
1

This project has received funding from the European

Union’s Horizon 2020 research and innovation
programme under grant agreement No 777533.

PROviding Computing solutions for ExaScale ChallengeS

D4.3
Updated requirements analysis, validation of 1st prototype,
and updated PROCESS architecture

Project: PROCESS H2020 – 777533
Start /

Duration:

01 November 2017

36 Months

Dissemination1: Public Nature2: R

Due Date: 30.04.2019 Work Package: WP 4

Filename3 PROCESS_D4.3_UpdatedRequirementsAnalysis_v1.0.docx

ABSTRACT

After 18 months, the requirements analysis and the PROCESS architecture (elaborated during 6 months) were
revised together with validation of the first PROCESS platform prototype. According to it, this deliverable is
divided into four parts. The first part provides updated requirements analysis coming from all of the use cases.
It is carried out in two steps. The first step evaluates requirements recognized in the deliverable D4.1: Initial
state of the art and requirements analysis, initial PROCESS architecture. The second step recognizes the new
requirements. The second part of this deliverable deals with validation of the 1st PROCESS platform prototype,
which is described in the deliverable D6.1: First prototype. The next part of the deliverable is related to update
of the PROCESS architecture. The initial version of the architecture was presented in the deliverable D4.1:
Initial state of the art and requirements analysis, initial PROCESS architecture along with suggestions for
architecture improvement. The architecture was improved accordingly. The final part of the deliverable
describes the reference exascale architecture, which represents abstraction applicable to a wide range of
scientific exascale systems.

1 PU = Public; CO = Confidential, only for members of the Consortium (including the EC services).
2 R = Report; R+O = Report plus Other. Note: all “O” deliverables must be accompanied by a deliverable report.
3 eg DX.Y_name to the deliverable_v0xx. v1 corresponds to the final release submitted to the EC.

2

Deliverable
Contributors:

Name Organization Role / Title

Deliverable
Leader4

Hluchý, L UISAV Deliverable coordinator

Contributing
Authors5

Bobák, M., Tran, V. UISAV Writers

Somoskői, B. LSY Writer

Heikkurinen, M., Höb, M., Schmidt, J. LMU Writers

Graziani, M., Müller, H. HES-SO Writers

Maassen, J., Spreeuw, H.,
Madougou S.

NLESC Writers

Belloum, A., Cushing, R. UvA Writers

Meizner, J., Nowakowski, P. AGH/AGH-UST Writers

Reviewer(s)6
Dlugolinský, Štefan UISAV Reviewer

Heikkurinen, Matti LMU Reviewer

Final review and
approval

Höb, Maximilian LMU Reviewer

Document History

Release Date Reasons for Change Status7 Distribution

0.0 31.01.2019
The initial structure of the
document

Draft All

0.1 07.02.2019
The final structure of the

document
Draft All

0.2 21.02.2019 Initial text for all sections Draft All

0.3 07.03.2019 Second update of all sections Draft All

0.4 11.04.2019
Finalization of reference
exascale architecture

Draft All

0.5 15.04.2019
Finalization of architecture
updating

Draft All

0.6 15.04.2019
Finalization of requirement
analysis

Draft All

0.7 16.04.2019 Review of the draft version In Review All

0.8 25.04.2019 Finalization of validation In Review All

0.9 26.04.2019
Language correction, review of

the pre-final version
In Review All

1.0 30.04.2019 Final version Released All

4 Person from the lead beneficiary that is responsible for the deliverable.
5 Person(s) from contributing partners for the deliverable.
6 Typically, person(s) with appropriate expertise to assess the deliverable quality.
7 Status = “Draft”; “In Review”; “Released”.

D4.3 Table of Contents

3

Table of Contents

Executive Summary ... 4

List of Figures ... 5

List of Tables .. 6

 Introduction ... 7

 Updated requirements analysis .. 7

2.1 Use Case 1: Exascale learning on medical image data .. 8

2.2 Use Case 2: Square Kilometre Array/LOFAR ... 9

2.3 Use Case 3: Supporting innovation based on global disaster risk data 10

2.4 Use Case 4: Ancillary pricing for airline revenue management 10

2.5 Use Case 5: Agricultural analysis based on Copernicus data 11

2.6 Common requirement analysis .. 12

2.7 Adaption of Requirements.. 12

2.7.1 Common conceptual model ... 12

2.7.2 Extremely Large Data Service-oriented Infrastructure .. 12

2.7.3 Extremely Large Computing Service-oriented Infrastructure 13

2.7.4 Service Orchestration ... 14

2.7.5 User Interface ... 15

2.8 Related deliverables ... 16

 Validation of the first prototype ... 17

3.1 Validation process .. 17

3.1.1 Validation of functional requirements ... 17

3.1.2 Performance evaluation of PROCESS platform .. 19

3.2 Validation conclusion.. 22

3.3 Related deliverables ... 23

 Reference exascale architecture .. 23

4.1 Related deliverables ... 25

 Updated PROCESS architecture .. 25

5.1 Scenario 1: UC#1 development ... 26

5.2 Scenario 2: UC#2 development ... 29

5.3 Adaption of the PROCESS architecture .. 30

5.4 Related deliverables ... 32

 Conclusion and future work .. 32

 Appendices ... 32

7.1 Appendix A: Common requirements analysis (from D4.1) 32

Hardware requirements ... 32

Software requirements .. 33

7.2 Appendix B: Common conceptual model (from D4.1) ... 35

D4.3 Executive Summary

4

Executive Summary

This deliverable contains updated requirements analysis, validation of the first prototype, and
refined PROCESS architecture (including the reference exascale architecture). The update
of requirements analysis was carried out in two steps. The first step evaluated requirements
(presented in the deliverable D4.1: Initial state of the art and requirements analysis, initial
PROCESS architecture) against the experience and knowledge gained in implementing the
PROCESS platform components. The second step recognizes the new requirements that
were identified during the implementation of the initial versions of the application prototypes.
In addition to the general requirements stemming from the current visions of the emerging
exascale systems, the project’s use cases listed below provided specific, concrete
requirements:

• UC#1: exascale computational processing methods that are able to exploit
accelerated computing

• UC#2: scalable workflows that are able to cooperate with exascale datasets

• UC#3: support for the emerging user communities (“long tail of science”)

• UC#4: responding to a large number of requests within milliseconds per request

• UC#5: methods suitable for exascale data extraction

The common requirement analysis summarizes these requirements and aligns them with the
general requirements and challenges stemming from harnessing the emerging exascale
systems for research and innovation actions in an efficient and flexible manner. This analysis
forms the foundations of the reference exascale architecture and its key features (such as
distributed file system spanning a large number of heterogeneous computing infrastructures,
adaption of the virtualization and modular micro-service infrastructure). The activity was
concluded by exploring the consequences of the updated requirements analysis on the
PROCESS platform.

 The PROCESS consortium presented the first prototype of the PROCESS platform after
12 months. The prototype is focused on extremely large computing infrastructure and is
deployed on the HPC hardware infrastructure. The prototype is integrated with use cases
and validated based on the approach presented in the deliverable D3.1: Performance
modelling and prediction. The validation process took 6 months and was mostly performed at
the Prometheus supercomputer8.

 The key conclusion of the analysis and validations steps was that the architecture
described in the deliverable D4.1 needed several updates that in some cases necessitated
quite fundamental changes. The resulting PROCESS architecture will be used as the
foundation of the further implementation steps and proposed as a generalizable reference
architecture for exascale applications.

8 http://www.cyfronet.krakow.pl/computers/15226,artykul,prometheus.html

http://www.cyfronet.krakow.pl/computers/15226,artykul,prometheus.html

D4.3 List of Figures

5

List of Figures

Figure 1: Updated workflow of use case 5. ... 11
Figure 2: Validation pipeline. .. 20
Figure 3: Scalability of PROCESS platform staging. ... 21
Figure 4: Scalability of PROCESS platform overhead. ... 21
Figure 5: PROCESS platform overhead model. .. 22
Figure 6: Reference exascale architecture. ... 25
Figure 7: Staging service with multiple containers as adaptors .. 28
Figure 8: Updated PROCESS architecture. .. 31
Figure 9: Common conceptual model. ... 35

D4.3 List of Tables

6

List of Tables

Table 1: Overview of UC#1 requirements from the deliverable D4.1. 8
Table 2: Update of UC#1 requirements from the deliverable D4.1. .. 8
Table 3: PROCESS common concepts required per a use case. .. 34

D4.3 Introduction

7

 Introduction

Based on the experience gained during the first half of the project, most of the significant
parts from the deliverable D4.1 were deemed to be in need of an update. However, the
common requirements have remained practically unchanged, indicating that the initial
assessment of the use cases was correct. The core requirements of the use cases are the
following:

• UC#1: exascale computational processing methods that are able to exploit
accelerated computing

• UC#2: scalable workflows that are able to cooperate with exascale datasets

• UC#3: support for the exascale community

• UC#4: responding to a large number of requests within milliseconds per request

• UC#5: methods suitable for exascale data extraction

While there were no major changes in the requirement analysis of the use cases, the
adoption of the PROCESS architecture provided several new insights. The approach is
based on the paradigm of combining the service-oriented architecture approach with cloud
and high-performance solutions. This is done by the advanced virtualization layer.

