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ABSTRACT 

The PROCESS project brings together heterogeneous use cases with unique challenges 
that the current solutions are unable to meet. This deliverable provides requirement and 
innovation potential analysis of the use cases together with their detailed description. On 
the basis of the analysis, the common conceptual model and initial PROCESS architecture 
have been developed. According to the technological state of the art, we have identified 
technologies that will help solve the use case challenges, which will be revised during the 
lifetime of PROCESS, taking into account the involved technologies for both computing 
resource management and data management deployed and used across existing 
European Research Infrastructures (RI). 
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Executive Summary 
This deliverable represents the first attempt at integrating the requirements of the five use 

cases with the known state of the art in extreme data solutions. Due to the nature of this 

challenge, it was necessary to bring all this information into a single document, despite the 

difficulty of managing such a large deliverable. Splitting the text into distinct deliverables would 

have run the risk of missing areas where the use case requirements - that are often orthogonal 

with respect to each other, at least at first glance - can nevertheless be fulfilled with common 

solutions and approaches. 

The integration of the requirements and the state fo the art is centred on a description of a 

high-level architectural approach that will be used as a starting point in all of the future activities 

of the project. As such, the role of the deliverable is to provide a comprehensive historical 

"snapshot" of the original foundations of the development. Due to the ambitious nature of the 

project use cases, it is likely that many of the details described in this document will change 

during the project lifetime. In fact, we assume that this evolution (that will be documented in 

the deliverables D4.2, D4.3, D4.4 and D4.5) and the reasoning behind the changes may be of 

equal interest and value in terms of exploitable knowledge. 

To make this evolution of the structure of PROCESS solutions more intuitive to follow, we have 

used the information contained in this document as a basis for an online solution that allows 

comparing this first version of the architecture, subsequent architecture and state-of-the art 

versions as well as the latest "live" version of the document with each other. This resource can 

be accessed at https://confluence.lrz.de/pages/viewpage.action?pageId=87393327. 

The aim of this document is to provide the requirements analysis of the use cases, an initial 

state of the art, and a description of the initial architecture of the PROCESS project. The 

document starts with the analysis of the requirements and innovation potential of our use cases 

as the main influencer of the project. This analysis is followed by a common conceptual model 

and the description of the initial architecture. Those two models represent a (conceptual, and 

technological) design of a platform that addresses the requirements of the use cases. 

Subsequently, the technological state of the art is described, and the best technical solutions 

selected to meet the technological requirements of the initial architecture as well as functional 

requirements arising from the use cases. 

The document has the following structure: 

• Section 1 presents requirements that are vital for the use cases in terms of functionality, 

software components, and hardware infrastructure. It also includes a detailed 

description of the use cases and analysis of their innovation potential. 

• Section 2 describes the common conceptual model providing an abstraction for the 

architecture design. 

• Section 3 describes the initial architecture, with a high-level structure of the project 

platform. 

• Section 4 describes the state of the art with regard to technologies that are necessary 

to fulfil all of the requirements. It includes a detailed technical description of the tools 

selected to be used as the project’s software components. 

The document represents a specification for the project platform which will be implemented 

during later stages. 

The design of the platform will be updated according to new requirements that will come from 

other work packages (WP2, WP3, WP5, WP6, WP7).  

https://confluence.lrz.de/pages/viewpage.action?pageId=87393327
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1 Introduction 
The aim of the PROCESS project is to create prototypes that will be able to handle exascale 

services. This goal will be achieved by creating tools and services that will support 

heterogenous exascale use cases driven by both the scientific research community and the 

industry. Both communities require extreme processing power as well as extreme storage 

resources. Work package 4 is responsible for design of a novel architecture, capable of 

handling exascale applications. However, the scope of the document is broader and therefore 

the document itself is the result of joint work of multiple work packages. 

