
1

This project has received funding from the European

Union’s Horizon 2020 research and innovation
programme under grant agreement No 777533.

PROviding Computing solutions for ExaScale ChallengeS

D5.2 Alpha release of the Data service

Project: PROCESS H2020 – 777533
Start /

Duration:

01 November 2017

36 Months

Dissemination1: Public Nature2: R

Due Date: 31 January 2019 Work Package: WP 5

Filename3 PROCESS_D5.2_Alpha_release_of_the_Data_service_v1.0.docx

ABSTRACT

During the first 15 months of its implementation, PROCESS has progressed from architecture design based on
use cases’ requirements (D4.1) and through architecture validation again based on use cases (D4.2) towards
initial implementations of computing services (D6.1) and data services - effort presented here in the deliverable
D5.2.
In D5.2 we provide an initial demonstrator of the data services, which works in cooperation with the
computation services demonstrated in D6.1. The demonstrator is based on the design of the PROCESS data
infrastructure described in D5.1. The implementation and initial integration of the infrastructure are based on
use case requirements, formulated here as custom application-specific services which are part of the
infrastructure. The central, connecting component of the data infrastructure is LOBCDER. It implements a
micro-infrastructure of data services, based on dynamically provisioned Docker containers. Additionally to
LOBCDER and use case-specific services, the data infrastructure contains generic data and metadata-
handling services (DISPEL, DataNet). Finally, Cloudify integrates the micro-infrastructure and the orchestration
components of WP7.

1 PU = Public; CO = Confidential, only for members of the Consortium (including the EC services).
2 R = Report; R+O = Report plus Other. Note: all “O” deliverables must be accompanied by a deliverable report.
3 eg DX.Y_name to the deliverable_v0xx. v1 corresponds to the final release submitted to the EC.

2

Deliverable
Contributors:

Name Organisation Role / Title

Deliverable Leader4 Ladislav Hluchý UISAV Coordinator

Contributing
Authors5

Maximilian Höb, Jan Schmidt LMU Writers

Adam Belloum, Reggie Cushing UvA Writers

Hanno Spreeuw, Jason Maassen NLESC Writers

Mara Graziani, Henning Müller HES-SO Writers

Balazs Somoskoi, Jörg Pancake-
Steeg

LSY Writers

Martin Bobák, Ondrej Habala,
Martin Šeleng

UISAV Writers

Jan Meizner AGH Writers

Reviewer(s)6
Tobias Guggemos LMU Reviewer

Matti Heikkurinen LMU Reviewer

Final review and
approval

Maximilian Höb LMU Reviewer

Document History

Release Date Reasons for Change Status7 Distribution

0.0 2018-11-20 Structure of the deliverable

fixed
Draft

0.1 2018-11-30 First version of texts in
chapters 2-4

Draft

0.2 2018-12-07 Version for discussion Draft

0.3 2018-12-16 Major changes to text Draft

0.6 2019-01-11 Updates to demonstration
scenarios

Draft

0.7 2019-01-18 Restructured for readability Draft

0.8 2019-01-24 Draft completed for internal
review

In Review

0.9 2019-01-28 Reviewed Draft In Review

1.0 2019-01-31 Final Version Released Public

4 Person from the lead beneficiary that is responsible for the deliverable.
5 Person(s) from contributing partners for the deliverable.
6 Typically, person(s) with appropriate expertise to assess the deliverable quality.
7 Status = “Draft”; “In Review”; “Released”.

D5.2 Table of Contents

3

Table of Contents

Executive Summary ... 4

List of Figures ... 5

List of Tables .. 6

1 Overview ... 7

1.1 LOBCDER/Micro-Infrastructure ... 8

1.2 Storage Adaptor Containers... 11

1.3 Logic Containers .. 12

2 PROCESS data services from the user perspective .. 17

2.1 Data Services for Medical Use Case ... 17

2.2 Data Services for LOFAR Use Case ... 18

2.3 Data Services for UNISDR Use Case .. 19

2.4 Data Services for Ancillary Pricing Use Case .. 19

2.5 Data Services for Copernicus Use Case ... 20

3 Demonstration scenarios .. 22

3.1 UC#1 scenario .. 22

3.1.1 Data staging ... 22

3.1.2 Data pre-processing ... 23

3.1.3 Network training ... 23

3.2 UC#2 scenario .. 23

3.3 UC#5 scenario .. 24

3.4 Micro-infrastructure provisioning .. 25

4 Conclusion .. 27

4.1 Future work ... 27

5 Appendices ... 29

5.1 Appendix A: LOBCDER REST API .. 29

5.2 Appendix B: Data query service API .. 30

5.3 Appendix C: DataNet API ... 31

5.4 Appendix D: PROCESS data services infrastructure .. 32

D5.2 Executive Summary

4

Executive Summary

Following the architecture design described in D4.1 and the three-step approach described in
D4.2, we have provided a design in D5.1 and now continue in D5.2 to describe our progress
in developing and integrating the PROCESS data services. In D4.2 we were mostly focused
on describing the design of the data services (D4.2-Section 2 page 10-12), evaluating the
technologies (D4.2-Section 2.3.1 page 15-17), and presenting the first proof-of-concept
implementation of a micro-data infrastructure for storage federation (D4.2-Section 2.3.2 page
17-19). In D5.2, we focus on the implementation of the data services and, more importantly,
we describe the interaction of these data services with the various PROCESS use cases. We
also show how the PROCESS use cases benefit from the support of the PROCESS data
services.

First, Section 1 of this deliverable describes the main data services: LOBCDER, DataNet,
and DISPEL. As a second step, we describe all the mechanisms and APIs needed for the
interactions in Section 2. Section 3 describes the applicability to the different PROCESS use
cases and derive scenarios for the demonstration at the project review in M18. Even though
our demonstration scenarios show a full integration of the data services with the other
components developed in PROCESS, the modular approach followed allows us to integrate
the data service in other existing and well-established data processing frameworks. This
multi-purpose nature of the project outputs eases the dissemination and promotion of the use
of the PROCESS data services beyond the scope of the project.

D5.2 describes the alpha release of a limited number of data services, but we expect more
data services being developed based on the new use case requirements planned in D4.3 in
M18.

