
1

This project has received funding from the European

Union’s Horizon 2020 research and innovation
programme under grant agreement No 777533.

PROviding Computing solutions for ExaScale ChallengeS

D3.1 Performance modelling and prediction

Project: PROCESS H2020 – 777533
Start /

Duration:
01 November 2017
36 Months

Dissemination1: PU Nature2: R

Due Date: 31 January 2019 Work Package: WP 3

Filename3 PROCESS_D3.1_Performance_modelling_and_prediction _v1.0.docx

ABSTRACT

This deliverable is the foundation for the PROCESS performance modelling and prediction
approaches. With this foundation, it will become possible to steer the future design,
development and validation efforts. A special challenge in the PROCESS project is the
variety of environments the developed software is supposed to support, requiring an
uniform, easy-to-use and straightforward performance model.
Hence, this deliverable first determines all relevant measurands for the different workflows.
Heron, we present an initial approach to compose the components for predictively
modelling a workflow’s performance on the PROCESS architecture.

1 PU = Public; CO = Confidential, only for members of the Consortium (including the EC services).

2 R = Report; R+O = Report plus Other. Note: all “O” deliverables must be accompanied by a deliverable report.

3 eg DX.Y_name to the deliverable_v0xx. v1 corresponds to the final release submitted to the EC.

2

Deliverable
Contributors:

Name Organisation Role / Title

Deliverable
Leader4

Bubak, Marian AGH Coordinator

Contributing
Authors5

Meizner, Jan AGH Writer

Höb, Maximilian; Schmidt, Jan LMU Writers

Maassen, Jason NLESC Writer

Belloum, Adam UvA Writer

Reviewer(s)6

Guggemos, Tobias LMU Reviewer

Nowakowski, Piotr AGH Reviewer

Somoskoi, Balázs LSY Reviewer

Final review and
approval

Höb, Maximilian LMU Reviewer

Document History

Release Date Reasons for Change Status7 Distribution

0.0 01-10-2018 Structure Draft

0.1 01-12-2018 Measurands/Model Definition Draft

0.2 08-01-2019 Model Development Draft

0.4 28-01-2019 Review-Process In Review

1.0 31-01-2019 Release Released Public

4 Person from the lead beneficiary that is responsible for the deliverable.

5 Person(s) from contributing partners for the deliverable.

6 Typically person(s) with appropriate expertise to assess the deliverable quality.

7 Status = “Draft”; “In Review”; “Released”.

D3.1 Table of Contents

3

Table of Contents

Executive Summary ... 4

List of Figures ... 5

List of Tables .. 5

1 Introduction ... 6

1.1 Performance modelling approaches .. 6

1.1.1 Overview and classification .. 6

1.1.2 PROCESS Performance Model ... 7

1.2 Structure of the Document ... 7

2 Identification of Measurands ... 8

3 Development of a balanced Prediction Model .. 12

3.1 Runtime Composition ... 12

3.2 Model Verification ... 13

3.2.1 Benchmark Application .. 13

3.2.2 Use Case Workflows .. 14

3.3 Conclusion .. 14

4 Measurements .. 14

5 Application of the Prediction Model to actual Measurement Results and Conclusion 14

6 References .. 15

D3.1 Executive Summary

4

Executive Summary

This document presents the foundations of the performance modelling and prediction

approaches that the PROCESS project will use to steer its design, development and validation

efforts. The broad range of environments the PROCESS software will run on presents obvious

challenges in the development of a uniform, easy-to-use and straightforward performance

model. The necessary streamlining and simplification of the approach should not omit any

relevant aspects that are determining the actual performance as observed by a user.

As a way to balance these conflicting requirements, the project will use a solution based on

measurable performance metrics, complemented by a mathematical model that allows

extrapolating performance on systems that are considerably more complex than the existing

ones. The extrapolation is necessary to understand the impact of advances in the capacities

of individual components on the execution speed of complex workflows.

The model used by the project assumes that exascale applications can be modelled as

pipelines consisting of the input data stage-in, processing and (result) data stage-out steps.

However, for workflows composed of several dynamically configured and deployed

components, the set of performance components need to be able to analyse the execution in

a more fine-grained manner. The full set of metrics is detailed in Section 2.

It should be noted that some of these steps depend on user input, therefore, the overall

execution time will depend on the expertise and skills of the user. There are also considerable

differences between situations where all the necessary resources belong to a single system,

on multiple platforms controlled by a single organisation or in a federated system crossing

organisational and geographical boundaries.