Among the main challenges of exascale are elasticity, and processing of extremely-large
datasets (often exceeding petabytes). To address this challenge, new management
approaches have been investigated, leading on shifting of the focus to self-managing and
provision of reliable infrastructure services through automation. A related, complex problem
is increasing the application performance and scaling. The best solution of the above-
mentioned challenges and issues is a platform of distributed services based on virtualization
principles, which necessitates containerization of applications, refactoring software stacks
using micro-service approach, and supporting orchestration of infrastructure.

Between project months 6 and 18, the possibilities of containerization were investigated.
Currently, the concept was applied at two levels: (i) application prototypes and (ii) micro-
infrastructure of the distributed virtual file system. Since one of the main characteristics of the
PROCESS platform is modularity, the adoption of the containerization is very essential and
natural. To ensure broadest applicability of the approach for diverse application and system
components, the PROCESS architecture is based on the paradigm where components are
connected together by REST-APIs.

The first prototype of the PROCESS platform which was released internally in the project
month 12 validation step was concluded by month 18. The work documented in this
deliverable is a result of common work across several work packages. WP4 is responsible
for the design of novel architecture, but the scope of the deliverable is wider. According to
this, the main goals were (with the responsible work package):

• updated requirements analysis (WP2)

• validation of the first prototype (WP8)

• reference exascale architecture (WP4)

• updated PROCESS architecture (WP4)

While a significant part of the deliverable refers to different deliverables, each of its part
ends with a list of related deliverables to make the connections clear (references are
expressed as footnotes).

 Updated requirements analysis

This section presents the updated requirements analysis based on D4.1. In this deliverable,
the initial software, hardware, security, and privacy requirements were defined for all the five
use cases. After 18 months, they are now questioned critically and updated if necessary.

D4.3 Updated requirements analysis

8

Within the common conceptual model, we initially derived a set of generalized
requirements from previously described requirements. In section 2.7 we evaluate if these
generalized requirements are still valid. Based on the common conceptual model an
ensemble of building blocks formed a solid basis for the overall PROCESS architecture,
which is updated in section 5.

2.1 Use Case 1: Exascale learning on medical image data

The requirements analysis in D4.1 pointed out the need for Docker containers in the software
environment. Singularity containers, are generally deemed to be more suited to the High
Performance Computing (HPC) clusters, as they provide essential features such as improved
security and portability and the ability to restrict the permissions of a code run using the “root”
user permissions. While Docker containers are more flexible and used more often in medical
research applications, Singularity containers can be used to package entire scientific
workflows, software, and libraries.

As a consequence of these conflicting requirements, the need of a flexible conversion
from Docker containers to Singularity arises to guarantee software integration. Furthermore,
access to GPUs has to be ensured even in the Singularity framework, as it is essential for
UC#1. The rest of the requirement analysis is mostly confirmed by our observations, with
only slight variations of the software requirements mentioned in D4.1

The software requirements listed in Table 1 of D4.1 have been updated by reducing
the number of necessary technologies. These updates reflect actual implementation of the
use case prototype, which has been realized by optimizing the number of necessary
technologies.

Table 1: Overview of UC#1 requirements from the deliverable D4.1.

Currently used
technologies:

Python 2.7, Tensorflow 1.4.0, Caffe, Theano, Lasagne, DIGITS,
mxnet, Keras 2.1.2, TFLearn, Numpy, SciPy, Pandas, Scikit-learn,
OpenCV, Openslide, Matplotlib, Seaborn, Skimage, h5py,
PyTorch, OpenBLAS, cuDNN, FFmpeg, NLTK, Gensim, R, Weka.

Data Storage: NAS

Data Processing H5DS, Apache Spark, Hadoop

Existing computing
infrastructure:

8 GPUs

Table 2: Update of UC#1 requirements from the deliverable D4.1.

Technologies used for
1st prototype:

Python 2.7, Tensorflow 1.6.0, Keras 2.1.2, TFLearn, Numpy, SciPy,
Pandas, Scikit-learn, OpenCV, Openslide, Matplotlib, Seaborn,
Skimage, h5py, PyTorch, OpenBLAS, cuDNN.

Especially, the support for Caffe, Microsoft CNKT and ASAP are no longer necessary,
since similar functionality (with higher degree of efficiency) is offered by Tensorflow, Keras

D4.3 Updated requirements analysis

9

and Openslide. The Tensorflow and Keras libraries, however, are constantly subject to
updates. The latest releases generally correct malfunctions of the old releases. For that
reason, the software requirement for Tensorflow has been changed from an older version
1.4.0 to the latest 1.6.0.

The initial experiments on the prototype have led to identification of additional
requirements, such as:

1. Data transfer has to follow the SCP protocol. The hospital and institutions may

not have open FTP access (typically for reasons related to security and

policies used to achieve regulatory compliance), which makes the applicability

of FTP transfer limited. Data transfer through the SCP protocol is also more

flexible and could apply to different types of users.

2. Flexibility in switching between different Tensorflow and Keras versions as

well as environments is needed in order to exploit functionality of different

library updates.

3. Support for Uber’s Horovod tool9 is needed to parallelize GPU training across

the network. Horovod is a distributed training framework for TensorFlow,

Keras, PyTorch, and MXNet. This is particularly relevant to UC#1, which aims

at distributing software originally deployed on single-GPU nodes. Moreover,

Horovod achieves 90% scaling efficiency for both Inception V3 and ResNet-

101, and 68% scaling efficiency for VGG-16.

Hardware requirements remain unchanged as well as requirements on Security and
Privacy (since D4.1).

2.2 Use Case 2: Square Kilometre Array/LOFAR

The choice of the front-end solution for the pilot application is still open. Ideally, we would
reuse the Web UI developed within the EU EOSC pilot project to provide an UI that is both
user-friendly and familiar to most of the user community targeted by the UC Mechanisms for
launching workflows are being included in this component. The latter can also be used to
monitor the jobs. For downloading outputs, we can rely on the staging functionality of data
services.

The possibility to use Singularity containers as workflow steps is still desired as it
allows each step to use different analysis tools. Docker containers could also be used, but
the workflow steps in question are executed on an HPC cluster nodes that typically support
only Singularity for reasons discussed in the section 2.1.

Although work is being done to relax the necessity of fat nodes (see section 5.2 for
details), we conservatively require their presence as of now. Above work consists in
parallelizing the code which requires fat nodes, it is only at an exploratory stage and we do
not have a guarantee it will work out.

For efficiently transferring astronomical data from the archival locations to the
processing locations, we are considering using the so-called data transfer nodes (DTNs).
DTNs are dedicated systems, purpose-built and tuned to facilitate high-speed file transfer
over wide area networks. They typically run software designed for high-speed data transfers
to a remote node (such as GridFTP) and are equipped with high-speed network interfaces
(10-100Gbps).

The capability to horizontally scale to a significant number of computing resources in
order to run in parallel, a large number (up to ~1800 assuming each workflow is running an

9 The goal of Horovod is to make distributed Deep Learning fast and easy to use. The primary motivation for this tool lies in its
deployment, which has been facilitated to transform a single-GPU TensorFlow application into a multi-GPU distributed
architecture. See also: https://eng.uber.com/horovod/

https://eng.uber.com/horovod/

D4.3 Updated requirements analysis

10

entire observation and we target the entire LTA) of independent workflows is still desired.
Since processing the archive for a single science case already requires a significant amount
of core-hours O(47M), handling multiple science cases simultaneously will require up to
exascale resources.

Support for GridFTP10 would be handy on all clusters because it enables
communication between those clusters. One can think of it as an enhanced version of ftp.
The most important enhancement concerns the limitations of TCP because TCP is
notoriously bad at transferring large data volumes over large distances 11. When GridFTP is
not available we can use SRM (Storage Resource Management). SRM also uses the grid
protocol. It can reserve storage space when large volumes of data need to be collected. It
also supports data duplication, storage on tape and more.

To provide authentication and authorisation services, support for voms-client12 is
necessary at the moment to provide grid access and download using SRM. However, these
solutions will be replaced by WebDAV13 within a year.

The software distribution functionality provided by CVFMS (listed previously as a
requirement) will be provided by Singularity hub, as all software will be containerised.

PiCaS server (used to distribute tokens for tasks to orchestrate the work in the
original architectural plan) will likely be replaced by a more modern work orchestration
software, such as Kubernetes.

2.3 Use Case 3: Supporting innovation based on global disaster risk data

The requirements for UC#3 still follow the description given in D4.1.

• The pilot portal is in use (UNISDR)

• As the PROCESS components and their interfaces mature, we will review their

suitability to enhance the functionality and usability of the portal

• In parallel to this, we are looking into complementary data sets and data management

tools that could help the project reach a broader range of communities that are

potential (re-)users of disaster risk data.

A priori we do not expect UC#3 to impose new requirements for the core architecture, as
even the largest complementary datasets would not bring resource requirements that exceed
the known ones stemming from other use cases. As the third party usage increases, it is
possible that PROCESS will receive feedback that allows prioritising the usability
improvements to be made to solution components.

2.4 Use Case 4: Ancillary pricing for airline revenue management

The original requirements defined some expectations against the performance in form of Non
Functional Requirements, as well. All these requirements remain valid.