D5.2 List of Figures

5

List of Figures

Figure 1 PROCESS data service environment (light green) with its interconnection to data
sources (dark green) and the Service Orchestration Environment (light blue) 8
Figure 2 Sequence of interacting components from the user perspective. The green block is
a dynamically created virtual infrastructure per use-case. The infrastructure encapsulates
use-cases’ data management, credentials, distributed resources and pre-processing
routines. .. 10
Figure 3 Simplified EE to LOBCDER interaction. EE queries LOBCDER to retrieve the user’s
dynamic infrastructure. EE can then access user’s data services e.g. data staging. 11
Figure 4 Simplified user to LOBCDER interaction. A user requests credentials to access
LOBCDER API. The user can then submit requests to create a virtual infrastructure and
access services .. 12
Figure 5 WebDAV data service deployed through the micro-infrastructure API. Through the
API the user sets the username and password protecting the WebDAV point 15
Figure 6 Jupyter service using the storage adaptor. Querying files from the Prometheus
adaptor through WebDAV service ... 15
Figure 7 DISPEL graphical authoring and execution environment based on Eclipse 16
Figure 8 NextCloud service exposes a GUI to the user to work with user’s files. 16
Figure 9 Micro-infrastructure for UC#1 .. 17
Figure 10 UC#2: data infrastructure including data adaptors as well as long-term-archive
staging service. .. 19
Figure 11 The pipeline of UC#4 Ancillary Pricing .. 20
Figure 12 The pipeline of UC#5 Copernicus ... 20
Figure 13 Data services for UC#5.. 21
Figure 14 The Interactive Execution Environment UI modified to allow selection of UC
parameter entry form .. 22
Figure 15 IEE interface with UC#2 parameter entry form displayed 24
Figure 16 IEE user interface with the UC#5 parameter entry form displayed 25
Figure 17 Running micro-infrastructures for each use-case. .. 25
Figure 18 Provisioned services for use cases #1 through #5. .. 26

D5.2 List of Tables

6

List of Tables

Table 1 The categories of containers to create any micro-infrastructure 11
Table 2 Three storage adaptor containers .. 11
Table 3 List of Logic containers ... 13
Table 4 Planned further development of the general PROCESS data service containers 27
Table 5 Planned further development of the PROCESS use cases 28
Table 6 List of available PROCESS services - available/used hardware, computer addresses
 .. 32

D5.2 Overview

7

1 Overview

The PROCESS data service environment is composed of the three main components
LOBCDER, DataNet and DISPEL for a virtual file system, meta-data environment and data
(pre)processing respectively. They are connected to data sources and managed by a service
orchestration environment as shown in Figure 1. A core component of the environment is a
distributed virtual file system driven by LOBCDER. The features of this tool have evolved
according to requirements of the use cases (D4.18, D4.29, D5.110). The current version follows
a micro-infrastructure approach that allows creating a use case specific data service
infrastructure in a container. The PROCESS data service environment has a dedicated set of
tools for a meta-data management and data (pre)processing. The metadata environment
(driven by DataNet) is implemented as swarm clusters of metadata repositories. The
metadata manager communicates with the swarm clusters using JSON messages sent via a
REST API and DataNet interacts with LOBCDER with another REST API. It also has access
to data sources via dedicated data adapters. The (pre)processing environment driven by
DISPEL offers several processing elements (e.g. data access, data filtering, and data
integration). DISPEL accesses the data sources via dedicated data adapters. The DISPEL
Gateway allows communication via WebDAV protocol or a REST API. The data service
environment is administered by LOBCDER which connects to the service orchestration
environment by REST API and WebDAV.

The PROCESS data infrastructure is meant to be programmable and customizable for every
use case. Thus every application has its own set of data services deployed at runtime on the
available storage resources. In this architecture, LOBCDER takes the role of the manager
that is responsible for instantiating the data infrastructure for each application workflow. The
other data services can be instantiated as containers on-demand to create Kubernetes pods.
Service data containers instantiated by LOBCDER have different capabilities such as
accessing remote storage (e.g. HPC file systems) or federated access to distributed storage
using a dedicated interface.

8 D4.1: Initial state of the art and requirements analysis, PROCESS architecture. PROCESS project report, 2018.
9 D4.2: Report on architecture evaluation and Dissemination. PROCESS project report, 2018.
10 D5.1: Design of a data infrastructure for extreme-large datasets. PROCESS project report, 2018.

D5.2 Overview

8

Figure 1 PROCESS data service environment (light green) with its interconnection to data sources (dark green)

and the Service Orchestration Environment (light blue)

1.1 LOBCDER/Micro-Infrastructure

With LOBCDER we implement the micro-infrastructure approach to develop the PROCESS
data platform. The idea of a micro-infrastructure is to decompose large, monolith
infrastructures into more scalable and manageable infrastructures. This decomposition
allows better scalability since it divides state management, such as indices, between many
infrastructures. Furthermore, the increasing complexity of data requirements necessitates a
programmable approach, optimisable for each application without interfering with the other
ones. Leveraging the power of containers, we created a platform using Kubernetes allowing
users to create an infrastructure with their dedicated data services. Typical data services
include data store adaptors to connect to remote data such as HPC file systems, native cloud

D5.2 Overview

9

storage using Ceph block storage, runtime services that have access to the storage such as
WebDAV points, Jupyter notebooks and data staging services.

The LOBCDER constitutes a hyper-converged infrastructure that provides a virtualised
distributed programmable data layer. The infrastructure is a Kubernetes cluster using VMS
and physical nodes distributed amongst PROCESS partners. The Kubernetes cluster servers
offer a programmable layer to abstract data services and storage. Data sources can be of
two types. The first is a Cloud-native storage, where the storage is managed directly by the
Kubernetes cluster through Ceph. In this scenario, a container has persistent storage in the
cluster used to store or cache data for an application. The second type is a HPC storage,
where the data service containers mount remote storages in HPC clusters. The sequence to
access and make use of the data services is described in Figure 2, the first two steps of the
sequence shown in Figure 2 are dedicated to the creation of the micro-infrastructure:

• Request a token: All the LOBCDER API calls are token protected. A token needs to
be requested from the LOBCDER administration partner.

• Create infrastructure: After getting a token a user needs to create his own data
infrastructure through API calls with the header x-access-token set to the received
token

Once the information about the created data infrastructure is available, the execution
environment can create and start the execution of the application data processing pipeline.

A REST API allows users to create their infrastructure as a set of pods and expose multiple
WebDAV endpoints to access their data (see Appendix A).