To focus performance-related development efforts, the PROCESS performance model groups

the metrics into the categories Overhead, Data Transfer, Scheduling and Execution Time.

In the performance model presented in Section 2, the overhead represents the times

introduced by the use of the PROCESS software, while the data transfer and execution time

components are primarily dependent on the performance of the networking, storage and

computing hardware available. Scheduling is highly dependent on the number of competing

jobs and the policies (e.g. priority queue available for the job). However, similar to the

characteristics of the underlying hardware, scheduling is an issue that cannot be influenced by

the design of the software.

The relative impact of these four categories on the system-level performance as experienced

by the user can vary dramatically. Therefore, the ultimate goal of the project is to develop a

user-configurable workflow that can be used to complement actual use case software in the

evaluation of the PROCESS platform. However, it should be noted that the use cases already

stress the different aspects of the equation in a quite comprehensive manner.

The conceptual model presented in this deliverable will be updated and further elaborated with

the actual measurement data based on the use cases and the benchmark workflow being

available. The updated performance modelling and prediction results will be the focus of

deliverable D3.2.

D3.1 List of Figures

5

List of Figures
Figure 1: Sequence diagram describing the steps involved in the execution of a typical

application scenario.. 9
Figure 2: Three measurement scenarios: (a) Single container – single site, (b) Multiple

containers – single site, (c) Multiple containers – multiple sites. In all three scenarios Stage-

In and Stage-Out will limit the overall system performances unless the wide area network

data transfer issue is addressed. ... 11

List of Tables
Table 1: Performance Modelling Approaches, cited from Performance Modelling, David

Henty [PMO] ... 7
Table 2: Description of the PROCESS measurands ... 10

D3.1 Introduction

6

1 Introduction
This deliverable provides an initial approach to model the performance of the PROCESS

infrastructure and its possible scalability towards exascale workflows. Based on D3.1 the

upcoming deliverables D3.2 and D3.3 will enhance and complete the process of developing a

performance model and provides the opportunity to present predictions of the architecture’s

behaviour towards extreme large workflow executions.

Given that no single high performance computing system currently available or contemplated

is expected to provide exascale performance, we need, on the one hand, access to multiple

computing centres capable of running federated computational workflows, while on the other

hand, software which can be deployed and coordinated not only across several nodes, but

across different locations in Europe, which we refer to as sites. For the use cases presented

in deliverables D2.1, D4.1 and D5.2 and based on PROCESS architectural design decision,

we consider containerisation a prerequisite. In order to technically facilitate this decision, we

follow an approach which would permit us to containerize architectural elements as well as to

push all use cases to implement their execution in containers. This will allow for deploying

instances of independent executions on sub-sets of a given data set on different local nodes,

and also on different geographically distributed sites.

However, the hardware and the software development towards exascale is subject to ongoing

research and we have to face the challenge to predict a behaviour that cannot be verified within

the lifetime of this project. Therefore, we need to develop a prediction model based on

measurable performance indicators and use them to extrapolate runtime behaviour towards a

much higher scale. The model needs to meet the requirements to predict the behaviour of all

our services and the PROCESS infrastructure as a whole, but must be flexible to adapt to new

requirements coming from future and new applications.

To distinguish the most common approaches for performance prediction models, we first

provide an overview and classification of up-to-date performance modelling and prediction

methods, on the basis of which we present the PROCESS approach to performance modelling.

1.1 Performance modelling approaches

Performance modelling is used in many computational and storage systems around Europe.

Regarding the exascale challenge, also other EU projects also examine the needs and

conclusions to enable exascale performance.

One representative is the CRESTA8 project (Collaborative Research Into Exascale

Systemware, Tools and Applications) proposing a framework on software and tool

developments for scientific end-users. Their solution is limited to local site needs and deals

mainly with hardware decisions which supercomputing centre operators will face over the next

few years.

1.1.1 Overview and classification
David Henty from the Edinburgh Parallel Computing Centre (EPCC) is one of the CRESTA

project partners. In his publications (e.g. Performance Modelling [PMO]) he gives an overview

on generic performance modelling techniques, along with a corresponding classification. In

Table 1 we summarise the four main performance techniques proposed by David Henty,

starting with raw measurements, through benchmarking and simulations, all the way to

complex analytical modelling with a large number of parameters.