Accoring to the description of the deliverable, the main objectives are to provide (within the 

responsible work package): 

• initial per-use case requirement analysis (WP2) 

• initial per-use case innovation potential analysis (WP2) 

• common conceptual model (WP3) 

• initial PROCESS architecture (WP4) 

• state of the art for systems, platforms and services for extreme data applications (WP5) 

• state of the art for systems, platforms and services for extreme computing 

applications (WP6) 

• state of the art for service orchestration and user interfaces (WP7) 

2 Use case analysis 

2.1 UC#1: Exascale learning on medical image data 

2.1.1 Use Case Domain 
Healthcare, digital histopathology. 

2.1.2 Use Case Motivation 
The use case motivation is to improve the performance of automated cancer diagnostics and 

treatment planning. We plan to develop more powerful tools for cancer detection, localisation 

and stage classification, which could support the decisions of physicians during the diagnostic 

process. Cancer diagnostics are generally time-consuming and suffer from high disagreement 

rates between pathologists, since tumour stages do not have defined boundaries [Jimenez-

del-Toro, 2018]. Through visualisation and interpretation of the network decisions, the level of 

objectivity in the diagnostics can be increased, consequently reducing the analysis time and 

disagreement rates.  

The resources brought by the connection between High Performance Computing (HPC) and 

medical imaging research would permit analysis of large-scale challenge datasets for medical 

imaging. The training of multiple deep learning models could be distributed among different 

computational centres and more complex models could be trained with shorter time 

constraints. 

2.1.3 Use Case Goal 
The final goal is to improve the performance of the current state-of-the-art algorithms for cancer 

detection through the accomplishment of three main objectives. The first objective is the 

development of image analysis algorithms for supervised and weakly supervised learning. 

Supervised learning attempts to learn a mapping f(.)  between each datapoint x (e.g. the 

histopathology image) and its label y (e.g. presence of cancer, cancer stage, cancer locations) 

such that y = f(x). The introduction of weak labeling will enable the use of scarcely annotated 

data to improve model performance and generalisation. To further build upon these 

advantages, unsupervised learning algorithms can be used to model unannotated data, thus 

removing the need of manual annotation before training. The trained networks are used on 
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testing data to identify tumorous regions and to suggest pathologists possible tumorous 

regions in the histopathology image. Visualisation methods can be used to gather 

instantaneous feedback and explanations for the network decisions, thus increasing the 

reliability of the models and improving trust in the developed tools [Montavon, 2017]. The 

second objective is the distribution of training across multiple computational centres. Neural 

networks can be independently trained at different computational centres, obtaining a speed 

up in time proportional to their number. The models could then be assembled into a single 

model with improved generalisation abilities. The third objective consists of investigating the 

trade-off between performance and computational resources by increasing the size of the 

datasets and the computational complexity of the models. For example, an enormous amount 

of computations is required if slight perturbations are introduced in the data and multiple 

models are trained to investigate model robustness. Overall, the presented objectives will 

contribute to the analysis  of huge collections of medical data, and therefore to the development 

of improved algorithms for the automatic suggestion of patient cancer stage and correlated 

patient cases. 

2.1.4 Use Case Description 
Digital histopathology is the automatic analysis of a biopsy or surgical tissue specimens, which 

are captured by a high resolution scanner and stored as Whole Slide Images (WSIs). WSIs 

are usually stored in a multi-resolution pyramid structure, where each layer contains down-

sampled versions of the original image. The amount of information in WSIs is huge, since it 

includes tissue that is not relevant for cancer diagnosis (e.g. background, stroma, healthy 

tissue etc.) For this reason machine learning and deep learning models are built to detect 

Region of Interest (ROI) within WSIs. ROIs are portions in the WSIs where the cancer is 

spreading and therefore contain relevant information to train the network. 

Figure 1 shows an example of the data preprocessing pipeline. As a first step the raw WSIs 

are analysed at a very low resolution level, and tissue is filtered from the background. Based 

on doctor’s annotations, tumor regions are isolated. These regions represent ROIs which are 

used to perform network training. From the normal tissue and from tumor ROIs, patches are 

extracted at a higher level of magnification. Higher resolution highlights qualitative features of 

the nuclei which are essential for cancer detection. For instance, recent research has shown 

that performance of classifiers improves with higher resolution patches [Liu, 2017]. 