An important point to mention here is the integration of LOBCDER with the Execution
Environment (EE), which has to use the data services at several points during the application
processing pipeline:

• The users’ micro-infrastructure is dynamic and services and their corresponding ports
may change. For this reason, the first step of integration with EE is to discover the
user’s endpoints. This is done through the management API, which provides a
description of the endpoints by calling /api/v1/infrastructure.

• Every micro-infrastructure exposes a WebDAV endpoint, which is accessible with a
valid EE token. The endpoint provides access to all user’s local and remote data
through WebDAV.

• Query and data staging service: every micro-infrastructure implements a data query
and staging service which lists the physical location of files and stage data onto HPC
sites. The service can be used by the EE to identify the location of files on different
HPC sites and to describe a staging pipeline with webhooks. These will
asynchronously stage data (Figure 3) onto the HPC file system and use a webhook
as a call-back to notify about staging progress.

• Pre-processing workflows: UCs such as UC#1 will have a pre-processing and
staging workflow defined on the data services. They will be exposed as endpoints
whereby the EE can call and register a “callback webhook” to be notified when pre-
processing and staging has finished so that computation can commence.

D5.2 Overview

10

Figure 2 Sequence of interacting components from the user perspective. The green block is a dynamically
created virtual infrastructure per use-case. The infrastructure encapsulates use-cases’ data management,

credentials, distributed resources and pre-processing routines.

D5.2 Overview

11

Figure 3 Simplified EE to LOBCDER interaction. EE queries LOBCDER to retrieve the user’s dynamic

infrastructure. EE can then access user’s data services e.g. data staging.

The LOBCDER micro-infrastructure approach revolves around containers. For this purpose,
several template containers are developed for the use in PROCESS. We categorize these
containers into different groups depending on their capabilities. All the data containers
identified from the requirement analysis fit two categories: the logic containers and the
Storage adaptors containers.

Table 1 The categories of containers to create any micro-infrastructure

Storage adaptor
containers

Provide access to remote storage such as HPC filesystems

Examples: sshfs, GridFTP, Cloud-native-storage, etc.

Logic containers Provide functionality on top of the storage adaptors.

Examples: token-based WebDAV, Jupyter service, DISPEL service.

1.2 Storage Adaptor Containers

For this category, we are considering three storage adaptor containers (see Table 2). The
project plans on developing additional atorage adaptors at the later stages of the
implementation.

Table 2 Three storage adaptor containers

sshfs adaptor
container11

The container can mount a remote folder through ssh credentials.
When creating an infrastructure through the API, a user supplies his
credentials to the remote server. The credentials are used to copy
ssh keys to the remote storage and discarded after the operation has
finished. This approach makes password-less authentication
possible. A user can revoke access from LOBCDER at any time by
removing the key entry in authourized_keys in his .ssh home
directory.

11

 available on docker hub recap/process-sshfs:v0.1

D5.2 Overview

12

gridFTP container
adaptor

PROCESS uses gridFTP delegation service for high-performance
data transfers between sites.

cloud-native
adaptor

Storage is provisioned directly in the Kubernetes cluster using
Rook/Ceph storage manager. The storage is mounted into a
container and exposed alongside the other adaptors using WebDAV.

1.3 Logic Containers

Logic container help to develop and offer new services on top of three basic storage
adaptors (see Table 2). User can access logic container services after the micro-
infrastructure is deployed (see Figure 4):.

1. A user first needs a token to interact with the management API.
2. The user submits a JSON description of the infrastructure to the /api/v1/infrastructure

URL.
3. LOBCDER contacts the kubernetes API to initialise a micro-infrastructure.
4. The user queries the API to get the endpoint descriptions which include URL and

ports for the dynamically running services.
5. The user can access the running services.

Figure 4 Simplified user to LOBCDER interaction. A user requests credentials to access LOBCDER API. The user

can then submit requests to create a virtual infrastructure and access services

.

D5.2 Overview

13

Table 3 List of Logic containers

WebDAV
server12

Through the API infrastructure description, users supply a username and
password for protecting the WebDAV point since this will we exposed
publicly.

token based
WebDAV
server9

The API provides access by computing services. We modified a
standard WebDAV server to authenticate using web tokens needed by
the execution environment. When supplying the infrastructure
description, a user also supplies the list of authorised users with their
public keys through the WebDAV endpoint. This WebDAV
implementation is expecting the WebDAV calls to have a header
‘authorization’ filled with a token provided by an external entity (in/out
case the execution environment). Upon access, the WebDAV server
decodes the header token check the user email is in the list of users and
check the signature by decrypting using the public key provided when
setting up the infrastructure.

Jupyter service
container

Jupyter service container allows the user to access data through a
processing environment whereby they can perform lightweight
processing inside the data infrastructure. The adaptor data is mounted in
/data folder on the container. The future releases extend this into a
general user interface container for PROCESS with PROCESS-specific
Python modules. This general UI forms the basis of use case-specific
UIs with Python modules to handle the different data and pipelines
needed.

Query/Staging
service13

This service lists the files and their location on the adaptor containers.
The purpose of this service is to incorporate also staging capabilities for
integration with EE where EE can request data staging between
adaptors so that applications would have just-in-time data on the HPC
file systems (API calls see Appendix D).

These containers are meant to optimise the execution of application
workflows, e.g. by scheduling data transfers between sites. Caching
containers, with cloud-native data storage, will enable frequently
accessed data remaining easily accessible (to be developed).

DISPEL DISPEL container provide access to an entire data (pre)processing
environment. The DISPEL data processing environment is currently
available as a Debian-based virtual machine with a complete
deployment of all tools, manuals and a tutorial with example data
processes. The VM contains a graphical development environment
based on Eclipse, shown in Figure 7. DISPEL is accessed via standard
WebDAV interface (HTTP protocol) since it is part of the LOBCDER
distributed data infrastructure. The parameters for data processing are
encoded in the provided URL, as described previously in D5.1. The URL
encodes the following parameters: (1) Selection of DISPEL template (in
the DISPEL language). (2) Zero or more parameters required by the
template.