The planned framework for the AI part (as presented in D4.1 section 1.4.5 Figure 10)
will be realized by an easy to use and easy to set-up machine learning framework. The
framework should work both with static data and provide seamless integration with streaming
data solutions. For operational reasons and to allow rapid deployment, operating and
managing the system cannot require experienced data scientists to perform tasks such as

10 See GridFTP homepage> http://toolkit.globus.org/toolkit/docs/latest-stable/gridftp/
11 http://moo.nac.uci.edu/~hjm/HOWTO_move_data.html#_tcp
12 The Virtual Organization Membership Service (VOMS) is an attribute authority which serves as central repository for VO user
authorization information, providing support for sorting users into group hierarchies, keeping track of their roles and other
attributes in order to issue trusted attribute certificates and SAML assertions used in the Grid environment for authorization
purposes.
13The WebDAV protocol provides a framework for users to create, change and move documents on a server. The most
important features of the WebDAV protocol include the maintenance of properties about an author or modification date,
namespace management, collections, and overwrite protection. See also: https://en.wikipedia.org/wiki/Server_(computing) and
https://en.wikipedia.org/wiki/Namespace

http://moo.nac.uci.edu/~hjm/HOWTO_move_data.html#_tcp
https://en.wikipedia.org/wiki/Server_(computing)
https://en.wikipedia.org/wiki/Namespace

D4.3 Updated requirements analysis

11

enhancing the data training and modelling parts. These considerations differentiate the use
case from the UC#1 and explain choosing framework such as H2O.ai and Sparkling Water
as starting points. The requirement against the processing platform is to be able to host
these frameworks.

After analysing the processing needs for the model training, the HPC-related
requirements were refined. As the first approach, our target processing environment will be
cloud environment. This approach allows working with a containerization technology with
ample operational support. After the early performance testing with the use case prototype,
the trade-offs between this approach and a bespoke HPC solution can be reassessed.

Since portability and more flexibility is another important requirement, the use case
requires primarily support for Docker containers. Later we might extend this to Singularity
containers as well.

The requirement regarding the need for Hadoop ecosystem / HDFS did not change.
The data transfer protocol was not yet mentioned in the original requirements, since the
source of the airlines ancillary booking data was not yet known at that time. We require the
support for SCP transfer in the LOBCDER data acquisition part.

2.5 Use Case 5: Agricultural analysis based on Copernicus data

The aim of the use is to realistically simulate natural processes and impacts of human
interventions based on principles, which ensure maximum predictive power. Therefore, it is
based on Copernicus datasets fed into the modelling framework PROMET. This software is,
as it is described in the deliverables before, closed source. The PROCESS project has
gained the ability to execute its binaries within a secured environment on the LRZ resources
in Munich.

Unlike announced in D4.1, the pre-processing stage of the Copernicus datasets was also
declared to be closed source and therefore it cannot be ported to any other computing
resource except LRZ clusters in Munich. For this reason, the workflow presented in
Figure 12 in D4.1 on page 42 needs to be adapted. Beside the main program, the closed-
source modelling framework of the PROMET environment covers also the Copernicus-
Adapter and the PROMET pre-processor. Both will not be directly integrated into the
PROCESS ecosystem, but can be configured and described within the PROCESS IEE and
will be activated (submitted on the LRZ cluster) via an API directly by any PROCESS end-
user. The updated workflow is depicted in Figure 1.

Figure 1: Updated workflow of use case 5.

With these adaptations, the main use case requirements need also to be updated:

⚫ The configuration parameters of the PROMET execution:

 Time series,

 Geographical Domain,

 Simulation Parameters (e.g. physical, meteorological, flora).

⚫ Submit and activate workflow execution via API

D4.3 Updated requirements analysis

12

⚫ Store PROMET output files for visualisation and download

The described software requirements in D4.1 will be reduced to a submission and output

transfer API. Hardware, security and privacy requirements remain unchanged.

2.6 Common requirement analysis14

Hardware Requirements

The common hardware requirements remain unchanged as presented in section 2.2 in D4.1.

Software Requirements

Most of the common software requirements remain unchanged. The updated requirements of
the use cases suggest two changes to the previous common requirements. First, the data
transfer protocol requirements have become more specific and require SCP and GridFTP
access. Second, UC#5 shows a requirement that was not present previously and can be
generalized for similar future use cases. Since UC#5 relies on closed source, a proxy API to
communicate with the use case software needs to be developed. This API can be integrated
with the IEE to support future use cases with similar requirements regarding closed-source
software.

In addition to section 2.2 in D4.1 the new software requirements are:

⚫ Support different protocols like SCP and GridFTP for data transfers

⚫ Generalized proxy API for closed-source use cases

2.7 Adaption of Requirements

Based on the updated use case requirements analyses in the sections 2.1 to 2.5, we
evaluate, if any adaptations to our services and conceptual models are necessary. If this is
the case all changes will be presented in this section.

2.7.1 Common conceptual model15

In D4.1, we presented the first approach towards the final common conceptual model. With
the updated requirements of the use cases, no adaption regarding this model is necessary. It
will be again evaluated within D4.4.

2.7.2 Extremely Large Data Service-oriented Infrastructure

The Extremely Large Data Service-oriented infrastructure allows connecting user’s dispersed
data sources while handling data staging/movement between HPC sites. It exposes staging
as a service to the IEE where data staging requests are queued and performed
asynchronously. IEE is notified through webhooks on the completion of data staging. This
allows, IEE to coordinate execution with data staging. The architecture allows for different
data staging backends, which are meant to be application specific.

Below, we summarize the fulfilment of the requirements for this platform coming from
changes to the use case requirements:

Use Case 1

⚫ SCP is currently included as a supported protocol. The data staging service is

capable of doing direct copies between sites using SCP.

14 The common requirement analysis from the deliverable D4.1 is provided in Appendix A.
15 The common conceptual model from the deliverable D4.1 is provided in Appendix B.

D4.3 Updated requirements analysis

13

Use Case 2

⚫ GridFTP is not yet integrated into the staging service. While protocols such as

GridFTP are important due to their performance, other protocols with equal

performance but less complexity such as FTS3 are being investigated as a viable

alternative.

⚫ SRM is currently supported but not fully integrated in the staging service. This

mechanism uses a data job approach whereby a special job is submitted to the HPC

site to pull in data over SRM.

Use Case 3

⚫ No update

Use Case 4

⚫ SCP is currently included as a supported protocol. The data staging service is

capable of doing direct copies between sites using SCP.

⚫ HDFS is not currently included on the data side. The requirement of HDFS is more

applicable to the computing side since it forms part of Hadoop computing

infrastructure.

Use Case 5

⚫ No update

2.7.3 Extremely Large Computing Service-oriented Infrastructure

The Extreme Large Computing Service-oriented infrastructure allows smooth scheduling of
computations on large HPC infrastructures composed of multiple HPC Clusters (Sites). Its
main component Rimrock is used for interaction between the upper layer – IEE (see the next
chapter) and the low layer composed of HPC resources.

Below, we summarize new requirements for this platform coming from changes to the use
case requirements:

Use Case 1

⚫ Transition from Docker to Singularity Container - Docker container would not be

feasible for the HPC, therefore this change allowed Rimrock to be used for UC#1

codes scheduling. As Singularity is executed by typical batch script, Rimrock may be

used as-is without the need for further adaptation. Specific aspects of Singularity are

handled on the upper layer by IEE.

⚫ Data transfer has to follow the SCP protocol - computing platform is not directly

involved in data transfer as it is handled by IEE and data infrastructure, thus there are

no requirements for the computing platform for this aspect.

⚫ Support for specific versions of tools and libraries – it will be provided due to the

use of containerization technology (Singularity).

Use Case 2

⚫ New UI requirements - are a non-factor for the computing platform and will be

handled by IEE updates mentioned later in this document

⚫ Need for Singularity container - requirements are the same as for UC#1

⚫ Requirement for fat nodes - Rimrock may pass any attributes to the queuing system

D4.3 Updated requirements analysis

14

such as SLURM via batch script, therefore we may adapt to the need of the

application by selecting appropriate partition (e.g. big mem) as needed

⚫ Data transfer is out of the scope of the computing platform.

⚫ Horizontal scaling - Rimrock should scale sufficiently for this use case – if we detect

higher scalability needs during the project, we can deploy multiple Rimrock instances,

to cover such scenario.

Use Case 3

Is not providing new requirements for computing platform at the moment.

Use Case 4

⚫ Switch from HPC to Cloud and Docker for the first prototype - this change means

that the HPC computing part including Rimrock will not be used for this use. Code will

be run from IEE via Cloudify.

Use Case 5

⚫ Closed-source components prompting API driven computations - as the access

to the code is restricted, Rimrock cannot be used to run it for this UC. In turn, IEE will

directly interact through an API with a dedicated job-scheduling component on the

LRZ cluster provided by the LMU team. The component will be considered as a

Computing Infrastructure component in place of Rimrock, but just for this specific Use

Case.

2.7.4 Service Orchestration

Service orchestration is often understood as a process for automated configuration,
deployment and other management activities of services and applications in the cloud. It can
automate the execution of different service workflows including deployment, initialization,
start/stop, scaling, healing of services based on standardized descriptions of composed
services, relations between components and their requirements. In the PROCESS project,
we use the OASIS TOSCA standard for service description and Cloudify for orchestration. In
the next section, we describe how the service orchestration can fulfil the new requirements
from use cases.