 

Figure 1: WSIs preprocessing pipeline: Normal tissue and tumor tissue masks are extracted and high-resolution 
patches are sampled from the selected regions. 
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Exascale learning on medical image data aims at improving the performance of decision 

support in the process of cancer detection, localisation and staging/grading to optimize and 

personalize treatment planning. The automated tools deliver decision support for physicians, 

speed up visual inspection of tissue specimens and reduce subjectivity in the grading/staging 

process.  

The use case tackles cancer detection and tissue classification using histopathology images, 

such as CAMELYON and TUPAC. The PROCESS infrastructure allows us to develop more 

complex models and to use increasingly larger amounts of data at a finer scale.  

Access to exascale computing will consistently decrease the turn-around time of the 

experiments, pushing the boundaries of computation and consequently allowing researchers 

to develop models that are otherwise computationally unfeasible. 

The main focus of the use case and technologies will be on the application of content-based 

tasks on WSIs, which are gigapixel images. As an example, three main tasks will be 

addressed: 

• Search - e.g. "Are there patients with comparable scan results? Are there 

corresponding study cases?" 

• Detection - e.g. "Where can cancerous tissue be detected? Are there cancerous 

changes visible in this scan?" 

• Classification - e.g. "Which stage does this cancer belong to?" 

A typical use case scenario can be defined as follows: “The researcher wants to train a deep  

neural model from a large corpus of WSIs (>>1TB). The training procedure requires intense 

prototyping for the customisation of the neural network architecture, learning criteria and 

dataset preprocessing. In addition, handling WSI datasets requires efficient storage of large 

datasets.” 

To make an example, approximatively 1000 WSI are included in the CAMELYON17 dataset, 

500 of which contain annotations and metadata (such as a description of the patient case, 

image width and height, the number of resolution levels and a text report with the main findings 

in the image). Tumors as small as 100x100 pixels should be detected in 200,000x100,000 

gigapixel microscopy images. A brute-force approach would perform pixel-by-pixel analysis, 

requiring the classification of more than 109 elements. If the state-of-the-art model for image 

classification is used, e.g. ResNet [He, Kaiming 2016], the number of operations needed for 

training is on the order of 1017, with at least 3.6 GFLOPS required per each full scan of the 

training data (i.e. epoch), which may increase to 11.6 GFLOPS if the depth of the network is 

increased. Hence, with 50 training epochs, the computations required scale up to the order of 

exaflops and several days on a single dedicated GPU. Moreover, such a large dataset (each 

resolution level occupies, on average, 50 to 60 GB) calls for a dedicated infrastructure to 

handle the storage requirements and data processing [Szegedy 2015]. Hence the 

requirements for intensive computations and massive storage.   

The exascale infrastructure provided will be used by three main workflows of the use case: 

data upload, model training and model testing and deployment, which are presented below. 

2.1.5 ‘Data Upload’ workflow 
The collected datasets need to be uploaded to the HPC infrastructure and distributed on 

parallel storage. Different approaches could be used. As the first stage, local copies will be 

made on each centre. However, a streaming server which could handle file locations and data 

transfer is needed. Correct handling of the data and its distribution to both CPU and GPU 

clusters in the PROCESS architecture should be ensured and eventual bottlenecks during I/O 

operations and data decoding should be correctly handled.  
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Figure 2 summarises the workflow. The datasets need to be available on the server where the 

network training will be performed. Hence the need for a user-friendly data infrastructure, which 

should guarantee data management and delivery. For instance, the main modules required 

would concern: data transfer, data management and data access. Moreover, the Hadoop 

ecosystem with Apache Spark should be preferred, as both are frequently used and easy to 

apply. 

 

Figure 2: Data Upload workflow. The full dot represents the starting point in the workflow and the dot sorrounded 
by a circle represents the ending point. The raw WSIs are transfered to the PROCESS infrastructure, which needs 
to handle and distribute the dataset within the different computational centres. 

