, software which can be deployed and coordinated not only across several nodes, but 

across different locations in Europe, which we refer to as sites. For the use cases presented 

in deliverables D2.1, D4.1 and D5.2 and based on PROCESS architectural design decision, 

we consider containerisation a prerequisite. In order to technically facilitate this decision, we 

follow an approach which would permit us to containerize architectural elements as well as to 

push all use cases to implement their execution in containers. This will allow for deploying 

instances of independent executions on sub-sets of a given data set on different local nodes, 

and also on different geographically distributed sites. 

However, the hardware and the software development towards exascale is subject to ongoing 

research and we have to face the challenge to predict a behaviour that cannot be verified within 

the lifetime of this project. Therefore, we need to develop a prediction model based on 

measurable performance indicators and use them to extrapolate runtime behaviour towards a 

much higher scale. The model needs to meet the requirements to predict the behaviour of all 

our services and the PROCESS infrastructure as a whole, but must be flexible to adapt to new 

requirements coming from future and new applications. 

To distinguish the most common approaches for performance prediction models, we first 

provide an overview and classification of up-to-date performance modelling and prediction 

methods, on the basis of which we present the PROCESS approach to performance modelling.  

1.1 Performance modelling approaches 

Performance modelling is used in  many computational and storage systems around Europe. 

Regarding the exascale challenge, also other EU projects also examine the needs and 

conclusions to enable exascale performance. 

One representative is the CRESTA8 project (Collaborative Research Into Exascale 

Systemware, Tools and Applications) proposing a framework on software and tool 

developments for scientific end-users. Their solution is limited to local site needs and deals 

mainly with hardware decisions which supercomputing centre operators will face over the next 

few years. 

1.1.1 Overview and classification 
David Henty from the Edinburgh Parallel Computing Centre (EPCC) is one of the CRESTA 

project partners. In his publications (e.g. Performance Modelling [PMO]) he gives an overview 

on generic performance modelling techniques, along with a corresponding classification. In 

Table 1 we summarise the four main performance techniques proposed by David Henty, 

starting with raw measurements, through benchmarking and simulations, all the way to 

complex analytical modelling with a large number of parameters. 

                                                 
 

8 https://www.cresta-project.eu 
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Technique Description Purpose 

Measurement running full applications under various 
configurations 

determine how well application performs 

Microbenchmarking 
measuring performance of primitive 
application components  

provide insight into application 
performance 

Simulation 
running application or benchmark on 
software simulation 

examine “what if” scenarios e.g. 
configuration changes 

Analytical Modelling 

devising parameterized, mathematical 
model that represents the performance 
of an application in terms of the 
performance of processors, nodes, and 
networks 

rapidly predict the expected performance 
of an application on existing or 
hypothetical machines 

Table 1: Performance Modelling Approaches, cited from Performance Modelling, David Henty [PMO] 

All the techniques mentioned in Table 1 may prove useful the PROCESS project: 

Measurement 

Measurement may involve simple observables as well as complex models. In Section 2, we 

will define meaningful measuring points in the execution sequence, whose values are to deliver 

input data for further modelling and prediction steps. 

Microbenchmarking 

Due to the inherent complexity of exascale use cases, ordinary sample applications are not 

sufficient to contribute to a fundamental performance model. Nonetheless, microbenchmarking 

will be used to identify performance bottlenecks in the PROCESS architecture and assist in 

debugging and verifying its correctness.  

Simulation and Analytical Modelling 

Executing and measuring a given application running on PROCESS in different configurations 

and settings comprises the input dataset for this step. The goal is to extrapolate the 

application’s behaviour and operation with the observations. The resulting model will allow 

predicting runtime behaviour beyond the measured configuration scales, which gives us a 

chance to forecast the performance on the exascale level. 

1.1.2 PROCESS Performance Model 
Based on the previous description, we choose a measurement-based approach with 

extrapolation through analytical modelling. First the measurands are identified and 

measurements will be collected. Subsequently, a microbenchmark to evaluate these 

measurands will be developed. Finally, to predict the performance of PROCESS, we will use 

these results to create an analytical model that will enable us to extrapolate the performance 

based on the obtained measurements. 