12

 available on docker hub recap/process-webdav:v0.3

13
 available as an image on docker hub recap/process-core-query

D5.2 Overview

14

Example of URL-encoded parameters:
http://lobcder.process-project.eu/dispel/tiffstore/312/20181129/12/0-1200-0-400

Components of the URL are:

http://lobcder.process-project.eu/: the URL of the LOBCDER
WebDAV server which provides the data

dispel: a prefix which LOBCDER uses to recognise the sub-repository to
contact (the DISPEL service)

tiffstore: selection of the DISPEL data process template to execute

312: subject designation (application-specific metadata)

20181129: data creation time (application-specific metadata)

12: layer in a multi-layer TIFF file (application-specific metadata)

0-1200-0-400: grid selection (application-specific metadata)

DataNet-
adaptor

DataNet-adaptor container allows pushing of metadata to the Datanet
service. Datanet allows performing operations on the metadata sets
such as: (1) Creating/ Updating/ Querying/ Deleting entities. DataNet
offers straightforward user access via the REST API as well as GUI HAL
browser.

DataNet is available in the form of the Java source code under the OSI
approved license as well as a Docker Container for the convenient
deployment.

DataNet Rest API is described in Appendix C.

NextCloud14 Next Cloud container allows the user to view their data in dropbox
fashion.

Following, we show the user interfaces of four logic containers: the Jupyter service (Figure
6), Querying files (Figure 5), the DISPEL graphical authoring and execution environment
(Figure 7), and NextCloud (Figure 8).

14 available as recap/process-nextcloud image on docker hub

http://lobcder.process-project.eu/dispel/tiffstore/312/20181129/12/0-1200-0-400

D5.2 Overview

15

Figure 5 WebDAV data service deployed through the micro-infrastructure API. Through the API the user sets the

username and password protecting the WebDAV point

Figure 6 Jupyter service using the storage adaptor. Querying files from the Prometheus adaptor through WebDAV

service

D5.2 Overview

16

Figure 7 DISPEL graphical authoring and execution environment based on Eclipse

Figure 8 NextCloud service exposes a GUI to the user to work with user’s files.

D5.2 PROCESS data services from the user perspective

17

2 PROCESS data services from the user perspective

2.1 Data Services for Medical Use Case

The application setup of UC#1 can be split into two workflows. The first is about data staging
and pre-processing, while the second is the neural network training which needs GPU
compute nodes. Ideally, the compute workflow needs fast access to the pre-processed data,
which means having the pre-processed data ready on the local filesystem before starting the
computation. For this reason, we propose the pre-processing and staging workflow to be part
of the data services that can pre-process and push the datasets directly onto the HPC file
systems.

The pre-processing in UC#1 extracts patches from high-dimensional medical images. The
runtime input requires a series of hyperparameters, such as the staging location of the data,
the resolution level of the extracted the patch, the patch size and stride, and the patch
sampling strategy (i.e. random sampling, importance sampling, dense coverage). The
filesystem is scanned, and patient metadata and doctor annotations are retrieved for each
image. Based on the physician's annotations, the system builds a binary mask of normal and
tumour tissue. From each of the two tissue types, a set of image patches is extracted, by
sampling locations in the high-dimensional image, according to the sampling strategy. The
pixel values of the image patches, metadata about the patient, the lymph node, the hospital
that handled the acquisitions, the resolution level of the patch, the doctor annotations and the
patch location in the image are stored in an HDF5 database.

Figure 9 Micro-infrastructure for UC#1

In Figure 9, we illustrate the set of containers proposed for the data micro-infrastructure
setup for UC#1.

• WebDAV service: two WebDAV containers are used to expose the data as a
filesystem. For authentication, user/pass is available for standard WebDAV clients,
while the Execution Environment uses the token-based mechanism.

• Copy service: The role of this container is to expose a REST API that handles
copying files between sites or pull public files from the internet directly onto the HPC
file systems.

D5.2 PROCESS data services from the user perspective

18

• Query service: This REST service container queries all file systems to find he
storage location of the physical file. The query service is a starting point for the
integration with DataNet.

• Pre-processing service: This REST service container allows users to define input
raw data, input hyper-parameters to generate new pre-processed datasets and HPC
output locations so that the pre-processed datasets are pushed directly onto the HPC
filesystems. It also keeps track of these generated datasets using a local database.

• Pre-processing runtime: This container encapsulates the logic of pre-processing.

• Cloud persistent storage: This container exposes a storage block hosted directly
inside the Kubernetes cluster. This storage is used to host raw data that is needed by
the pre-processing pipeline and acts as a cache for the generated datasets.

• HPC SSHFS: These are standard rudimental containers acting as adaptors to the
HPC file systems. Through these adaptors, the copying service can push/pull data
from the HPC clusters.

• Key/Value DB: A container that maintains state such as indexes for the generated
datasets and location of the files.

2.2 Data Services for LOFAR Use Case

The LOFAR use case presents some specific conditions for efficient scaling of PROCESS
data services that need to be met and which influence the design of the data services:

• The pipelines should be executed by containers, which allows efficient increasing the
number of LOFAR archival observations by increasing the number of containers
respectively - assuming these observations are of the same size.

• Simultaneous or quasi-simultaneous processing of multiple observations has the
benefit of reducing latencies induced by data transfers -i.e. staging of observational
data, from tape to dCache and from dCache to a compute cluster - and by compute
bottlenecks.

• Data transfers may take significant time due to the data sizes and distances involved.
Even with a speed of 10 GBit/s, a 16 TB dataset requires about four hours to transfer.
Fortunately, copying data from a temporary disk to the processing location can be
split based on the observational sub-band. Thus, staging and copying can overlap.

• Compute bottlenecks can occur in between the two subsequent calibration steps. The
first step is direction independent and is embarrassingly parallel, by distributing the
different sub-bands of a single observation (typically 244 sub-bands per observation)
over the different nodes, with one sub-band per node. Processing can start as soon
as a sub-band has been copied to a node disk - usually a four-hour operation. The
next step is direction dependent calibration with an algorithm that needs a unified
memory space to compute the calibration solutions. Typically, this step takes four
days on a single fat node with hundreds of GB of RAM, leaving the remaining nodes
idle when processing a single observation.

• Processing of multiple LOFAR archival observations simultaneously by many
containers reduces latencies on the compute nodes after the first calibration step of
the first observation has been completed. Also, it is crucial that the reservation of the
compute nodes is made intelligently, i.e. avoiding situations where the nodes wait for
data to arrive at the cluster.

PROCESS can offer access to the three sites storing LOFAR Long Term Archive data –
Amsterdam, Jülich and Poznan – making simultaneous combined staging and processing of
observations possible. Durrently processing of data from different sites requires separate
user interfaces. Figure 10 presents the services required for the LOFAR Use Case pipeline.