Current software and hardware infrastructure used 

The current system implementation works on datasets that can be manually downloaded from 

the websites of public challenges (e.g. Camelyon, TUPAC). Data is saved on a local NAS that 

can be accessed by different users. Raw WSIs are saved as BIGTIFF files with annotations 

saved in separate files (i.e. XML, CSV, binary, etc.). 

2.1.6  ‘Model Training’ workflow 
Different Deep Neural Networks (referred to as "networks" in this section) need to be trained 

and monitored. For this workflow, we identify three main phases and three different application 

scenarios. The three phases consist of: 

• Phase 1: Patch Extraction - thousands of high resolution patches are extracted from 

raw WSIs 

• Phase 2: Local and Distributed Training - supervised and unsupervised training is 

performed on the extracted dataset of patches in both local and distributed fashion, and 

training statistics are monitored  

• Phase 3: Performance Boosting - multiple training runs are relaunched with data 

perturbations to address model robustness 

The three different scenarios for the workflow can be pictured as follows: 

• Scenario n.1: Moving the models to hospitals. Different models are trained 

independently at each data centre and finally ensambled and made available to 

hospitals for local testing. 

• Scenario n.2: Distributing training to the data location. Training is distributed across 

centres on different portions of data and computations are dynamically handled. This 

scenario simulates the distribution of training to where the data resides, especially in 

cases of private data that cannot leave the hospital environment. 

• Scenario n.3: Dataset sizes and model complexities are jointly increased over multiple 

training runs and pareto frontiers are investigated.  
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Figure 3 summarises the DNN training workflow. Network development is currently performed 

locally on less powerful infrastructures, using a series of tools for data processing and 

manipulation (reported in Table 1). The libraries that are generally involved in network training 

set the requirements for a user-friendly infrastructure where it is possible to create virtual 

environments that can replicate the development environment. Docker containers can be used 

to create separable, self-contained virtual environments in which to develop software and run 

programs. The 'image' of a Docker module can contain standalone and ready-to-be-executed 

packages of software, tools, libraries and settings. The flexibility of these containers allows 

porting complex software development environments required by Machine Learning and Deep 

learning.  

Moreover, network training calls for a service-oriented infrastructure that is easily scalable to 

large computations. The setup of a Hadoop ecosystem will scale up to larger datasets within 

the HPC and Cloud computing infrastructures. 

Table 1: Current technologies and local existing infrastructure. 

Currently used 

technologies: 

Python 2.7, Tensorflow 1.4.0, Caffe, Theano, Lasagne, DIGITS, 

mxnet,  Keras 2.1.2, TFLearn, Numpy, SciPy, Pandas, Scikit-learn, 

OpenCV, Openslide, Matplotlib, Seaborn,  Skimage, h5py, PyTorch, 

OpenBLAS, cuDNN, FFmpeg, NLTK, Gensim, R, Weka. 

Data Storage:  NAS 

Data Processing H5DS, Apache Spark, Hadoop 

Existing 

computing 

infrastructure:  

8 GPUs 

 

Data preprocessing is the second step in the workflow and belongs to the Patch Extraction 

phase. In this phase many of the technologies mentioned in Table 1 are used to process the 

information in the WSI. The intermediate results of image preprocessing (ex. patch extraction, 

data augmentation output, image metadata) need to be stored so that they could be used for 

multiple training runs. Data preprocessing is intrinsically parallel and should be scaled to 

multiple CPU cores. 

The third step in the workflow is network training, which requires as input a configuration file 

containing a list of model settings and the WSI data (both metadata and images). The network 

training process itself is generally highly parallelizable. The parallelization might be performed 

at different levels and could involve both CPUs and GPUs. For instance, the simplest training 

configuration settings should enable parallel training on a single node with multiple GPU cores. 

More sophisticated parallelization methods would scale the computations on different nodes. 