1.2 Structure of the Document 

In Section 2, we identify the appropriate measurands within the PROCESS infrastructure and 

present their occurrence within the PROCESS execution workflow. Based on these eight 

measurands the prediction model is established in Section 3, which will later facilitate 

extrapolation of the PROCESS scalability. The Sections 4 and 5 will be fleshed out in the 

following deliverables, D3.2 and D3.3, with the measurement results for a test application along 

with actual use cases, and, finally, the model will be applied to actual measurement values to 

extrapolate the performance. 
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2 Identification of Measurands 
In the previous section we categorized the different approaches to performance modelling and 

prediction. One of which was a measurement-based approach with extrapolation for 

performance prediction. To achieve this goal, it is necessary to identify the appropriate 

measurands within the PROCESS infrastructure that can be used to model the performance 

of the infrastructure and predict its scalability.  

We would like to stress here that the hardware infrastructure, including computing, storage, 

and network resources, will have a significant impact on the performance of PROCESS 

services. However, as a project, we have no real influence on this part of the infrastructure. 

Therefore, our performance measurands will focus on the overhead introduced by the software 

services, while also measuring all other relevant values to identify relations between them.   

In the absence of true exascale systems, our objective, as stated in Section 1, is to achieve 

exascale performance by combining the power of geographically distributed datacentres. 

Unfortunately, standard configurations of computing centres are typically optimized for internal 

transfers of data rather than for cross-site transfers. While technical solutions to optimize data 

transfers exist, such as the Data Transfer Nodes9,10, implementing those solutions is beyond 

the scope of the project. In PROCESS will try to conceal the data transfers by overlapping data 

transfer with computing, or use pre-fetching and caching to minimize the need for synchronous 

data transfers.  

Based on the five use cases defined in PROCESS, we can think of a typical application as a 

pipeline of data processes which typically requires a data stage-in step followed with an 

execution step, and finally a data stage-out step. The time required for stage-in and out is 

expected to be significant, due to the necessary transfer of data between datacentres. 

Figure 1 presents a sequence diagram describing all steps involved in an application scenario 

execution. For each step, we define the time corresponding to its completion as follows:  

T1: Configuration 

The Interactive Execution Environment provides an end-user web portal, where each 

run of any application needs to be configured. For the different use cases, these 

configurations vary as shown in the deliverables D4.2 and D5.2. 

T2: Deployment Strategy  

Part of T2 is the time needed to decide on which computing site[s] and storage site the 

containers and their data will be deployed. This step also needs to initialize the required 

micro-architecture. 

T3: Stage-In  

This step involves access to data services hosted at the selected data centre. However, 

if PROCESS can make use of caching, proactive pre-fetching or pre-processing, the 

impact of T3 upon the overall execution performance can be substantially reduced. 

T4: Container selection  

The workflow that has been defined in T1 specifies a container that will be executed as 

well as the required version. This version needs to be fetched from a container 

repository and later deployed as a job in T5. 

                                                 
 

9 Building User-friendly Data Transfer Nodes, https://www.delaat.net/posters/pdf/2018-11-12-DTN-SURFnet.pdf 

10 Pacific Research Plattform https://bozeman-fiona-workshop.ucsd.edu/materials/20180303-dart-dtn-strategic-asset-v1.pptx/view 
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T5: Scheduling  

The time a job spends in the queue of the compute resource. This time can vary and 

will be hard to predict since it is affected by each compute site’s scheduling system, 

which is not under the control of PROCESS infrastructure. We may, however, be able 

to establish an upper bound for the queue wait time, that could be included in runtime 

prediction. 

T6: Execution time  

T6 is the time a given job takes between from leaving the queue and completing its 

calculations on the compute resource. This time is determined by the performance and 

scalability of the application on the selected compute resource. To predict this time, an 

application specific performance model is required. 

T7: Stage-Out Strategy  

Once the job is complete, it may have generated large amounts of output data that 

needs to be transferred from the compute resources back to the PROCESS permanent 

storage infrastructure. Based on the amount of data and the specified workflow the data 

service needs to choose a suitable stage-out strategy.  

T8: Stage-Out  

With the appropriate stage-out strategy the output data now needs to be transferred to 

the selected storage resource. 
 

 

Figure 1: Sequence diagram describing the steps involved in the execution of a typical application scenario 
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Table 2 summarises the various identified times which we will use as performance 

measurands.  