Use Case 1

The updated requirements are focused on HPC environments. However, the service
orchestration framework can deploy similar execution environments with requested
software/hardware components (Docker, GPU, SCP connection, deep learning libraries) in
Cloud for running the use case.

Use Case 2

The updated requirements are focused on execution in HPC environments. The service
orchestration can deploy transfer nodes on demands.

Use Case 3

No changes in requirements.

Use Case 4

Execution environments can be deployed in Cloud via service orchestration. However, due to
the overhead of virtualization layers, HDFS may not reach the performance as on bare metal.

D4.3 Updated requirements analysis

15

This limitation is set by the underlying technologies, what is out of the scope of service
orchestration.

Use Case 5

Service orchestration can deploy base hardware/software environment in the cloud and
users can add closed-source software on top of the deployed environment. Therefore, the
requirements of using closed-source software are fulfilled.

Security and privacy policies are defined by cloud providers and are out of the scope
of the service orchestration framework. Users can first choose the cloud provider that can
fulfil the security and privacy requirements of the use case, then use the service
orchestration framework to deploy execution environment in the provider’s cloud.

2.7.5 User Interface

The primary user interface providing access to PROCESS resources is the IEE - Interactive
Execution Environment, which is being implemented in the context of WP6. IEE is meant as
the topmost layer enabling PROCESS use case operators to interact with the infrastructure
without coupling with low-level communication protocols and direct deployment of
computational jobs to HPC and cloud infrastructures. Below sits a layer of services capable
of interacting with hardware resources. These services expose an API, which in turn is
accessed by the IEE. The API may be accessed by other custom tools deployed on behalf of
PROCESS infrastructure users. The abovementioned architecture was briefly summarized in
the D6.1 deliverable (in Figure 1).

Given the strong diversity of PROCESS use cases and the corresponding requirements, the
primary design goal of IEE was to ensure that it remains generic and may be used to invoke
various types of computational tasks on extensive distributed computing infrastructures. As
already described, IEE is conceptually based on Model Execution Environment developed
within the EurValve project, which fulfils a similar role (albeit on a much smaller scale), and is
being extended with exascale deployment capabilities in the context of PROCESS, while
also being improved in terms of its TRL.

Regarding specific use cases and their associated requirements, IEE addresses specific
points formulated in the Updated requirements analysis section (Sections 2.1 – 2.5) of this
document in the following manner:

Use Case 1

⚫ Support software environment containers with particular regard to Singularity

containers, which are suited for HPC clusters.

This requirement has been addressed by container management layer in the context
of IEE - an extension to its underlying services layer, enabling management,
deployment, and polling of container-based computations on arbitrary HPC
resources. As a result, containers supplied by use case developers (not just in the
context of UC#1) may be wrapped into suitable Pipeline Steps and arranged into
Pipelines for execution on computing clusters.

⚫ Data transfer has to follow the SCP protocol.

In parallel with enabling deployment of containers to HPC sites, integration with the
PROCESS data services is affected by implementation of so-called Stage-In Steps
and Stage-Out Steps, permitting data to be marshalled prior to commencement of
computations. Since downloading the required data may take a long time, the stage-
in/stage-out process is fully monitorable and can be visualized in the IEE.

D4.3 Updated requirements analysis

16

Use Case 2

⚫ User-friendly UI for selecting the data and workflows. Mechanisms for

launching workflows are being included in this component. The latter can also

be used to monitor the jobs.

IEE addresses all the above needs by provisioning a way to launch LOFAR
computations while specifying the required input parameters (along with the target
datasets) and automating all the data stage-in operations while enabling users to
monitor on-going computational jobs. Further UI customization for UC#2 is foreseen
at later stages of the project.

⚫ Possibility to use Singularity containers as workflow steps is still desired

Similarly to UC#1, Singularity is fully supported by IEE and prototype LOFAR
Singularity containers are included in the initial release of the environment.

Use Case 3

While no specific requirements have been formulated by UC#3 with regard to the features of
the end-user interface, generic nature of IEE ensures that any computational services
associated with this use case can be integrated with the infrastructure as extensions to the
IEE services layer.

Use Case 4

⚫ After analysing the processing needs for the model training, the need of HPC

was revisited again: as a first approach our target-processing environment will

be cloud.

While the initial prototype of IEE focuses on deploying application containers to HPC
resources (as batch jobs), it has been agreed that IEE will be integrated with the
Cloudify environment, enabling it to treat cloud sites as additional resources to which
PROCESS containers can be deployed. This integration is foreseen to take place
during the second phase of the project (in the context of managing multi-site
computations from a single entry point).

Use Case 5

⚫ Beside the main program, closed-source modelling framework of the PROMET

environment covers also the Copernicus-Adapter and the PROMET pre-

processor. Rather than directly integrate them into the PROCESS ecosystem,

they will be configured and described within the PROCESS IEE and activated

(submitted on the LRZ cluster) via an API directly from any end-user of

PROCESS.

UC#5 has specific deployment requirements regarding the security of the application
code. Therefore, it is expected that no container will be released by this use case for
deployment to arbitrary computing resources. The quoted requirement encapsulates
the result of discussions with representatives of UC#5 regarding management of
PROMET computations via the IEE. It has been agreed that a dedicated service will
be implemented for this purpose, and IEE will communicate with this service to
schedule computations while externally treating them as Pipeline Steps, similar to
those present in other use cases. Implementation of the above features is on-going.

2.8 Related deliverables

• D4.1 - Initial state of the art and requirements analysis, PROCESS architecture

• D2.1 - Progress Report (UC#1-5)

D4.3 Validation of the first prototype

17

 Validation of the first prototype

Validation is carried out in two steps: first, focusing on functional requirements and second,
on non-functional requirements, essentially, performance evaluation. In the first phase, we
check that use case applications meet their requirements as defined in D4.1 and in updated
sections 2.1 through 2.5 of this deliverable. We also check whether PROCESS platform
reaches TRL5 by validating its components and their interactions. In the second phase, we
use a purposely-built validation container to study PROCESS middleware scalability.
Specifically, we use this container to estimate the overhead associated with using the
PROCESS platform by taking measurements in different scenarios as defined in D3.1. Based
on those measurements, we build a model to extrapolate PROCESS middleware
performance behaviour as the data and/or computation tend towards the exascale.

3.1 Validation process

Validation has been performed on the Prometheus cluster in Cyfronet, Krakow. This cluster
was built on purpose by Hewlett Packard Enterprise for HPC tasks and is based on HP
Apollo 8000 (2160 nodes of ProLiant XL730f Gen9 and 72 GPU-enabled nodes of ProLiant
XL750f Gen9 supplemented by 3 fat nodes (768 - 1536 GB of RAM/node) of ProLiant DL360
Gen10). The platform has the 53604 Intel Xeon (Haswell/Skylake) CPU cores for generic
calculations, 144 GPGPUs (NVIDIA Tesla K40 XL), 282 TB of RAM and c.a. 10 PB of
storage space. The cluster utilizes high-performance Infiniband interconnect (FDR 56Gb/s).
The total theoretical computation power is rated at 2403 TFlops.

The Prometheus cluster is running Linux Operating System (CentOS 7). For the job
scheduling SLURM system is used. The system allows optimal utilisation of the resources by
defining separate partitions for a different type of jobs (test, short, normal, long) with
dedicated special-purpose partitions (such as GPGPU or BigMem for fat nodes). Additionally,
the storage mentioned above is organized into multiple pools such as user homes (NFS
based rated at 1 GB/s), permanent group directories (on Lustre rated at 30 GB/s) and fast
but temporary (up to 30 days) SCRATCH pool (also Lustre - rated at 120 GB/s).

3.1.1 Validation of functional requirements

Below, we consider all the requirements as initially defined in deliverable D4.1 and
updated in section 2 above. For each use case and requirement, we check whether it is
fulfilled or it has on-going development.

Use Case 1

⚫ Support for Singularity containers instead of Docker as initially stated

Singularity containers can run as batch jobs on HPC through their workload
management systems supported by Rimrock (see section 2.7.3). Furthermore, a
container management layer has been developed in the context of IEE (see section
2.7.5).

⚫ Environment for managing distributed training jobs life cycle

The container management layer in IEE enables management, deployment, and
polling of container-based computations on arbitrary HPC resources (see section
2.7.5).

⚫ Distribution of datasets across multiple computing sites with fast connectivity

and low latency

At this stage of the project, only single site (Cyfronet) is targeted; this will be
addressed in the next updates.

⚫ Parallel distributed dense linear algebra and multi-GPU settings

Parallel LA integration is ongoing and should be provided by appropriate libraries; for
multi-GPU setup, see Uber Horovod below.

D4.3 Validation of the first prototype

18

⚫ User-friendly environment for managing UC life cycle, from selecting input to

getting output

This requirement is fulfilled through IEE (see section 2.7.5).

⚫ Software requirements: TensorFlow, Keras, Theano, PyTorch, Openslide,

ASAP, DICOM, Spark, Hadoop

These requirements are fulfilled through containerization.