Parallelization could then be performed at different scales, namely at the data level and at the 

model level. On the one hand, parallelization at the data level involves the use of different 

nodes to run the same portion of code on different batches of data. In this context data storage 

may represent a huge bottleneck in the organization of the clusters, and therefore the 

PROCESS Data Manager should be able to identify and tackle possible issues. On the other 

hand, the parallelization could be performed at the model level, involving the development of 

more sophisticated models that distribute the tasks among different workers. However, this 

method is generally discouraged since the communication latency between cluster nodes 
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might be a limiting factor. Therefore, the development of models that could efficiently use the 

computational power of the PROCESS infrastructure stands as a perfect use case for the 

project, involving a series of challenges in the development that still need to be tackled. The 

training will also be distributed across the multiple centres. As a first scenario (Scenario n.1), 

different models will be trained independently on each data centre and the final results will then 

be ensambled in one single model with higher generalisation. This scenario is close to the 

hospital reality where the hospitals could download the trained models and deploy them locally 

without the need to share the data. In Scenario n.2, training is distributed across the centres 

and the computations are dynamically handled. This scenario will highlight the challenges of 

distributing computations on physically distant centres. Dedicated handling of job queuing and 

data routing is needed to organise the computations among nodes. The final scenario, 

(Scenario n.3) addresses the task of constantly increasing model complexities and dataset 

sizes. For instance, the number of extracted patches will increase and data augmentation will 

be used to test model performances for increasing dataset sizes. Moreover, the different 

resolution layers will be used to create more complex models and performances will be 

recorded for a growing number of model parameters. 

In all the scenarios, network training will be monitored in real time, therefore a service to 

visualise statistics and collect feedback is needed. 

The final output of training consists of the trained network model (e.g. weights, checkpoints, 

training statistics), which should be stored in the system for testing. The trained model should 

be made available for download for local testing. 

The convention for the model saving format generally includes a series of HDF5 files on the 

order of several MB per file, often scaling up to GB when larger models are trained. The use 

case should not exclude the possibility to train several different models and store the results 

in a dedicated file system. 

 

Figure 3: Network Training workflow. The solid dot represents the starting point in the workflow and the dot 
sorrounded by a circle represents the ending point.   
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The different stages in the pipeline and the three application scenarios are summarized in 

Figure 4. 

 

Figure 4: Workflow Phases and Application Scenarios. 

Current software and hardware infrastructure used 

Currently state-of-the-art models are trained locally on a GPU server with 4 Tesla K80 cores. 

The hyperparameter setting phase takes place in a local machine and data processing is then 

adjusted accordingly. The raw data on the NAS data storage is accessed and local copies of 

the data, following preprocessing, are made on the server. Training is performed on one single 

GPU node, and, eventually, multiple models are trained on distinct GPUs. The training 

statistics are accessible in real time and the trained model is stored on the server and can be 

downloaded for local testing. 

2.1.7  ‘Model Testing’ workflow 
A user-friendly infrastructure for model testing is required. The dataset and the test model need 

to be specified as input. The testing output and statistics should be returned as output. The 

testing could be performed in parallel by multiple CPU cores for processing large amounts of 

testing data. The trained models need to be available for external download, so that local 

testing could be possible. 

Model Testing will assess the performance of the developed models and will simulate their 

distribution across hospitals. For instance, the models trained at different centres and their 

ensambles will be made accessible to the research community for download and local testing 

on private data.  

Current software and hardware infrastructure used 

Two different modalities are available for testing. In the first case the testing data is loaded to 

NAS storage and the trained models are tested on the server. In the second case the trained 

models are downloaded from the server and tested locally on the user machine. 

2.1.8 Software layers 
The key software layers for this use case are focused on pattern recognition, statistical 

modelling and deep learning. However, the approach could be relevant in modelling problems 

where the amount of data to be analysed is the key challenge. Extremely large datasets might 

be difficult to download, and hospitals might require a high level of confidentiality. As a 

generalised solution, the “Evaluation as a Service” (EaaS) could be seen as a “Clean slate” 

approach to dealing with very large datasets, especially ones that require sophisticated access 

control e.g. due to privacy issues. In EaaS the data remains in a central infrastructure and does 

not need to be moved. For example, data might remain internal at hospitals, or be made 
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available in a closed cloud environment. The VISCERAL project [ref] represents an example 

where the data is kept in a central space and the algorithms are moved to the data. 