8 https://www.cresta-project.eu

D3.1 Introduction

7

Technique Description Purpose

Measurement running full applications under various
configurations

determine how well application performs

Microbenchmarking
measuring performance of primitive
application components

provide insight into application
performance

Simulation
running application or benchmark on
software simulation

examine “what if” scenarios e.g.
configuration changes

Analytical Modelling

devising parameterized, mathematical
model that represents the performance
of an application in terms of the
performance of processors, nodes, and
networks

rapidly predict the expected performance
of an application on existing or
hypothetical machines

Table 1: Performance Modelling Approaches, cited from Performance Modelling, David Henty [PMO]

All the techniques mentioned in Table 1 may prove useful the PROCESS project:

Measurement

Measurement may involve simple observables as well as complex models. In Section 2, we

will define meaningful measuring points in the execution sequence, whose values are to deliver

input data for further modelling and prediction steps.

Microbenchmarking

Due to the inherent complexity of exascale use cases, ordinary sample applications are not

sufficient to contribute to a fundamental performance model. Nonetheless, microbenchmarking

will be used to identify performance bottlenecks in the PROCESS architecture and assist in

debugging and verifying its correctness.

Simulation and Analytical Modelling

Executing and measuring a given application running on PROCESS in different configurations

and settings comprises the input dataset for this step. The goal is to extrapolate the

application’s behaviour and operation with the observations. The resulting model will allow

predicting runtime behaviour beyond the measured configuration scales, which gives us a

chance to forecast the performance on the exascale level.

1.1.2 PROCESS Performance Model
Based on the previous description, we choose a measurement-based approach with

extrapolation through analytical modelling. First the measurands are identified and

measurements will be collected. Subsequently, a microbenchmark to evaluate these

measurands will be developed. Finally, to predict the performance of PROCESS, we will use

these results to create an analytical model that will enable us to extrapolate the performance

based on the obtained measurements.

1.2 Structure of the Document

In Section 2, we identify the appropriate measurands within the PROCESS infrastructure and

present their occurrence within the PROCESS execution workflow. Based on these eight

measurands the prediction model is established in Section 3, which will later facilitate

extrapolation of the PROCESS scalability. The Sections 4 and 5 will be fleshed out in the

following deliverables, D3.2 and D3.3, with the measurement results for a test application along

with actual use cases, and, finally, the model will be applied to actual measurement values to

extrapolate the performance.

D3.1 Identification of Measurands

8

2 Identification of Measurands
In the previous section we categorized the different approaches to performance modelling and

prediction. One of which was a measurement-based approach with extrapolation for

performance prediction. To achieve this goal, it is necessary to identify the appropriate

measurands within the PROCESS infrastructure that can be used to model the performance

of the infrastructure and predict its scalability.

We would like to stress here that the hardware infrastructure, including computing, storage,

and network resources, will have a significant impact on the performance of PROCESS

services. However, as a project, we have no real influence on this part of the infrastructure.

Therefore, our performance measurands will focus on the overhead introduced by the software

services, while also measuring all other relevant values to identify relations between them.

In the absence of true exascale systems, our objective, as stated in Section 1, is to achieve

exascale performance by combining the power of geographically distributed datacentres.

Unfortunately, standard configurations of computing centres are typically optimized for internal

transfers of data rather than for cross-site transfers. While technical solutions to optimize data

transfers exist, such as the Data Transfer Nodes9,10, implementing those solutions is beyond

the scope of the project. In PROCESS will try to conceal the data transfers by overlapping data

transfer with computing, or use pre-fetching and caching to minimize the need for synchronous

data transfers.

Based on the five use cases defined in PROCESS, we can think of a typical application as a

pipeline of data processes which typically requires a data stage-in step followed with an

execution step, and finally a data stage-out step. The time required for stage-in and out is

expected to be significant, due to the necessary transfer of data between datacentres.

Figure 1 presents a sequence diagram describing all steps involved in an application scenario

execution. For each step, we define the time corresponding to its completion as follows:

T1: Configuration

The Interactive Execution Environment provides an end-user web portal, where each

run of any application needs to be configured. For the different use cases, these

configurations vary as shown in the deliverables D4.2 and D5.2.

T2: Deployment Strategy

Part of T2 is the time needed to decide on which computing site[s] and storage site the

containers and their data will be deployed. This step also needs to initialize the required

micro-architecture.

T3: Stage-In

This step involves access to data services hosted at the selected data centre. However,

if PROCESS can make use of caching, proactive pre-fetching or pre-processing, the

impact of T3 upon the overall execution performance can be substantially reduced.