⚫ Hardware requirements: GPUs, large memory, fast interconnect, caching

These requirements are fulfilled by the use of Prometheus (see description above).

⚫ Security and privacy: need to anonymize data before use

This requirement is fulfilled by the use of publicly available data without the need of
anonymization for development purposes. Future developments will involve the use
of anonymised data to expand dataset sizes.

⚫ Flexibility in order to exploit regular software updates

Requirement is fulfilled through container utilization (see section 2.7.5); furthermore,
IEE provides tagging system, which allows using any version of any software in each
pipeline step.

⚫ Support for Uber's Horovod

Uber’s Horovod is under integration at the local infrastructure level.

Use Case 2

⚫ User-friendly environment for UC life cycle management

As for UC#1, this requirement is fulfilled through IEE (see section 2.7.5).

⚫ Support for Singularity containers as workflow steps

Singularity containers can run as batch jobs on HPC through their workload
management systems which is supported by Rimrock (see section 2.7.3).

⚫ Use of special computing (“fat”) nodes for some processing steps

This requirement can be fulfilled through Prometheus and SLURM (see section 2.7.3)
for later updates.

⚫ Mechanisms for efficient transfer of extremely large datasets between sites

Use of GridFTP (see below) or use of data transfer nodes (see sections 2.2 and
2.7.2).

⚫ Significant horizontal scaling of computing resources

This requirement can be partially fulfilled through Prometheus by using multiple
instances of Rimrock (see section 2.7.3) and/or using multiple sites.

⚫ Software requirements: GridFTP, VOMS, SRM, WebDAV

GridFTP is not fully integrated yet, simpler alternatives, yet equally capable such as
FTS3 are considered (see section 2.7.2); SRM supported but not integrated;
WebDAV not addressed or not documented.

⚫ Other hardware requirements: fast interconnect (1-10Gps), sufficient storage

(20TB) and GPUs later

Provided through Prometheus (see section 2.7.3) and other computing resources
providers for later updates.

Use Case 3

⚫ Easy-to-setup and use and extensible UI with data discovery functionality

 Provided by IEE (see section 2.7.5).

⚫ Support for multiple indexing/curation approaches

 Provided through containerization.

D4.3 Validation of the first prototype

19

Use Case 4

⚫ Support for Hadoop/HDFS, HBase, Spark, TensorFlow

Provided mostly through containerization; HDFS is not containerized, but it is
accessible through adaptor which is part of a micro-infrastructure.

⚫ Data store for < 100TB

 Provided by Prometheus.

⚫ Compliance with EU GDPR

 In the first stage we rely only on generated data, no real personal data is used.

⚫ Use of cloud infrastructure

 Provided by Cloudify integrated into IEE.

⚫ Support of streaming data in addition to static data; use of H2O and Sparkling

Water and Docker containers

 Provided through containerization.

⚫ SCP support for data transfer

 SCP is supported by Data Services (see section 2.7.2).

Use Case 5

⚫ API for submitting jobs to PROMET on LRZ and for retrieving results

 Under development.

Given the lack of agreed upon assessment methods for TRL levels, especially for
software development, we stick to EU's definition of TRL 5. Consequently, to show that
PROCESS middleware as a whole reaches that level, we show that its enabling technologies
(i.e., the underlying services), reach or exceed the same level and that they are integrated
and work well together in the targeted operational environment.

In the state of the art of technologies used in PROCESS in deliverable D4.1, we
showed that those technologies either match or exceed TRL6. Although, some of them,
notably LOBCDER and IEE, have undergone some heavy lifting, they still match or exceed
TRL6 as they are demonstrated to run on Prometheus, which is part of the expected
operational environment. Furthermore, as evidenced in previous subsection, most UCs,
especially, UC#1 and UC#2, which are target for the first PROCESS platform prototype,
meet their requirements and run on the platform. With the different services being integrated,
we can confidently assert that PROCESS platform reaches TRL5.

However, there are a few issues to be addressed. Although, UC#1 runs on
PROCESS platform, the multi-GPU setup, which is important to the use case performance, is
not yet integrated. Similarly to UC#1, UC#2 runs on the platform but requires extreme large
datasets be transferred from temporary locations to computing sites in an efficient way using
either GridFTP or equally capable alternatives and this is not yet in place. Furthermore, albeit
they are not targets for the current platform prototype, UC#4 and UC#5 also raise some
issues: they pertain to the lack of direct support for HDFS and non-checking of GDPR
compliance, as of now, for the first use case and the yet-to-start development of the job
submission API for the second use case.

3.1.2 Performance evaluation of PROCESS platform

After evaluating the functional requirements of the process platform, we now evaluate an
important non-functional requirement, which is PROCESS middleware scalability. For this
evaluation, a dedicated pipeline composed of stage-in and sage-out steps with in between a
computation step materialised by a dummy validation container mimicking basic operations
of a standard computational task. Specifically, this validation container checks whether input
and output directories are provided and then sleeps for a specified amount of time. The
"raison d'être" of this pipeline is to make it possible to estimate the overhead associated with
PROCESS services and their interplay as defined in D3.1. An essential point arising from the

D4.3 Validation of the first prototype

20

latter is that, in order to show the scalability of PROCESS approach, this overhead should
stay either constant or increase only marginally as we increase the number of running
containers, thus the volume of data and intensity of computation. The simplicity of this
container helps in keeping the focus on PROCESS services and their interaction instead of
the actual use cases whose individual behaviours are known. The validation pipeline is
illustrated in the image below.

Figure 2: Validation pipeline.

We decide to use a small data set to be able to perform several test runs in a short
time. This test data set of about 1 GB represents measurement sets from UC#2. Of course,
more representative data sets will be used in later updates. Among the 8 measurands
defined in D3.1, we measure those contributing to overhead of PROCESS platform, namely
T1, T2, T4 and T7, and also T3 and T8 pertaining to staging. T1 and T2 pertain to IEE, T4 to
Rimrock, SLURM and finally, T7 to LOBCDER. Consequently, each of these components are
instrumented to take the appropriate timing measurements. It appeared that T1 and T2
correspond to the same aggregated action within IEE, leading to just one measurement
making up T1. We also drop T4 as it currently measures queueing time in SLURM which is
not part of PROCESS but rather of Prometheus HPC environment.

At this stage, we can only perform the first two scenarios defined in D3.1 for performance
evaluation. In the first case, we deploy a single container on Prometheus. Then, in the
second, we increase the number of containers, but still on the same cluster. The number of
containers to deploy is chosen to have a uniform coverage of the space of sizes allowed by
the available data and reasonable actual evaluation time. For instance, for UC#2, we know
we can go up to 1800 containers if each container reduces one observation; instead, we
sparsely sample this space of 1800 values down to a handful runs. Due to the architecture of
the Prometheus cluster, where each node consists of 24 cores, we allocate containers in
multiple or divisors of 24 or 10. Consequently, we run setups with 1, 2, 10, 16, 40, 48 and
240 parallel containers. The results are shown in the figures below.

https://confluence.lrz.de/pages/viewpage.action?pageId=87393321

D4.3 Validation of the first prototype

21

Figure 3: Scalability of PROCESS platform staging.

From the Figure 3, we observe that for a given fixed data set, staging time is not
correlated to the number of containers being submitted to the HPC system. Indeed, after an
erratic behaviour for smaller values up to 50, as the number of containers is increased, the
aggregated staging time (dashed line) stays constant. Consequently, staging does not harm
scalability. The difference in values from stage-in and stage-out is due to the fact the former
includes wide-area network transfer times from wherever the data are located to Prometheus
while the latter concerns only intra-site transfer times. Next, we study the overhead
associated with using PROCESS currently captured in T1 and T7 and shown in the figure
below.

Figure 4: Scalability of PROCESS platform overhead.

Here also, we observe that after a steep increase from 10 to 50 containers, the
increase becomes moderate after 50 onward. To do the extrapolation for analysing scalability
of the PROCESS ecosystem, a statistical/machine learning approach is used. Because of
the prohibitive execution or data transfer times of some of our UCs, the performance
evaluation of PROCESS is considered a high-dimensional problem where the number of
runs (samples) is in the same order as that of predictors (measurands). As approaches using

D4.3 Validation of the first prototype

22

random forest are well-known to deal well with these cases (e.g., see Genuer's paper16), we
first tried one of those. Unfortunately, the collected data set is too small to derive any insight
from the data as the generated model is too poor. Turning to simple correlation analysis, we
observe a significant positive correlation between the overhead and the number of containers
as shown in the figure below.

Figure 5: PROCESS platform overhead model.

The graph is a scatter plot representing the PROCESS platform overhead as a
function of the number of containers used. Shown R and p values are respectively the
correlation coefficient and the p-value of the correlation test. Values for R are between -1 and
1, with values close to 1 (our case) meaning positive correlation (both variables increase
together); the p-value captures the significance of the correlation, which is significant
whenever p<0.05 which is the case here. The light grey area represents the 95% confidence
interval around the regression line (blue) modelling the covariation of both metrics. Although
the model shows a linear relationship (visible in the equation on the regression line), a small
slope value means the overhead only moderately increases as the containers increases. For
instance, if we assume every container performs reduction for an entire observation for UC2,
we would require 1800 containers to reduce the entire LTA, leading to an overhead of about
477 seconds.