2.1.9 Methods and tools 
Content-based search relies on the theoretical and practical results of two decades of research 

into content-based information retrieval. The consortium members are directly involved in 

capturing and evaluating the state of the art in content-based image search e.g. through their 

involvement in organising the annual [ImageCLEF] events. 

The “Evaluation as a Service” approach relies on the results of several projects, e.g. 

[VISCERAL]. The main benefits involve the possibility of working with the data on situ and 

therefore allowing hospitals not to reveal sensible data. Moreover, the use of the computational 

resources is reserved to the training of the models, which has the highest computational 

demands.   

2.1.10 Datasets’ description 
The datasets, which we describe in Table 2, consist of digitalized pathology images from 

human tissues which will not be changed once transferred. The image characteristics and 

analytics depend on the disease types, as well as the data structure, which changes across 

datasets. The ground-truth annotations of the data are contained in files which may vary in 

format and size.  

The preprocessing of the data should be able to generate an intermediate dataset of image 

patches, which need to be stored and visualised for validation and training. 

Table 2: Datasets description. 

Dataset Name Estimated size Description Format Annotations 

Camelyon17 >3TB  
 1000 WSI, 100 

patients 
BIGTIFF XML file  

Camelyon16 >1TB 400 WSI BIGTIFF 
XML file +Binary 

Mask  

TUPAC16 >3TB WSI BIGTIFF CSV file 

TCGA >3TB WSI BIGTIFF TXT file 

PubMed 

Central 

~ 5 million 

images 
Low resolution 

Multiple 

formats 

NLP of image 

captions 

SKIPOGH >30TB WSI BIGTIFF  

 

Datasets’ metadata 

Histopathology scans contain both annotations and clinical metadata, so that physicians can 

easily access a complete picture of the case. Metadata generally include overall information 

about the file, such as image shape, number of resolution layers, layer sizes, patient data and 

scanner information. A brief clinical description of the case may also be included. Table 3 

presents a short summary of the metadata fields and types. 
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Table 3: Dataset metadata description. 

metadata field field type 

image width string 

image height string 

number of resolution layers int 

layers shape list of integer pairs (width, height) 

subsampling levels list of integers 

patient's information set of string data 

clinical description textual information 

scanner type string 

 

2.1.11 Requirement analysis 
The main requirements derive from the challenging nature of the tasks: 

1. The possibility to use Docker containers would provide openness to different 

programming languages tools and frameworks, together with their constant update. 

Moreover, Docker containers are perfectly suited to the EaaS framework, since they 

can be independently distributed among hospitals without the need to connect to the 

main infrastructure. 

2. A PROCESS Environments Manager that could guarantee a flexible building, 

deployment and management of multiple running applications. Training monitoring is 

one of the essential requirements for exascale training. The distribution of the training 

across the different computing resources needs to be monitored constantly.  

3. An efficient data storage system that takes into account the different image formats and 

resolutions across the datasets and ensures flexibility and adaptation to a variety of 

datatypes. For instance, WSIs are generally saved as BIGTIFF files, and paired with 

annotation files that might be either XMLs or CSVs of even TXTs. Moreover, datasets 

such as PubMed central require the possibility to handle and process JPEG, MPEG 

and more common image compression formats with the same degree of elasticity. As 

exascale requirements, we need the distribution of the datasets across the different 

computational centres, ensuring fast connectivity between the local storage and the 

computational resources to reduce internal latency. 

4. The possibility of performing dense linear algebra on distributed-memory HPC 

systems. Multiple GPU computation libraries should be used to merge multiple CUDA 

kernels. Furthermore, top-level development of the deep models should be performed 

using the most common machine learning and deep learning frameworks (e.g. 

Tensorflow 1.4.0, Keras 2.1.2, TFLearn, Caffe, Microsoft CNTK, Nvidia DIGITS, 

Theano, etc.). 
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5. The distribution of training runs across different centres requires automated detection 

of the optimal model parameters and efficient scheduling of processes to the available 

resources. 