D5.2 PROCESS data services from the user perspective

19

Figure 10 UC#2: data infrastructure including data adaptors as well as long-term-archive staging service.

2.3 Data Services for UNISDR Use Case

The role of the UC3 is to act as a channel to promote new PROCESS services to the users
of the UNISDR portal. In the initial phase, it is sufficient to have a solution where the basic
LAMP software stack can access a moderately sized data set through a PROCESS service
that presents a standard file system interface.

The technical roadmap for determining the additional services is as follows:

• Integrate the current UNISDR service as a component of the PROCESS architecture
- possibly also as a deployable service to provide web-based access to a read-only
dataset in a restricted network.

• As advanced PROCESS functionalities become available, analysis of the usage
patterns of the portal will help to identify the most relevant aspects to integrate into
future releases.

• In parallel to this, the suitability of the PROCESS AAI solution as mechanisms to
provide the users with an option to register (in addition to the current anonymous use)
is analysed. The (self-) registration functionality is a prerequisite for offering
functionalities such as workflows, collaborative metadata generation or derived
datasets based on the official UNISDR data.

While the size of the original UNISDR dataset is fixed (~1.5TB), linking it with other data
sources (either emerging from the preparations of the next UNISDR Global Assessment
report or identified as relevant from the exploitation point of view) is being considered and
may increase the overall storage requirements.

2.4 Data Services for Ancillary Pricing Use Case

The Ancillary Pricing use case consists of 3 main parts:

• The pricing service,

• The training environment based on available static data, and

• The stream data part incorporating streaming data into the model training.

We choose an approach to start with the modelling part based on the static historical data.

D5.2 PROCESS data services from the user perspective

20

Figure 11 The pipeline of UC#4 Ancillary Pricing

From the data services perspective, we focus on the historical data part and the
corresponding model training environment. This historical data is available in a diverse
historical database or a warehouse solution at the airlines’ data centres, stored in the form of
relational data mostly in large Oracle instances. The challenge here is to ingest data from the
existing different relational data sources like RDBMS.

After or even during the ingestion we need to consider the GDPR directives and mask or
tokenise personal data - like names, date of birth - from the dataset. Data that could be used
to identify an individual must be converted to broader demographically relevant information.
As an example, the date of birth should be replaced by the age group. This kind of
transformation is a preparatory or pre-processing step that should be part of the data
services. Because the H2O.ai model training framework needs to work on massive amounts
of data, it is stored on Hadoop/HDFS. Key architectural components of this UC are:

• HDFS/Hadoop/HBase

• Store model training results

• Services to use from PROCESS data service

2.5 Data Services for Copernicus Use Case

This use case uses datasets from the Copernicus Space Component Data Access (CSCDA)
Services. PROCESS components are used to perform preparatory steps that are
prerequisites for the in-depth analysis using the PROMET software.

The use case’s workflow shown in Figure 12 triggers by the workflow definition in the
PROCESS portal. During the pre-processing, the data is fetched and directly processed. The
implementation of this processing will also show during testing if storing of input data withing
the PROCESS infrastructure is needed. Afterwards, the data is to be transferred to the
PROCESS data storage together with metadata information. The PROMET execution
fetches this data and computes the raw result data files and formatted to a user-friendly
output format during post-processing, including visualisations. The user can download this
data through the PROCESS portal.

Figure 12 The pipeline of UC#5 Copernicus

D5.2 PROCESS data services from the user perspective

21

In the ongoing development of the use case, the pre- and post-processing at this time of the
project are not implemented to be portable outside the development infrastructure. However,
it is work in progress to distribute this computation across the PROCESS computing
resources. For this execution the PROCESS data services as shown in Figure 13 will be
used to connect to the Copernicus data warehouse services and to transfer its data.

Figure 13 Data services for UC#5

D5.2 Demonstration scenarios

22

3 Demonstration scenarios

During the first project review demonstrations will focus on two application scenarios derived
from the mature use cases UC#2 and UC#5. Presenting PROCESS technology on UC#1 is
also possible; therefore we include also UC#1 description in this chapter.

All PROCESS data services are accessible from the Interactive Execution Environment
(IEE), demonstrated in D6.115. It allows users to parameterise the application processing
pipeline. After login into the EE portal, a user may create a new “Process” for each use case.
In the first step, the user sees the same interface (Figure 14), through which they can select
the application processing pipeline they want to work on. After this step, they are forwarded
to the application specific portal to customise the application processing pipeline further.

Figure 14 The Interactive Execution Environment UI modified to allow selection of UC parameter entry form

In the following text details for UC#1, UC#2 and UC#5 using the PROCESS alpha release
demonstrator are shown.

3.1 UC#1 scenario

The scenario for UC1 is about training different models on different data centres. The goal is
to train multiple models simultaneously on public datasets. The requirements of training very
complex models on large scale datasets are met by PROCESS. In the following, we present
the pipeline for the three phases of the use case, namely data staging, pre-processing and
training.

3.1.1 Data staging

1. The user logs in with username and password.
2. From a menu of functionalities, the option Data Management is selected
3. The user specifies the location of the data on the local servers
4. The user selects one or more of the available data centres.
5. Upon confirmation of the user, the data is reliably transferred to the selected servers.
6. A confirmation message informs the user that the data has been successfully staged

on each of the data centres.

15 D6.1: First prototype. PROCESS project demonstrator, 2018.

D5.2 Demonstration scenarios

23

3.1.2 Data pre-processing

1. The user logs in with username and password.
2. From a menu of functionalities, the option Data pre-processing is selected.
3. The user specifies the dataset of interest from the available options
4. The user selects a pre-processing pipeline. The pre-processing consists of extracting

an arbitrary number of patches from the high-resolution images.
5. The user specifies a series of parameters, namely the number of patches to extract

from each image, the patch resolution, the patch sampling strategy.
6. Upon confirmation of the user, the pre-processing pipeline is executed with the

desired parameters.
7. An intermediate H5 database, obtained as result of the computations, is stored in the

PROCESS infrastructure.
8. A confirmation message informs the user that the pre-processing of the data has

been successful.