Table 2: Description of the PROCESS measurands 

TX Name Description 

T1 Configuration Time to configure the workflow for the application 

T2 Deployment Strategy Time to select appropriate storage and computing site 

T3 Stage-In Time to transfer data from source to selected storage site 

T4 Container selection Time to select specified container for the workflow from repository 

T5 Schedule Time the submitted job spends in queue 

T6 Execution time Time spent executing the job on the compute resource 

T7 Stage-Out Strategy Time to select appropriate storage site for output 

T8 Stage-Out Time to transfer result to storage site 

 

Using the performance measurands listed in Table 2, we propose a three-steps approach to 

the modelling and performance prediction of the PROCESS infrastructure. First, we will 

show that the overhead of the PROCESS platform for a deployment on one site (initializing 

the micro-infrastructure and scheduling) is negligible. Second, since the deployment strategy 

of PROCESS is to deploy every application in a container, we will show the weak scaling 

capabilities of PROCESS by deploying multiple containers with a split of the input data on 

one site. Third, since the goal is to achieve an exascale system solution, we will enable 

applications to scale by splitting the data and deploying containers across multiple sites of 

PROCESS. 

We therefore describe three measurement scenarios: 

Scenario 1: Single container – single site (Figure 2-a) 

In this scenario we measure the execution time of processing the input sequentially 

within one running container. This container uses the maximum available quantity of 

compute resources PROCESS can use at one single site (e.g. use case 2 running 

only on one cluster). 

Scenario 2: Multiple containers – single site (Figure 2-b) 

In the second scenario we submit several containers on one cluster. Here, we either 

expect a speedup, since the container in scenario 1 may not have effectively utilized 

all available resources, or the same runtime as before, since the overhead to deploy 

more than one container in parallel should be minimal. 

Scenario 3: Multiple containers – multiples sites (Figure 2-c) 

The final scenario will involve several containers running in parallel on several different 

sites, with a corresponding split in the input data set. We expect significant speedup 

since multiple containers will be deployed on multiple sites. 
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Figure 2: Three measurement scenarios: (a) Single container – single site, (b) Multiple containers – single site, 
(c) Multiple containers – multiple sites. In all three scenarios Stage-In and Stage-Out will limit the overall system 
performances unless the wide area network data transfer issue is addressed.   

After evaluating these scenarios and measurements, we will present a generic performance 

model that will allow us to predict the scalability of the PROCESS infrastructure for a given 

application. 
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3 Development of a balanced Prediction Model 
In this section we present our approach to determine the components of a simple predictive 

model for workflow performance on the PROCESS infrastructure.  

3.1 Runtime Composition 

Based on Figure 2 the total runtime of an application can be defined as follows: 

𝑹𝒖𝒏𝒕𝒊𝒎𝒆 = 𝑶𝒗𝒆𝒓𝒉𝒆𝒂𝒅 + 𝑫𝒂𝒕𝒂 𝑻𝒓𝒂𝒏𝒔𝒇𝒆𝒓 + 𝑺𝒄𝒉𝒆𝒅𝒖𝒍𝒊𝒏𝒈 +  𝑬𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏 𝑻𝒊𝒎𝒆 

Where: 

𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 = 𝑇1 + 𝑇2 + 𝑇4 + 𝑇7 

𝐷𝑎𝑡𝑎 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = 𝑇3 + 𝑇8 

𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔 = 𝑇5 

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 = 𝑇6 

 

The overhead component contains all overhead directly related to the PROCESS services. 

This includes selecting the appropriate resources for data access and compute in the 

Execution Environment, configuring the micro-architecture of LOBCDER for data access, 

fetching the application containers, and submitting the application to the selected resource 

using Rimrock. 

To support exascale it is important that this overhead remains low for each submitted workflow 

and does not depend on the scale of the compute resource targeted by the services. We expect 

it to be orders of magnitude lower than the overhead associated with the remaining 

components, and therefore negligible. 

The data transfer, scheduling and execution time components are mostly determined by 

factors outside of the control of PROCESS services, such as network capacity, queue waiting 

times, and how well a workflow performs and scales on a given resource. Nevertheless, having 

an estimate of the data transfer and scheduling delay is useful for selecting a resource to which 

a workflow should be submitted. If execution time estimates are available, this selection may 

be improved further, and a total runtime estimate may be provided to the user.  

The data transfer component is mainly determined by two parts: the time required by DISPEL 

to perform pre-processing of the data (if any), and the time required to transfer the resulting 

data volume given the end-to-end transfer capacity between the storage and compute site. 

These two components may largely overlap if the data pre-processing is simple and can be 

performed on the fly, but for complex operations this may not be the case.   

For the latter part, predicting large long-distance data transfers, a significant research has been 

performed over the last two decades. For example, [Liu2017] describes a model that predicts 

end-to-end data transfer times with high accuracy based on logs of the Globus transfer service.  

Similarly, much research has been done with regard to estimating queue waiting times of HPC 

applications which dominates the scheduling component. For example, [Nurmi2007] describes 

a model that provides estimates with a high degree of accuracy and correctness for a large 

number of supercomputing sites.  