6. A user-friendly environment for locating the data, launching training runs, monitoring 

the results and downloading outputs. 

Software requirements 

1. The set of common tools for machine learning and deep learning reported in Table 1 

e.g. Tensorflow, Keras, Theano, PyTorch), together with the necessary GPU drives 

(e.g. CUDA, Nvidia CuDNN). 

2. The possibility to update, upgrade and switch between tools with a high level of 

flexibility. 

3. Support for standard tools for Medical Imaging, such as OpenSlide, ASAP and DICOM. 

4. An environment for Python development, possibly with support of Jupyter notebooks.  

5. The Spark and Hadoop frameworks to efficiently handle distributed data storage, and 

the compatibility with more common local development formats such as HDF5. 

Hardware requirements 

1. Access to GPUs for network training 

2. Access to CPU clusters for data preprocessing, data postprocessing, network testing 

3. High RAM capacity 

4. High internal caching to reduce the number of I/O operations 

5. Accessibility of the data from both CPUs and GPUs with low latency in the 

communication between nodes 

Security and privacy requirements 

The project will mainly use public datasets that are available online and have no security and 

privacy constraints. Data collection will not be performed within the context of the project, 

although previously acquired data may be used in conjunction with hospitals. In such cases 

the data will be pseudonymised, thus retaining a level of detail in the replaced data that should 

allow tracking back of the data to its original state. In this way the ethical constraints related to 

the usage of patient data will also be addressed. However, the use of sensible data sets the 

need for specific security requirements: 

1. Access control. Access to the data should be restricted to a subset of authorised users. 

2. Traceability. It should be possible to trace back access history to the user, place and 

date/time when the access was performed.  

3. The Evaluation-as-a-Service approach will address the privacy constraints concerning 

the use of patient data in research. Algorithms used to detect ROIs and visual 

similarities in the data can be designed by using large training datasets from a variety 

of sources, such as cohort studies. In such a scenario, pattern detection and 

classification are performed in a closed environment, namely virtual machines or 

Docker containers. This approach supports an open development of models and 

algorithms, and avoids data protection issues by processing information that should not 

leave the hospitals "in situ".   

2.1.12 Innovation potential 

Current state 

Deep learning frameworks and their large-data requirements have finally reached a point that 

necessitates collaboration with major data centres. Training time complexity and computing 

requirements have become a strong limitation in the development of successful applications 

of deep learning to the medical imaging field. Researchers are frequently forced to find 

alternative solutions to avoid the complexity of their models to reach the boundaries of the 
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computing power they have available, and this may affect the performance of these algorithms. 

Similarly, the size of the datasets makes data exchange prohibitive and development on 

multiple infrastructures is often discouraged in favour of an 'in situ' approach. To ease the 

development process and thus develop more powerful solutions for medical imaging the limits 

of computing power and data storage need to be pushed far beyond current boundaries.  

Solutions from PROCESS 

PROCESS will contribute to bring to researchers an infrastructure where it will be possible to 

develop novel patter recognition and machine learning algorithms for the medical domain with 

improved flexibility, speed performances and more powerful systems. PROCESS will allow 

researchers in the medical imaging community who are not experts in the field of HPC to 

access exascale infrastructures. This would promote the development of exascale deep 

learning models for analysis of large histopathology datasets. Highly complex models could be 

trained within the HPC infrastructure on massive datasets and made available for the digital 

histopathology community. Many different architectures will be tested to extend learning to 

weakly annotated data. Intermediate results of computations, which might be several orders 

of magnitude larger than the original data, will be efficiently stored with PROCESS. Moreover, 

PROCESS will provide an EaaS of the algorithms developed, which will be run in a sandboxed 

environment on the data that is not allowed to be shared.  

As a result, we expect a decrease of the turn-around time of the experiments and of the 

development of the models for digital image analysis, thus allowing the development of 

applications otherwise computationally infeasible. 