3.2 Validation conclusion

We evaluated PROCESS platform prototype using a two-step approach: we first checked
whether functional requirements are met and second, we assessed the platform
performance. As shown in section 3.1.1, most of the PROCESS components/services run in
the pilot environment, are integrated and meet most of the UCs requirements. Especially,

16 https://hal.inria.fr/inria-00340725/document

https://hal.inria.fr/inria-00340725/document

D4.3 Reference exascale architecture

23

UC#1 and UC#2, which are targets for the prototype. We show that the platform as a whole
reaches TRL5. In section 3.1.2, we analyse performance of the platform prototype, focusing
on the overhead induced by using the platform. Our intent is to show that this overhead is not
detrimental to PROCESS scalability and it appears that this is, indeed, the case. We also
observed a couple of issues, mostly pertaining to non-functional requirements, which will be
addressed in the follow-up updates.

Furthermore, PROCESS architecture matches the definition of a distributed services
platform (DSP) as recommended by the Big data and extreme computing (BDEC) group for
platforms targeting the exascale17. In addition, although PROCESS does not include any
edge/fog computing services, our choices of using Kubernetes for the data services and
containerization fit with the conclusions and recommendations of the BDEC report.

3.3 Related deliverables

• D3.1 - Performance modelling and prediction

• D4.1 - Initial state of the art and requirements analysis, PROCESS architecture

• D4.2 - Report on architecture evaluation and Dissemination

• D6.1 - First prototype

• D5.1 - Design of a data infrastructure for extreme-large datasets

• D5.2 - Alpha release of the Data service

 Reference exascale architecture

Reference exascale architecture addresses the requirements coming from the requirement
analysis (which was initiated within deliverable D4.1 and updated in this deliverable) as well
as the validation of the first prototype (see section 3). Its design was initiated during the
preparation of the deliverable D4.1 where it is called “functional design of the PROCESS
architecture” (see Figure 19 in Section 3.1 of the deliverable D4.1).

 The aim of the proposed reference architecture is to characterize key attributes and
properties that have to be handled by every scientific application using exascale data and
computations. From altogether viewpoint, the reference exascale architecture (see Figure 6)
is divided into the following parts (from top to bottom):

⚫ Users of the exascale scientific applications (in yellow) - the exascale system has

to support functionalities required by its user communities. That also means to

support legacy applications in some cases (see the Copernicus use case). According

to the initial and updated requirements analysis, the best way is to provide a

containerized application repository. It is flexible, scalable, reusable and ready to use.

Moreover, it does not require any special technical skills (especially, related to

integration - exascale data processing is often contingent on complex software tools

involving expert knowledge about its management) to make it run on the resource

infrastructure (see the LOFAR use case).

⚫ Virtualization layer (in blue) - interoperability of data infrastructure and computing is

the key and critical requirement of the exascale systems. To use both infrastructures

in the most efficient way, we propose the exascale reference architecture based on

containerisation instead of virtual machines. The performance of the infrastructure as

the whole is utilized in a better way. It is caused by minimization of overheads (e.g.

software duplications). Thus virtualization layer based on containerization approach

17 M Asch, T Moore, R Badia, M Beck, P Beckman, T Bidot, F Bodin, F Cappello, A Choudhary, B de Supinski, E Deelman, J
Dongarra, A Dubey, G Fox, H Fu, S Girona, W Gropp, M Heroux, Y Ishikawa, K Keahey, D Keyes, W Kramer, J-F Lavignon, Y
Lu, S Matsuoka, B Mohr, D Reed, S Requena, J Saltz, T Schulthess, R Stevens, M. Swany, A Szalay, W Tang, G Varoquaux, J-
P Vilotte, R Wisniewski, Z Xu and I Zacharov> “Big data and extreme-scale computing: Pathways to Convergence-Toward a
shaping strategy for a future software and data ecosystem for scientific inquiry” The International Journal of High Performance
Computing Applications 2018, Vol. 32(4) 435–479

D4.3 Reference exascale architecture

24

exploits the infrastructure resources in the most optimal way and also it supports the

requirements from our user communities.

⚫ Virtual File System (in green) - requirements coming from the exascale scientific

applications could be divided into two main groups: distributed data federation, and

metadata. It is very common that the exascale scientific applications have highly

complicated datasets, that need to handled and processed by relevant systems. For

that purpose, its file systems must have a module capable to work with metadata. The

metadata module has to be federated and distributed as well as the management

system for the data infrastructure itself. At this level of the infrastructure, the system

architect has to be careful whether the component will be containerized, or not. On

the one hand, the exascale system has to avoid overhead and latency (according to

our experiments, it is caused by needless duplication of software) thus we prefer

containers to virtual machines. However, on the other hand, all infrastructural services

do not need to be virtualized. For example, virtualization of HBase (through

containers, or virtual machines) is not necessary because it leads to dataset

duplication in the worst case or a performance overhead in the best case. Thus a

better approach is to support infrastructural services ecosystem through micro-

services. Micro-services serve as adapters and connectors to infrastructural services.

They are integrated into a containerized micro-infrastructure, which is customized

according to requirements coming from a use case and connecting them to a

distributed virtual file system. The micro-infrastructure allows for application-defined

infrastructures with the main advantages being threefold: First, services can be

customized for the application; e.g., data staging service. Second, minimizing global

state management (a major scaling issue); e.g., instead of having one global index for

all files for all applications, have micro-infrastructures manage their own local indices

and states. Third, micro-infrastructures are isolated from each other, which increases

security between users of different applications. The PROCESS distributed file

system layer needs to be virtualized because it has to run on top of multiple file

systems. Also, it is crucial that access to a data storage federation is unified. Thus the

virtual file system is distributed.

⚫ Interactive Computing Environment (in red) - this part of the infrastructure is

related to scheduling and monitoring computing resources. The infrastructure has to

be loaded as balanced as possible. Two kinds of resources have been recognized as

suitable for exascale scientific applications, namely: high performance computing

(HPC) resources, and cloud resources. HPC manager is based on a queuing

approach. Manager of cloud resources is based on REST API. Both types of

resources are often enriched by support from high-throughput resources or

accelerated resources. For example, GPU utilization within machine learning and

deep learning application is very common practice.

D4.3 Updated PROCESS architecture

25

Figure 6: Reference exascale architecture.

4.1 Related deliverables

• D4.1 - Initial state of the art and requirements analysis, PROCESS architecture

• D5.1 - Design of a data infrastructure for extreme-large datasets

• D4.2 - Report on architecture evaluation and Dissemination

• D5.2 - Alpha release of the Data service

 Updated PROCESS architecture

In Deliverable 5.2, we described two scenarios derived from two out of the five PROCESS
application use cases, namely UC#1 and UC#2 with the aim to use them as a first step to
validate the PROCESS architecture proposed and described in Deliverable D5.1. Since we
are just a half way of the project, and we have just released the Alpha version of the
PROCESS data service in Month 15, we are not aiming at validating a full scale use case but
rather a proof of concept (prototypes) that can show that the proposed architecture is
functional and has all the features that could help us to progress and reach the final goals in
the second phase of the project. In validation of the PROCESS architecture, we aim to
validate the following points:

⚫ Integrated software components (LOBCDER, DataNet, Rimrock, and Dispel)

developed in various WPs are working together as expected

⚫ The portability of the PROCESS architecture, whether the proposed architecture,

developed and tested only at local datacentre scale, can be easily deployed across

D4.3 Updated PROCESS architecture

26

the geographically distributed datacentre; we will start with two datacentres

(SURFsara in Amsterdam, and CYF in Krakow)

⚫ The usability of the proposed architecture through the scenarios derived from real use

cases; we want to engage with end users and check how they will use and be

interested in the current implementation of the PROCESS infrastructure

We believe that this three-point checklist will give us enough insight in the proposed
architected in order to continue with the work in the second phase of the project. The
integration checks will help our development team to work together and develop a team
work attitude, the suitability test will help us to keep our users in the loop and further tune the
application requirement, and finally, the portability tests will help use to easy is harvest
computing and storage resources needed for real exascale applications.

In the rest of this section, we describe the steps we have followed to implement the
two use case scenarios.

5.1 Scenario 1: UC#1 development

The core component of this workflow is a composition of two main tasks which have been
containerized to facilitate dynamic movement of compute between compute infrastructures.
The following text describes the containerization effort of the separate tasks:

⚫ Task 1: The functionality of this task can be considered as a pre-processing task,

which pre-processes public datasets CAMELYON16 and CAMELYON17 to output a

32GB hdf5 file. The source code is in Python with specific library dependencies,

parameters, and versioning. Containerization can capture all these dependencies and

allow for better portability of the code. In our current examples, we consider two

containerization technologies: Docker and Singularity. Docker image will allow the

task to execute in cloud-native environments such as Kubernetes while a Singularity

image will allow the task to run on traditional HPC clusters. For this reason, every

task is compiled into two images.

 Docker image18: this image is based on ubuntu:16.04, which is configured

with apt-get and pip to install the required dependencies. Execution code is

added to the container at compile time while input data is mounted at

execution time.