For PROCESS we re-use this existing work to provide estimates for both the data transfer and 

scheduling components of the model. 

Predicting the execution time is highly application specific and must be done separately for 

each of the use cases. It may be dependent on input datasets, application parameters and 
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amount of resources used (number and type of cores, amount and speed memory, availability 

and type of GPUs, etc).  

Strong scalability of the use case applications is expected to be limited well below exascale, 

as currently only very few applications are able to exploit the petascale level. To determine the 

limits of the strong scalability of the use case workflows, traditional performance benchmarking 

of the applications will be used for representative input data sets and parameters. 

To circumvent strong scalability limits, we can exploit weak scalability, where multiple 

workflows are running at the same time to process different datasets. However, doing so may 

shift the bottleneck from the application to other sources, such as the data service, or local 

storage on the resources. Such limits can be discovered by performing weak scalability testing, 

both on a single site and across multiple sites.  

Unfortunately, it requires substantial effort to create a complete and accurate model of the 

application behaviour for each of these use cases. Although users may be willing to perform 

some testing in advance, to fine-tune their applications, they are mostly interested in obtaining 

results. Therefore, highly accurate modelling of the application workflows is not required; 

instead, a rough estimate of the processing time is generally enough. 

We will initially assume the user will provide an estimate for the execution time, as is customary 

on HPC systems. At a later stage, this estimate may be refined based on easily observed 

parameters, such as input data size and quantity of resources used, which may be extracted 

from the logs of previous runs of the given workflow. A significant amount of research has gone 

into estimating application execution time based on limited information. For example, 

[Smith1998] present a technique that predicts application run times based on historical 

information for “similar” applications. Search techniques are used to automatically determine 

the best definition of similarity. In [Gaussier2015], a similar technique is used to fine-tune the 

execution time estimate provided by the user.  

 

3.2 Model Verification 

3.2.1 Benchmark Application 
An artificial benchmark workflow will be created which allows configuration of the different 

aspects of a workflow, such as the sizes and locations of input and output data, pre- or post-

processing requirements, the number and type of compute resources required, the execution 

time of the application, etc. This benchmark workflow can be used to test the functionality or 

the PROCESS services, determine the initial model values, and validate model predictions. 

By choosing minimal values for data transfer and execution time (for example 0 bytes and 0 

seconds) a lower bound for the runtime can be obtained and the overhead of the PROCESS 

services can be measured. By submitting large numbers of such workflows, the scalability of 

the services themselves can be tested.  

Choosing large values for data transfer yields an initial estimate of the data transfer capacity 

between sites. Similarly, different pre-processing patterns can be tested, ranging from 

straightforward filtering or conversion to more complex operations such as mixing or 

transpositions, to create an initial estimate of the DISPEL overhead. 

By varying the target resources of the workflow, an initial estimate of the scheduling delays at 

different locations can be made. 
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Once an initial model is available, this benchmark application can be used to validate it by 

comparing the error rates of the predictions against actual measurements. This will allow us to 

iteratively refine the model during the course of the project. 

3.2.2 Use Case Workflows 
As explained above, strong and weak scalability tests may be performed on the use case 

workflows to determine the limits to its scalability and the initial parameters of the execution 

time models. Once these parameters are available, an initial execution time model can be 

created, and its predictions can be verified using the logs of subsequent workflow runs. 

Consistently measuring the workflow performance and selected key parameters (such as input 

data size and type and number of resources used) allow the model to be refined further. By 

default, a simple placeholder model will be used by the PROCESS services. If necessary, a 

more detailed use case specific model may be created for each use case and provided upon 

workflow submission. 

3.3 Conclusion 

In this section we have described the components of a simple predictive model for workflows 

performance on the PROCESS infrastructure. The main goal of this model will be to verify that 

the overhead incurred by the PROCESS services (the sum of T1, T2, T4 and T7 in Figure 1) 

is negligible compared to the cost of data staging (T3 and T8), scheduling (T5) and execution 

(T6). Using this model, we will attempt to verify whether the proposed services are capable of 

scaling into the exascale range.  

 

 

4 Measurements 
 

In D3.2 we will report upon the initial measurement results of a test application and early 

versions of the PROCESS use cases. Thereupon, we will also specify which methods were 

applied and which points of interest defined in the previous chapter could be verified. 

 

 

 

5 Application of the Prediction Model to actual 

Measurement Results and Conclusion 
 

  This section will be filled within  

D3.2 and D3.3. 

 

 

This section will be filled within  

D3.2 and D3.3. 
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