3.1.3 Network training

1. The user logs in with username and password
2. From a menu of functionalities, the option Network training is selected
3. The user specifies the intermediate database of interest from the available options.
4. The user specifies the model configuration. For instance, the model type, the loss

function, the activation functions, the learning rate decay and momentum are
specified together with the batch size and the number of training epochs.

5. The user confirms the configuration and launches the model training.
6. At the end of training, the model weights and training logs are stored and made

available for download.

3.2 UC#2 scenario

The scenario for UC2 focuses the initial (direction independent) calibration of a LOFAR
observation, through the “Prefactor” calibration package. This working example uses the
observation of a calibrator as input. Its outputs are the calibration solutions for that calibrator.

1. The user creates a data infrastructure for the use case by submitting a description

including credentials to access the distributed resources.
2. The user checks the status of the infrastructure and receives access credentials to

the infrastructure.
3. The user logins into EE.
4. EE discovers the user’s data infrastructure endpoints, e.g. WebDAV and data

staging.
5. The user creates an application pipeline and supplies the LOFAR visibility ID input

and other relevant information (as shown in Figure 15).
6. The EE queries the data staging service with the LOFAR visibility ID and submits a

staging request to stage in the 16TB of data to the HPC file system.
7. The EE registers a webhook with data staging service so that the pipeline can

continue after data has been successfully staged-in.
8. The webhook is called, and EE continues executing the pipeline.
9. Depending on the output location, EE can stage-out the data using WebDAV or data-

staging/upload services.

D5.2 Demonstration scenarios

24

Figure 15 IEE interface with UC#2 parameter entry form displayed

3.3 UC#5 scenario

The UC#5 scenario focuses on a PROMET computation based on the configuration
parameters supplied by the user in the EE. With this information, the input data is described
and can be located. The kind of output depends on the user’s configuration.

1. The user creates a data infrastructure for the use case by submitting a description

including credentials to access the distributed resources.
2. The user checks the status of infrastructure and gets access credentials to the

infrastructure.
3. The user logs into EE.
4. The EE discovers user’s data infrastructure endpoints, e.g. WebDAV and data

staging.
5. The user creates an application pipeline and supplies the relevant input parameters

(as shown in Figure 16)
6. The EE queries the DataNet for the relevant metadata and stages in data through the

data staging service.
7. The EE registers a webhook with data staging service so that the pipeline can

continue after data has been successfully staged-in.
8. The webhook is called, and EE continues executing the pipeline.
9. Depending on the output location, EE can stage-out the data using WebDAV or data-

staging/upload services.

D5.2 Demonstration scenarios

25

Figure 16 IEE user interface with the UC#5 parameter entry form displayed

3.4 Micro-infrastructure provisioning

As the first step towards the implementation of the different scenarios derived from the
application use cases, we have created and a micro-infrastructure for each use case (see
Figure 17 for general overview and Figure 18 for detailed list of all provisioned containers).

Figure 17 Running micro-infrastructures for each use-case.

Each micro-infrastructure is composed of six data services, namely Datanet, DISPEL,
Jupyter, Webdav with token authentication (jwt), Webdav with user/pass authentication (ht)
and some application specific data services like the medical-pre-processing (UC#1) and the
lta-lofar-prestaging (UC#2) (Figure 18).

D5.2 Demonstration scenarios

26

Figure 18 Provisioned services for use cases #1 through #5.

D5.2 Conclusion

27

4 Conclusion

In this deliverable, we have focused on prototyping and presenting the PROCESS data
infrastructure with a micro-infrastructure approach. The micro-infrastructure is created at
runtime and composed of a set of data service containers, which are instantiated by the core
of the infrastructure, LOBCDER. All the interactions among the software components
composing the micro-infrastructure are clearly defined and used to create the initial
implementations of PROCESS application scenarios’ data handling pipelines, which are
under development for demonstrations at the project review in M18.

All software components developed and reported in this deliverable are available in the
PROCESS software repository16. Their development continues, and new versions will be
available in the repository as soon as they become available.

4.1 Future work

This alpha release of the data services demonstrator will be used in the validation of
PROCESS architecture and the production of its update (D4.3 in M18 and D8.1 in M21). We
will continue to develop the micro-infrastructure management (LOBCDER) by improving the
data sharing between containers and the connection to native cloud storage element using
Rook/CEPH. Exploiting storage within LOBCDER as cache will be implemented and the
integration with Cloud computing resources through Cloudify is going to be consolidated. We
aim to improve the resource provisioning using TOSCA templates and provide more client
tools to enables deployment and execution of new services. Besides consolidating the
micro-infrastructure with Cloud resources, we plan to improve existing containers and to
support further the UC application see Table 4:
Table 4 Planned further development of the general PROCESS data service containers

Jupyter container

Provide PROCESS-specific Python modules, which will allow
interfacing with PROCESS components and services. Extend this
container into a several, use case -specific versions with their
respective use case-specific Python modules.

DISPEL container

Most immediate work to be done in DISPEL development is:

• migration to a current base Docker image

• implement caching of created data and tracking of it (via
DataNet)

• a virtual directory structure for existing data, based on
configurable parameters

• Advanced options for HTTP GET command (compression,
continuation...)

DataNet container

• Providing mechanism for DataNet scalability inside each site
(using mechanism for handling distributed containers such as
Docker Swarm or Kubernetes)

• Enable mechanism to distribute DataNet repositories to
multiple sites

• Provide better integration with the Data Infrastructure
management platform esp. in the scope of auto-scaling

• Allow simple storage of provenance data for computation
tracking

GridFTP container

Necessary for p2p data transfers without the need to channel the data
through LOBCDER. Currently, not all PROCESS computing sites
accept the users’ grid. It is important for the development of the use
case scenarios that the credentials are accepted across the
PROCESS data sites.

16 https://software.process-project.eu

https://software.process-project.eu/

D5.2 Conclusion

28

Finally, the application of the use cases will also be further developed, which might result in a
new requirement for the next data services releases. Table 5 briefly summarises the planned
development of the five applications use cases.

Table 5 Planned further development of the PROCESS use cases

UC#1

• Improving training and time performances of the algorithms

• Increasing the dataset sizes and the number of models that is possible to
train

• Introducing visualisation techniques and model explainability

UC#2

This working example uses the observation of a calibrator as input. Its outputs
are the calibration solutions for that calibrator. We are planning to add

• The observation of a target field and apply the calibration solution for the
calibrator to the target field.

• The direction dependent calibration for the target field, through the “DDF”
calibration package. Finally, we want to add imaging to the pipeline.