T4: Container selection

The workflow that has been defined in T1 specifies a container that will be executed as

well as the required version. This version needs to be fetched from a container

repository and later deployed as a job in T5.

9 Building User-friendly Data Transfer Nodes, https://www.delaat.net/posters/pdf/2018-11-12-DTN-SURFnet.pdf

10 Pacific Research Plattform https://bozeman-fiona-workshop.ucsd.edu/materials/20180303-dart-dtn-strategic-asset-v1.pptx/view

D3.1 Identification of Measurands

9

T5: Scheduling

The time a job spends in the queue of the compute resource. This time can vary and

will be hard to predict since it is affected by each compute site’s scheduling system,

which is not under the control of PROCESS infrastructure. We may, however, be able

to establish an upper bound for the queue wait time, that could be included in runtime

prediction.

T6: Execution time

T6 is the time a given job takes between from leaving the queue and completing its

calculations on the compute resource. This time is determined by the performance and

scalability of the application on the selected compute resource. To predict this time, an

application specific performance model is required.

T7: Stage-Out Strategy

Once the job is complete, it may have generated large amounts of output data that

needs to be transferred from the compute resources back to the PROCESS permanent

storage infrastructure. Based on the amount of data and the specified workflow the data

service needs to choose a suitable stage-out strategy.

T8: Stage-Out

With the appropriate stage-out strategy the output data now needs to be transferred to

the selected storage resource.

Figure 1: Sequence diagram describing the steps involved in the execution of a typical application scenario

D3.1 Identification of Measurands

10

Table 2 summarises the various identified times which we will use as performance

measurands.

Table 2: Description of the PROCESS measurands

TX Name Description

T1 Configuration Time to configure the workflow for the application

T2 Deployment Strategy Time to select appropriate storage and computing site

T3 Stage-In Time to transfer data from source to selected storage site

T4 Container selection Time to select specified container for the workflow from repository

T5 Schedule Time the submitted job spends in queue

T6 Execution time Time spent executing the job on the compute resource

T7 Stage-Out Strategy Time to select appropriate storage site for output

T8 Stage-Out Time to transfer result to storage site

Using the performance measurands listed in Table 2, we propose a three-steps approach to

the modelling and performance prediction of the PROCESS infrastructure. First, we will

show that the overhead of the PROCESS platform for a deployment on one site (initializing

the micro-infrastructure and scheduling) is negligible. Second, since the deployment strategy

of PROCESS is to deploy every application in a container, we will show the weak scaling

capabilities of PROCESS by deploying multiple containers with a split of the input data on

one site. Third, since the goal is to achieve an exascale system solution, we will enable

applications to scale by splitting the data and deploying containers across multiple sites of

PROCESS.

We therefore describe three measurement scenarios:

Scenario 1: Single container – single site (Figure 2-a)

In this scenario we measure the execution time of processing the input sequentially

within one running container. This container uses the maximum available quantity of

compute resources PROCESS can use at one single site (e.g. use case 2 running

only on one cluster).

Scenario 2: Multiple containers – single site (Figure 2-b)

In the second scenario we submit several containers on one cluster. Here, we either

expect a speedup, since the container in scenario 1 may not have effectively utilized

all available resources, or the same runtime as before, since the overhead to deploy

more than one container in parallel should be minimal.

Scenario 3: Multiple containers – multiples sites (Figure 2-c)

The final scenario will involve several containers running in parallel on several different

sites, with a corresponding split in the input data set. We expect significant speedup

since multiple containers will be deployed on multiple sites.

D3.1 Identification of Measurands

11

Figure 2: Three measurement scenarios: (a) Single container – single site, (b) Multiple containers – single site,
(c) Multiple containers – multiple sites. In all three scenarios Stage-In and Stage-Out will limit the overall system
performances unless the wide area network data transfer issue is addressed.

After evaluating these scenarios and measurements, we will present a generic performance

model that will allow us to predict the scalability of the PROCESS infrastructure for a given

application.

D3.1 Development of a balanced Prediction Model

12

3 Development of a balanced Prediction Model
In this section we present our approach to determine the components of a simple predictive

model for workflow performance on the PROCESS infrastructure.