 Singularity image19: this image based on ubuntu:16.04, which is configured

with apt-get and pip to install the required dependencies. The nature of

Singularity also requires environment variables to be set. Also, execution code

and data are handled differently in Singularity. Singularity containers have

direct access to user’s home directory. For this reason, the code is not added

at the compile time but instead, it is loaded during the container execution.

This is achieved by exposing Python interpreter as the container’s default

execution environment whereby the Python code can be passed as a

parameter at the execution time. Similarly, Singularity container assumes that

data is also present on a reachable host path without mounting. The path of

the input data is passed as a parameter during execution.

⚫ Task 2: The functionality of this task is considered as the core of the workflow and

18 The Dockerfile for this task is found at:
https://github.com/recap/MicroInfrastructure/tree/master/ConatinaerAdaptors/uc1/stage-1
19 The Singularity for this task is found at:
https://github.com/recap/MicroInfrastructure/tree/master/ConatinaerAdaptors/uc1/stage-1

https://github.com/recap/MicroInfrastructure/tree/master/ConatinaerAdaptors/uc1/stage-1
https://github.com/recap/MicroInfrastructure/tree/master/ConatinaerAdaptors/uc1/stage-1

D4.3 Updated PROCESS architecture

27

takes input from the task 1 and other inputs to train a neural network accelerated by

GPUs. This hardware dependency means that the containerization is not

straightforward. The source code is Python based for specific hardware, library

dependencies, parameters, and versioning. Containerization can capture all of these

dependencies with some workarounds and also include hardware dependencies of

containers. In our current examples, we consider two containerization technologies:

Docker and Singularity. Docker image allows the task to execute in cloud-native

environments such as Kubernetes while a Singularity image allows the task to run on

traditional HPC clusters. For this reason, every task is compiled in two images. The

hardware aspect of this task makes the Docker and Singularity approach a bit

different.

 Docker image20: Access to GPU hardware through Docker relies on runtime

plugins, which expose the hardware to virtualized containers; i.e., nvidia-

docker. The Python code depends on specific Nvidia CUDA and cuDNN

versions and libraries. For this reason, the container is based on Nvidia

images with these specific dependencies already incorporated. Other libraries

are installed at the compile time using apt-get and pip. Also here, the code

relies on specific versions of the Tensorflow and Keras libraries. The code is

compiled into the Docker image while input data is mounted at the runtime.

 Singularity image21: Accessing hardware from Singularity container is

somewhat different than for Docker. Singularity container sees the same

hardware as the host system but runs under the user permissions (not root).

For this reason, compiling a GPU-enabled Singularity container has to take

these differences into consideration. Singularity image of Task 2 is based on

Centos 7. At the compile time, exact versions of cuDNN and CUDA are

installed. Environmental variables are set in order to install CUDA libraries

during execution time. Specific Tensorflow and Keras libraries are also

installed. Other Python dependencies are installed as well. Singularity

containers have direct access to the user’s home directory. Therefore, the

code is not added at the compile time but instead, it is loaded during the

execution. This is achieved by exposing Python interpreter as the container’s

default execution environment whereby the Python code can be passed as a

parameter at the execution time. Similarly, Singularity container assumes that

the data is present on a host path that is reachable by the container without

mounting. The path of the input data is passed as a parameter during the

execution.

The next step of this UC scenario implementation is to identify data services that need to be
instantiated at the runtime in order to implement data management lifecycle. Architecture of
micro-infrastructures used by LOBCDER implies that every UC have its own infrastructure
composed of Docker containers hosted on Kubernetes cluster. Current containers being
hosted for UC#1 are:

⚫ Staging service: This is one of the core UC services. It is responsible for copying

data between storages and HPC sites. Architecture of this service is composed of

several Docker containers, which work together to coordinate data transfers. Figure 7

20 The Docker file for this task is found at:
https://github.com/recap/MicroInfrastructure/tree/master/ConatinaerAdaptors/uc1/stage-2
21 The Singularity for this task is found at:
https://github.com/recap/MicroInfrastructure/tree/master/ConatinaerAdaptors/uc1/stage-2

https://github.com/recap/MicroInfrastructure/tree/master/ConatinaerAdaptors/uc1/stage-2
https://github.com/recap/MicroInfrastructure/tree/master/ConatinaerAdaptors/uc1/stage-2

D4.3 Updated PROCESS architecture

28

shows minimum setup for this service. The main entry point is a staging proxy, which

takes in a JSON copy request job and figures out which of the adaptor containers can

handle the job. This is achieved by analysing the job type and the source of the

copied file. From this information, the proxy will query the service discovery container,

which is hosted as a Redis server. The IP and port of the container adapter are

retrieved and the job is forwarded to the container. The adapter runs a queueing

system which queues copy requests and handles them in a FIFO order. The initial

setup has an SCP adapter, which allows SSH request to remote data stores and

starts SCP copy directly from the source host to the destination host. This relieves the

data service from proxying data. Once the copying is done, the adapter notifies the

proxy container and the container calls the webhook url defined in the job request.

Figure 7: Staging service with multiple containers as adaptors

The job submission with the minimum information submitted is defined in JSON format and
shown below. Amongst other information, job schema includes source, destination, type, and
webhook. Access to the API is through tokens, which are generated by core-infra during
booting of the container. The token is placed in the x-access-token header label. content-
type is application/json

⚫ GET /api/v1/list Get a list of all the files stored in all the storages.
⚫ Get /api/v1/find/:id find the file named “id” and return its location/s.
⚫ POST /api/v1/copy submit an array of copy requests to the staging service.

E.g.

[{

 "id": "test123",

 "cmd": {

 "type": "copy",

 "subtype": "scp2scp",

 "src":{

 "type": "scp",

 "host": "SOURCE HOST",

 "user": "USER",

 "path": "FILE PATH"

 },

 "dst":{

 "type": "scp",

 "host": "DESTINATION HOST",

 "user": "USER",

D4.3 Updated PROCESS architecture

29

 "path": "FILE PATH"

 },

 "webhook": {

 "method": "POST",

 "url": "WEBHOOK URL",

 "headers": {}

 },

 "options": {}

 }

}]

The code above submits a request to copy a file using SCP from one host to another.
Credential management is managed in advance by core-infra during container booting, thus
staging assumes credentials are in place. Many copy requests can be submitted at once
(JSON array) and are processed separately. When a copy request is completed, the
webhook is called.

⚫ GET /api/v1/status/:id Get the status of a copy request with id.

⚫ WebDAV service: For easy access by users, each micro-infrastructure exposes a

WebDAV point, which allows user access to the storage.

5.2 Scenario 2: UC#2 development

The scenario we have derived from the LOFAR use case consists of two main steps: Data
staging and calibration of the staged observation. The first step is responsible for
communication with LOFAR Long Term Archive (LTA), where observations are stored, and
for retrieving the data provided by the LTA. A single observation can be up to 16TB in size.
The second step performs calibration on the observation and produces an image (or image
set) of a patch of the sky to be analysed by astronomers.

⚫ Data Staging: The data staging service runs as a Docker container. The Interactive

Execution Environment provides the container with an observation identifier. When

the data is moved to the cluster, the data staging service calls a webhook to let the

IEE know that the data is ready. The code itself is written in Python. In order to find

the correct observation files for a given observation, the LOFAR LTA client is used to

query the LTA. This interface returns a list of SRM (Storage Resource Manager)

URLs (SURLs). By using the LOFAR Python API to communicate with the LTA, the

list of SURLs is staged. The progress of data staging is monitored periodically by

polling through API. Once it is completed, the files can be individually downloaded by

SRM. If possible, they are downloaded directly to the cluster. If SRM is not supported,

an intermediate step is required. In the near future, LOFAR LTA is expected to switch

to WebDAV. Thus it is possible that the data staging service will switch to WebDAV

as well. In order to authenticate to LTA, a Grid proxy certificate is provided. The

certificate is signed by a Grid certificate authority that is accepted by the LTA. Once

the data is in the correct location, a webhook provided by the IEE is called.

⚫ Calibration: In addition to the target sky patch the astronomer is interested in, a

bright source within or close to that patch and for which "ground true" visibilities are

known (termed calibrator) also needs to be specified. The observation files for both

sources, provided by the LTA, are split into multiple subbands or frequency ranges,

D4.3 Updated PROCESS architecture

30

usually 244 per observation. The calibration consists of two steps:

 Direction independent calibration: First, the calibrator is calibrated

producing calibration solutions. The latter is then transferred into the target

field, which is self-calibrated against a global sky model. This step can be

performed by different LOFAR tools of which PREFACTOR tool built-in the

generic pipeline framework is currently the most popular. Part of the

processing can be done independently for each subband, making it

embarrassingly parallel. However, other parts run sequentially. The final

product of this step is a mapping matrix, which is applied to the entire

observation. Low resolution FITS images with errors from ionospheric

disturbances can be generated from this step. Currently, the whole step runs

inside a Singularity container.

 Direction dependent calibration: This step starts where the precedent left

off. It performs similar calibration for a number of directions within the LOFAR

array beam. There are also different options from tool perspectives, but the

most used one is the combination of KillMS and DDFacet making up the ddf-

pipeline. This step currently runs on a single high-end node with at least

256GB of RAM and 3TB of scratch space. Research of whether this part can

be split up over multiple nodes is still on-going. This step generates high-

resolution FITS images from the target field where the errors from direction

independent calibration are removed. This calibration step also runs inside a

Singularity container.