• We want to calibrate a target field using a different package, e.g.
SAGECal and compare ease of use and results.

UC#3

The work on UC3 will proceed on three tracks:

1) Identifying new users for the existing dataset and complementing it with
related ones (e.g. emerging from projects, such as LEXIS)

2) Testing and integrating new services emerging from the PROCESS
development to complement or replace the current UNISDR data portal

3) Actively searching new users who could use statistical disaster risk data
in their research activities

UC#4

• Improve the training model, its performance; increase the number of
possible models and introduce different modelling algorithms.

• Create the pricing engine and incorporate the trained models.

• Improve the test data generator and the creation of higher data volumes.

UC#5

• Containerized pre- and post-processing and include them into the
Workflow

• Enhance computations with higher resolution, and larger data set size

• Allow a complete workflow configuration with all physical parameters

D5.2 Appendices

29

5 Appendices

5.1 Appendix A: LOBCDER REST API

A REST api allows users to create infrastructure as a set of pods and expose multiple
WebDAV endpoints to access their data. The sequence to access and make use of the data
services are:

• Requesting a token: All the LOBCDER API calls are token protected. A token needs
to be requested from the UvA PROCESS partner.

• Creating infrastructure: After getting a token, a user needs to create his own data
infrastructure through API calls with the header x-access-token set with the requested
token. The virtual infrastructure is managed through a set of API calls on
data01.process-project.eu.:

• POST /api/v1/infrastructure submits a description of the infrastructure needed by
the user/use-case. The JSON description describes the components needed to
access federated data. In this example a minimal infrastructure is described as having
two ssh adaptors to different HPC sites (Cyfronet and Amsterdam) and two methods
of exposing the data (normal WebDAV and token-based WebDAV). The backend
takes care to map these descriptions to template containers created specifically for
PROCESS.
 {"name":"test-001","namespace":"user-001","location":"uva",
 "storageAdaptorContainers":
 [{"name":"mynativestorage","type":"native","expose":"webdav",
 "volume":{"name":"pv-001", "size":"1Gi"}},
 {"name":"lisa.surfsara.nl","type":"sshfs","expose":"webdav","caches":

 [{"enabled":true,"size":"1Gib","location":"uva","retnetion-policy":{}}],
 "user":"user","host":"lisa.surfsara.nl","path":"/nfs/scratch/user",
 "password":"******"},
 {"name":"pro.cyfronet.pl","type":"sshfs","expose":"webdav","caches":
 [{"enabled":true,"size":"1Gib","location":"uva","retnetion-policy":{}}],
 "user":"user","host":"pro.cyfronet.pl","path":"/net/archive/groups/plggprocess",
 "password":"*****"}],
 "logicContainers":
 [{"name":"mydataStaging","type":"query"},
 {“name”:”myJupyter”,“type”:”jupyter”,”pass”:”*****”},
 {"name":"myDav","type":"webdav","user":"user","pass":"*****"},
 {"name":"myDavWithTokens","type":"webdav-jwt","users":{"user@domain.nl":
 {"name":"name","publicKey":"base64 public key"}}
 }
]
 }

• GET /api/v1/infrastructure returns the exposed service of the infrastructure in JSON
format. These services are publicly accessible and meant to be used by users and
compute alike. In this example we expose two types of WebDAV services, one
protected with username/password and another with web tokens to for the execution
environment.
[{"type":"webdav","name":"test-001ht","ports":[32696],
 "host":"data01.process-project.eu"},
 {"type":"jupyter","name":"test-001-jupyter","ports":[32160],
 "host":"data01.process-project.eu"},
 {"type":"webdav-jwt","name":"test-001-jwt","ports":[31708],
 "host":"data01.process-project.eu"},
 {"type":"query","name":"test-001-query",
 "ports":[31681],"host":"data01.process-project.eu"},
 {"type":"token","header":"x-access-token","value":"****"}
]

mailto:user@domain.nl

D5.2 Appendices

30

• DELETE /api/v1/infrastructure/:id where id is the name of the infrastructure. In this
example it would be test-001. This call tears down an infrastructure, deleting all
running instances of the containers.

• PUT /api/v1/user This call is only accessible by administrator tokens and is used to
register new users and create tokens for the users.

• GET /api/v1/endpoints/:[NAME] This call is meant to integrate with other PROCESS
services such as the EE. It will accept external tokens and return interested endpoints
requested by the external service.

5.2 Appendix B: Data query service API

• GET /api/v1/list: Authentication to this service is through tokens, which are
generated specifically for the user infrastructure. N.B. these url endpoints reside
within the user infrastructure and are user specific. This method call generates a list
of files and their locations on the different adaptors. E.g.

{"sample_script.py":[{
 "filename":"/UC1/sample_script.py","basename":"sample_script.py",
 "lastmod":"Fri, 28 Dec 2018 18:47:10 +0000","size":284,
 "type":"file","mime":"text/x-script.python",
 "location":{"name":"lisa.surfsara.nl","host":"localhost","port":3003,
 "type":"webdav","mount":"/nfs/scratch/cushing"}
 },
 {
 "filename":"/Mock/sample_script.py","basename":"sample_script.py",
 "lastmod":"Tue, 27 Nov 2018 20:25:40 +0000", "size":284, "type":"file",
 "mime":"text/x-script.python",
 "location":{"name":"pro.cyfronet.pl","host":"localhost","port":3002,
 "type":"webdav","mount":"/net/archive/groups/plggprocess"}
 }
],
 "ucdemo-0.1.simg":[{
 "filename":"/UC1/ucdemo-0.1.simg","basename":"ucdemo-0.1.simg",
 "lastmod":"Tue, 16 Oct 2018 12:41:37 +0000", "size":1723113503,
 "type":"file", "mime":"application/octet-stream",
 "location":{"name":"pro.cyfronet.pl","host":"localhost","port":3002,
 "type":"webdav", "mount":"/net/archive/groups/plggprocess"}
 },
 {"filename":"/Mock/ucdemo-0.1.simg","basename":"ucdemo-0.1.simg",
 "lastmod":"Wed, 12 Sep 2018 08:10:04 +0000", "size":1727819807,
 "type":"file","mime":"application/octet-stream",
 "location":{"name":"pro.cyfronet.pl","host":"localhost","port":3002,
 "type":"webdav","mount":"/net/archive/groups/plggprocess"}
 }],
 "tensorflow-gpu.img":[{
 "filename":"/Mock/tensorflow-gpu.img","basename":"tensorflow-gpu.img",
 "lastmod":"Sun, 23 Sep 2018 14:34:20 +0000", "size":3923771423,
 "type":"file","mime":"application/octet-stream",
 "location":{"name":"pro.cyfronet.pl","host":"localhost", "port":3002,
 "type":"webdav","mount":"/net/archive/groups/plggprocess"}
 }],
"tensorflow-gpu_2.img":[{
 "filename":"/Mock/tensorflow-gpu_2.img","basename":"tensorflow-gpu_2.img",
 "lastmod":"Sun, 23 Sep 2018 16:30:52 +0000", "size":3945791519,
 "type":"file","mime":"application/octet-stream",
 "location":{"name":"pro.cyfronet.pl","host":"localhost","port":3002,
 "type":"webdav","mount":"/net/archive/groups/plggprocess"}
 }]
}