3.1 Runtime Composition

Based on Figure 2 the total runtime of an application can be defined as follows:

𝑹𝒖𝒏𝒕𝒊𝒎𝒆 = 𝑶𝒗𝒆𝒓𝒉𝒆𝒂𝒅 + 𝑫𝒂𝒕𝒂 𝑻𝒓𝒂𝒏𝒔𝒇𝒆𝒓 + 𝑺𝒄𝒉𝒆𝒅𝒖𝒍𝒊𝒏𝒈 + 𝑬𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏 𝑻𝒊𝒎𝒆

Where:

𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 = 𝑇1 + 𝑇2 + 𝑇4 + 𝑇7

𝐷𝑎𝑡𝑎 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = 𝑇3 + 𝑇8

𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔 = 𝑇5

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 = 𝑇6

The overhead component contains all overhead directly related to the PROCESS services.

This includes selecting the appropriate resources for data access and compute in the

Execution Environment, configuring the micro-architecture of LOBCDER for data access,

fetching the application containers, and submitting the application to the selected resource

using Rimrock.

To support exascale it is important that this overhead remains low for each submitted workflow

and does not depend on the scale of the compute resource targeted by the services. We expect

it to be orders of magnitude lower than the overhead associated with the remaining

components, and therefore negligible.

The data transfer, scheduling and execution time components are mostly determined by

factors outside of the control of PROCESS services, such as network capacity, queue waiting

times, and how well a workflow performs and scales on a given resource. Nevertheless, having

an estimate of the data transfer and scheduling delay is useful for selecting a resource to which

a workflow should be submitted. If execution time estimates are available, this selection may

be improved further, and a total runtime estimate may be provided to the user.

The data transfer component is mainly determined by two parts: the time required by DISPEL

to perform pre-processing of the data (if any), and the time required to transfer the resulting

data volume given the end-to-end transfer capacity between the storage and compute site.

These two components may largely overlap if the data pre-processing is simple and can be

performed on the fly, but for complex operations this may not be the case.

For the latter part, predicting large long-distance data transfers, a significant research has been

performed over the last two decades. For example, [Liu2017] describes a model that predicts

end-to-end data transfer times with high accuracy based on logs of the Globus transfer service.

Similarly, much research has been done with regard to estimating queue waiting times of HPC

applications which dominates the scheduling component. For example, [Nurmi2007] describes

a model that provides estimates with a high degree of accuracy and correctness for a large

number of supercomputing sites.

For PROCESS we re-use this existing work to provide estimates for both the data transfer and

scheduling components of the model.

Predicting the execution time is highly application specific and must be done separately for

each of the use cases. It may be dependent on input datasets, application parameters and

D3.1 Development of a balanced Prediction Model

13

amount of resources used (number and type of cores, amount and speed memory, availability

and type of GPUs, etc).

Strong scalability of the use case applications is expected to be limited well below exascale,

as currently only very few applications are able to exploit the petascale level. To determine the

limits of the strong scalability of the use case workflows, traditional performance benchmarking

of the applications will be used for representative input data sets and parameters.

To circumvent strong scalability limits, we can exploit weak scalability, where multiple

workflows are running at the same time to process different datasets. However, doing so may

shift the bottleneck from the application to other sources, such as the data service, or local

storage on the resources. Such limits can be discovered by performing weak scalability testing,

both on a single site and across multiple sites.

Unfortunately, it requires substantial effort to create a complete and accurate model of the

application behaviour for each of these use cases. Although users may be willing to perform

some testing in advance, to fine-tune their applications, they are mostly interested in obtaining

results. Therefore, highly accurate modelling of the application workflows is not required;

instead, a rough estimate of the processing time is generally enough.

We will initially assume the user will provide an estimate for the execution time, as is customary

on HPC systems. At a later stage, this estimate may be refined based on easily observed

parameters, such as input data size and quantity of resources used, which may be extracted

from the logs of previous runs of the given workflow. A significant amount of research has gone

into estimating application execution time based on limited information. For example,

[Smith1998] present a technique that predicts application run times based on historical

information for “similar” applications. Search techniques are used to automatically determine

the best definition of similarity. In [Gaussier2015], a similar technique is used to fine-tune the

execution time estimate provided by the user.

3.2 Model Verification

3.2.1 Benchmark Application
An artificial benchmark workflow will be created which allows configuration of the different

aspects of a workflow, such as the sizes and locations of input and output data, pre- or post-

processing requirements, the number and type of compute resources required, the execution

time of the application, etc. This benchmark workflow can be used to test the functionality or

the PROCESS services, determine the initial model values, and validate model predictions.

By choosing minimal values for data transfer and execution time (for example 0 bytes and 0

seconds) a lower bound for the runtime can be obtained and the overhead of the PROCESS

services can be measured. By submitting large numbers of such workflows, the scalability of

the services themselves can be tested.