5.3 Adaption of the PROCESS architecture

According to the development of the tasks for UC#1 and UC#2 described above, the initial
PROCESS architecture (defined in the deliverable D4.1) was adapted (see Figure 8). The
main improvement of the PROCESS architecture is the involvement of the micro-
infrastructure approach, which is based on containerization. It was introduced in the
deliverable D5.1 for the first time as a feature of the Alpha version of the PROCESS data
services. Since the overhead of unnecessary software duplications caused by pre-
processing tools (e.g. DISPEL) had been a serious issue, the approach allowing to every use
case to have its own infrastructure was proposed. Currently, the micro-infrastructure is
composed of Docker containers that are hosted in Kubernetes.

 Micro-infrastructure is a very specialized and autonomous set of services and
adaptors which interact across the extreme large data service-oriented infrastructure.
Alongside the efficiency mentioned above, the approach supports scalability, high
adaptability, modularity, and straightforward integration with the virtual layer. Since each use
case has its own requirements and dependencies, modularity together with high adaptability
are very important and useful properties of every exascale environment.

Another typical characteristic of the exascale environment is handling of different
elements for processing, distribution, and management, which requires specific hardware, or
nodes. These requests are possible to satisfy by the micro-infrastructure composed of
dedicated nodes, or services addressing a particular request. Since the requirements are
handled by virtualization typically (abstracting details of the hardware infrastructure, or the
software stack), and so the micro-infrastructure offers a natural solution.

Figure 8 depicts the changes of the initial PROCESS architecture needed to involve
the micro-infrastructure approach into the initial architecture. All the changes are highlighted
in magenta. The main change is a new way of accessing data sources (through data
adapters). The described approach also simplifies it. The new version has one “branch”
instead of two “branches” (one dedicated to pre/post processing tools; e.g., DISPEL, and the

D4.3 Updated PROCESS architecture

31

other dedicated to pure data access through the distributed virtual file system; e.g.,
LOBCDER). It also influences IEE (Jupyter is a part of micro-infrastructure, thus the IEE
needs only a plugin for it), and LOBCDER (the data infrastructure management layer
responsible for integration of lower adjacent tools was added).

Figure 8: Updated PROCESS architecture.

D4.3 Conclusion and future work

32

The PROCESS architecture is also a result of applying the reference exascale
architecture which represents the common features of the PROCESS platform (as well as
every exascale-related platform, or application). On its top users are interacting with the
platform through a secure access. IEE represents the environment for users, however,
security is out of the project scope. Therefore, this aspect is not investigated anymore. The
whole resource infrastructure is orchestrated by the virtual layer. The technology responsible
for it is Cloudify. Below that layer is situated a virtual file system alongside HPC and Cloud
managers. The virtual file system is containerized through micro-infrastructure. The main
reason behind this decision is that the use cases have different requirements (e.g. need to
access various data sources). Micro-infrastructure containers are managed by Kubernetes.
Last but not least, HPC and Cloud managers. Both of them have to be scheduled and users
have to have information coming from monitoring tools about their task as well as raw
hardware infrastructure. Rimrock is used as a unified environment for managing HPC
resources, and Atmosphere for managing of cloud resources.

5.4 Related deliverables

• D4.1 - Initial state of the art and requirements analysis, PROCESS architecture

• D5.1 - Design of a data infrastructure for extreme-large datasets

• D4.2 - Report on architecture evaluation and Dissemination

• D5.2 - Alpha release of the Data service

 Conclusion and future work

 The deliverable presents updated requirements analysis and updated PROCESS
architecture together with validation of the first PROCESS platform prototype. All of the
recommendations for the PROCESS architecture were applied on the initial PROCESS
architecture and led to the second version - the updated PROCESS architecture. The second
output related to the PROCESS architecture is the reference exascale architecture. This
architecture describes a high-level structure (not as technically oriented as the PROCESS
architecture) applicable for exascale scientific applications from a functional viewpoint. It
provides principles for the design of a technical-level architecture.

 The technical next milestone of the PROCESS project is the augmentation phase
(MS4) in month 27. To reach the milestone, the results of the deliverable D4.3 will be
extended as follows: The validation will continue to update the PROCESS platform (D8.1 in
month 21) which will lead to the second prototype of the PROCESS platform (D6.2 in month
24). The prototype will use a chosen pilot application for a demonstration of its features.
Afterwards, the deliverable D4.5 will report on a validation of the second PROCESS
prototype platform in month 27. A development of the PROCESS architecture will also
continue. The deliverable D4.4 will report its evaluation (in month 24) and consequently the
next deliverable will describe the final version of the PROCESS architecture (D4.5 in month
27).

 Appendices

7.1 Appendix A: Common requirements analysis (from D4.1)

Hardware requirements

• Access to HPC resources

• Access to Cloud resources

• Access to accelerated computing resources

D4.3 Appendices

33

• Access to external infrastructure from computing resources

• Access to data storage on the order of 1PB (distributed)

Software requirements

• Common tools for machine learning and deep learning

• Python development environment with support for Jupyter notebooks

• Java environment

• Apache Spark, Hadoop and HBase frameworks

• Support for containers such as Docker and Singularity

• Secure access to and extraction from external data resources

• Grid support

• Matlab environment

• Data extraction tools

• Large-scale modelling

• Predictive analytic methods

• Probabilistic risk calculation

All these requirements lead to different Execution Models, namely:

• Deep Learning

• Exascale Data Management

• Exascale Data Extraction

• Probabilistic Analysis

• Calibration

• Pre- and Post-Processing

In order to fulfil the requirements, one can derive the following building blocks as the starting
point for the PROCESS architecture:

• Secure User Access to Management Platform

• Execution management Framework

• Distributed Data Management

o Raw Data

o Metadata

• Physical Data Storage and Archives

o Storage

o Archives

o External Sources

• Computing Resource Management for at least (but not necessarily limited to)

o High-Performance

o Cloud

• Physical Computing Resources

o High-Performance

o High-Throughput

o Cloud

o Specialized accelerators (e.g. GPGPU)

D4.3 Appendices

34

To summarize, the following table overviews the generation of specific requirements (and
thus building blocks) by use cases:

Table 3: PROCESS common concepts required per a use case.

PROCESS Execution Models
Deep
Learning

Exascale
Data
Manage-
ment Calibration

Proba-
bilistic
Analysis

Exascale
Data
Extraction

Pre- and
Post-
Processing

Secure User Access to
Management Platform

x x x x x x

Execution Model
Management Framework

x x x x x x

Distributed Data
Management

 Raw Data x x x x x x

 Meta-Data x x x x x x

Physical Data Storages and
Archives

 Storages x x x x x x

 Archives

 External Sources x x x

Computing Management

 High-Performance x x x x x x

 Cloud x x x x x

Physical Computing
Resources

 High-Performance x x x

 High-Throughput x x x x

 Cloud x x x x x

 Accelerated x

D4.3 Appendices

35

7.2 Appendix B: Common conceptual model (from D4.1)

Figure 9 shows a common conceptual model that is able to cover any of the requirements

presented by the five PROCESS use cases:

Figure 9: Common conceptual model.

The common conceptual model is enriched by certain (technical) necessities, namely:

• Secure access: As PROCESS is thought to serve several communities and use
cases concurrently, a user and security management component is mandatory.

• Data Management: While a multitude of different data sources in different locations
are accessed, a data management component is needed.

o Access credentials to physical data stores must be passed on to the de-facto
service provider and a potential translation must take place.

o Potentially arising meta-data must be managed.

• Computing management: Similar to data management, access to a variety of physical
compute resources, including credentials delegation, must be made available. Within
this component a service multiplex and potential credential translation will be
implemented and ensured.

	Executive Summary
	List of Figures
	List of Tables
	1 Introduction
	2 Updated requirements analysis
	2.1 Use Case 1: Exascale learning on medical image data
	2.2 Use Case 2: Square Kilometre Array/LOFAR
	2.3 Use Case 3: Supporting innovation based on global disaster risk data
	2.4 Use Case 4: Ancillary pricing for airline revenue management
	2.5 Use Case 5: Agricultural analysis based on Copernicus data
	2.6 Common requirement analysis
	2.7 Adaption of Requirements
	2.7.1 Common conceptual model
	2.7.2 Extremely Large Data Service-oriented Infrastructure
	2.7.3 Extremely Large Computing Service-oriented Infrastructure
	2.7.4 Service Orchestration
	2.7.5 User Interface

	2.8 Related deliverables

	3 Validation of the first prototype
	3.1 Validation process
	3.1.1 Validation of functional requirements
	3.1.2 Performance evaluation of PROCESS platform

	3.2 Validation conclusion
	3.3 Related deliverables

	4 Reference exascale architecture
	4.1 Related deliverables

	5 Updated PROCESS architecture
	5.1 Scenario 1: UC#1 development
	5.2 Scenario 2: UC#2 development
	5.3 Adaption of the PROCESS architecture
	5.4 Related deliverables

	6 Conclusion and future work
	7 Appendices
	7.1 Appendix A: Common requirements analysis (from D4.1)
	7.2 Appendix B: Common conceptual model (from D4.1)