• GET /api/v1/find/:id Where id is the filename. This url will list the locations of the file

in all adaptors E.g. /api/v1/find/ucdemo-0.1.simg and return two location on the same
adaptor

[{"filename":"/UC1/ucdemo-0.1.simg","basename":"ucdemo-0.1.simg",
 "lastmod":"Tue, 16 Oct 2018 12:41:37 +0000","size":1723113503,

D5.2 Appendices

31

 "type":"file","mime":"application/octet-stream",
 "location":{"name":"pro.cyfronet.pl","host":"localhost","port":3002,
 "type":"webdav","mount":"/net/archive/groups/plggprocess"}
 },
 {"filename":"/Mock/ucdemo-0.1.simg","basename":"ucdemo-0.1.simg",
 "lastmod":"Wed, 12 Sep 2018 08:10:04 +0000", "size":1727819807,
 "type":"file", "mime":"application/octet-stream",
 "location":{"name":"pro.cyfronet.pl","host":"localhost","port":3002,
 "type":"webdav","mount":"/net/archive/groups/plggprocess"}
}]

• POST /api/v1/copy: This URL will stage data between sites asynchronously and will
notify the caller through a registered webhook.

[{“id”: “copy-001”, “from”: “pro.cyfronet.pl:/UC1/ucdemo-0.1.simg”, “to”: “lisa.surfsara.nl:/UC1/ucdemo-
0.1.simg”, “webhook”: “http://…”}]

5.3 Appendix C: DataNet API

The API may be used to access the repository in an automated fashion. Below, some sample
feature operations on the datasets are shown:

Request: CREATE METADATA ENTRY

$ curl -i -H "Content-Type: application/json" -X PUT https://<repository>/<collection>/<entry_id> -d
'{"property_1":"property_value_1", "property_2":"property_value_2" }'

Response
 HTTP/1.1 201 Created

Request: GET METADATA ENTRY
 $ curl https://<repository>/<collection>/<entry_id>

Response
{

"_id": "<entry_id>",
"property_1": "property_value_1",
"property_2": "property_value_2

}

Request: QUERY METADATA COLLECTION

$ curl -G --data-urlencode "filter={'property_1':'property_value_1'}" https://<repository>/<collection>

Response
[
 {

"_id": "<entry_id>",
"property_1": "property_value_1",
"property_2": "property_value_2
}, ...

]

D5.2 Appendices

32

5.4 Appendix D: PROCESS data services infrastructure

Table 6 List of available PROCESS services - available/used hardware, computer addresses

LOBCDER The main entry point for LOBCDER is http://data01.process-
project.eu:30000

• WebDAV and other service endpoints for each user/use-case will be
on high order ports on http://data01.process-project.eu:3XXXX.

• Local WebDAV repository at UISAV is available at
https://147.213.75.208/process/dav/

A set of template containers are also made available on docker hub;

• WebDAV container recap/process-webdav

• sshfs container recap/process-sshfs

• API server container recap/process-core-infra

• LOBCDER makes use of mongodb container as a database.

Note: The code base is currently being hosted on GitHub

• infrastructure https://github.com/recap/MicroInfrastructure.git

• modified WebDAV server https://github.com/recap/jsDAV.git
DISPEL While intended for just-in-time deployment in the LOBCDER micro-

infrastructure or services run in Cloudify-managed containers, there is a
static DISPEL deployment available for testing at 147.213.75.208:8080.

DataNet Deployed at Cyfronet. Available endpoints:
• REST API: https://md-api.process.cyfronet.pl/

• HAL Browser (UI): https://md.process.cyfronet.pl/
Note: DataNet will be deployed in every computing center by the end of the
project

Cloudify Cloudify manager is installed at IISAS at 147.213.76.115 (cloudify.ui.sav.sk).

• TOSCA templates for execution of generic Docker, as well as
Jupyter portal and DISPEL service are uploaded to the server.

• The plugins for deploying services on Openstack and Kubernetes are
installed, too. Docker images of the mentioned services in TOSCA
are downloaded on the fly from DockerHub.

http://data01.process-project.eu:30000/
http://data01.process-project.eu:30000/
about:blank
https://147.213.75.208/process/
https://github.com/recap/MicroInfrastructure.git
https://github.com/recap/jsDAV.git
https://md-api.process.cyfronet.pl/
https://md.process.cyfronet.pl/

	Table of Contents
	Executive Summary
	List of Figures
	List of Tables
	1 Overview
	1.1 LOBCDER/Micro-Infrastructure
	1.2 Storage Adaptor Containers
	1.3 Logic Containers

	2 PROCESS data services from the user perspective
	2.1 Data Services for Medical Use Case
	2.2 Data Services for LOFAR Use Case
	2.3 Data Services for UNISDR Use Case
	2.4 Data Services for Ancillary Pricing Use Case
	2.5 Data Services for Copernicus Use Case

	3 Demonstration scenarios
	3.1 UC#1 scenario
	3.1.1 Data staging
	3.1.2 Data pre-processing
	3.1.3 Network training

	3.2 UC#2 scenario
	3.3 UC#5 scenario
	3.4 Micro-infrastructure provisioning

	4 Conclusion
	4.1 Future work

	5 Appendices
	5.1 Appendix A: LOBCDER REST API
	5.2 Appendix B: Data query service API
	5.3 Appendix C: DataNet API
	5.4 Appendix D: PROCESS data services infrastructure