Choosing large values for data transfer yields an initial estimate of the data transfer capacity

between sites. Similarly, different pre-processing patterns can be tested, ranging from

straightforward filtering or conversion to more complex operations such as mixing or

transpositions, to create an initial estimate of the DISPEL overhead.

By varying the target resources of the workflow, an initial estimate of the scheduling delays at

different locations can be made.

D3.1 Measurements

14

Once an initial model is available, this benchmark application can be used to validate it by

comparing the error rates of the predictions against actual measurements. This will allow us to

iteratively refine the model during the course of the project.

3.2.2 Use Case Workflows
As explained above, strong and weak scalability tests may be performed on the use case

workflows to determine the limits to its scalability and the initial parameters of the execution

time models. Once these parameters are available, an initial execution time model can be

created, and its predictions can be verified using the logs of subsequent workflow runs.

Consistently measuring the workflow performance and selected key parameters (such as input

data size and type and number of resources used) allow the model to be refined further. By

default, a simple placeholder model will be used by the PROCESS services. If necessary, a

more detailed use case specific model may be created for each use case and provided upon

workflow submission.

3.3 Conclusion

In this section we have described the components of a simple predictive model for workflows

performance on the PROCESS infrastructure. The main goal of this model will be to verify that

the overhead incurred by the PROCESS services (the sum of T1, T2, T4 and T7 in Figure 1)

is negligible compared to the cost of data staging (T3 and T8), scheduling (T5) and execution

(T6). Using this model, we will attempt to verify whether the proposed services are capable of

scaling into the exascale range.

4 Measurements

In D3.2 we will report upon the initial measurement results of a test application and early

versions of the PROCESS use cases. Thereupon, we will also specify which methods were

applied and which points of interest defined in the previous chapter could be verified.

5 Application of the Prediction Model to actual

Measurement Results and Conclusion

 This section will be filled within

D3.2 and D3.3.

This section will be filled within

D3.2 and D3.3.

D3.1 References

15

6 References

[PMO] Performance Modelling, David Henty, EPCC, The University of Edinburgh [online:

http://www.archer.ac.uk/training/course-material/2018/07/ScaleMPI-MK/Slides/Performance

Modelling.pdf]

[Liu2017] Liu, Z., Balaprakash, P., Kettimuthu, R. and Foster, I., 2017, June. Explaining wide

area data transfer performance. In Proceedings of the 26th International Symposium on High-

Performance Parallel and Distributed Computing (pp. 167-178). ACM.

[Nurmi2007] Nurmi, D., Brevik, J. and Wolski, R., 2007, June. QBETS: queue bounds

estimation from time series. In Workshop on Job Scheduling Strategies for Parallel Processing

(pp. 76-101). Springer, Berlin, Heidelberg.

[Smith1998] Smith, W., Foster, I. and Taylor, V., 1998, March. Predicting application run times

using historical information. In Workshop on Job Scheduling Strategies for Parallel Processing

(pp. 122-142). Springer, Berlin, Heidelberg.

[Gaussier2015] Gaussier, E., Glesser, D., Reis, V. and Trystram, D., 2015, November.

Improving backfilling by using machine learning to predict running times. In Proceedings of the

International Conference for High Performance Computing, Networking, Storage and Analysis

(p. 64). ACM.

	Executive Summary
	List of Figures
	List of Tables
	1 Introduction
	1.1 Performance modelling approaches
	1.1.1 Overview and classification
	Measurement
	Microbenchmarking
	Simulation and Analytical Modelling

	1.1.2 PROCESS Performance Model

	1.2 Structure of the Document

	2 Identification of Measurands
	T1: Configuration
	T2: Deployment Strategy
	T3: Stage-In
	T4: Container selection
	T5: Scheduling
	T6: Execution time
	T7: Stage-Out Strategy
	T8: Stage-Out
	Scenario 1: Single container – single site (Figure 2-a)
	Scenario 2: Multiple containers – single site (Figure 2-b)
	Scenario 3: Multiple containers – multiples sites (Figure 2-c)

	3 Development of a balanced Prediction Model
	3.1 Runtime Composition
	3.2 Model Verification
	3.2.1 Benchmark Application
	3.2.2 Use Case Workflows

	3.3 Conclusion

	4 Measurements
	5 Application of the Prediction Model to actual Measurement Results and Conclusion
	6 References