Refinement and Innovations 

Access to HPC will lead to better detection and classification of cancer stages, thus improving 

the treatment of medical conditions and consequently improving the quality of life of patients. 

The research community will benefit from insights on the project via Open Access scientific 

publications.  

As a result, we expect a decrease of the turn-around time of the experiments and of the 

development of the models for digital image analysis, thus allowing the development of 

applications otherwise computationally infeasible. 

The Evaluation-as-a-Service paradigm in the PROCESS project will provide additional interest 

for researchers by giving them the opportunity to run/evaluate their algorithms on the 

PROCESS HPC infrastructure on large data sets and subsets thereof in order to train their 

machine learning models, which can potentially improve the learning curve for scientific 

communities examining new techniques/services. At the same time, this approach also avoids 

the need for large data downloads and eliminates possible privacy constraints that often come 

with medical data, as the data itself does not leave the hosting site's boundaries at any given 

time and can thus not be matched with other data, which can lead to security breaches. Beyond 

that, shipping the algorithm to the data where it is run on a specialized HPC architecture, can 

absorb the needs of research communities that require access to data to validate tools. 

Key performance indicators 

The key performance indicators will be measured in terms of an increase in the data volume 

available to train the tools, and in the consequent increase in performance. Algorithm 

performance will be evaluated on the basis of overall training time and data storage 

requirements, the accuracy of models developed and cumulative errors in the evaluation of 

medical data. 
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2.2 UC#2: Square Kilometre Array/LOFAR 

2.2.1 Use Case Domain 
Radio Astronomy. 

2.2.2 Use case Motivation 
LOFAR is a state-of-the art radio telescope capable of wide field imaging at low frequencies. 

It has been ingesting data into a long-term archive (the LOFAR LTA) since 2012 and its volume 

is now expanding at a rate of approximately 5-7PB/year. The LOFAR LTA consists of tapes at 

locations in Amsterdam (The Netherlands), Jülich (Germany) and Poznan (Poland). Its current 

volume is about 28 PB. This consists mostly of "Measurement Sets", i.e. visibilities - correlated 

signals from LOFAR stations. LOFAR is one of the testbeds for the Square Kilometer Array 

(SKA) and is similar to the part of SKA that will be built in Australia.  

Initially, the data produced by LOFAR is reduced and analysed by the astronomers who 

requested the observations. Subsequently, the data is ingested in the LTA. Since LOFAR is a 

wide field radio telescope, the LTA should contain a wealth of serendipitous discoveries, like 

transient radio sources. Such sources can only be discovered by massive analysis of data from 

these observations.  

The first step in the analysis is often the creation of images from the data which the astronomer 

can inspect. Unfortunately, significant processing and expert knowledge is needed to produce 

these image cubes from observations stored in the archive. As a result of these difficulties, the 

LOFAR LTA is largely unexplored by astronomical research. We want to unlock the LOFAR 

LTA and increase its scientific output. 

2.2.3 Use Case Goal 
The goal of this use case is to simplify the processing of archived data. Astronomers should 

be able to select a dataset on a portal, select a workflow, and then launch the processing 

pipeline from there. For this we need an easy to use, flexible, efficient and scalable workflow 

infrastructure for processing of extremely large volumes of astronomical observation data.  

PROCESS will provide a mechanism to run containerized workflows, thereby improving the 

portability and easy of use. A suitable portal is needed to select datasets and workflows. 

Through this portal, the astronomer must be able to browse through the available datasets and 

available workflows, and launch processing directly from there to the hardware infrastructure 

available in the project. Data should then be transferred from the LTA to the processing 

infrastructure, processed, and the results made available in the portal. 

Currently, the processing of a dataset typically takes much longer than the observation time 

used to acquire the dataset. For example, to process a single 8-hour observation using the 

calibration and imaging workflow described below currently takes about 4 days (due to the lack 

of parallelisation of part of the workflow). To keep up with the speed at which data is generated, 

it is essential to increase the processing performance. Running the same workflow in parallel 

on different dataset provides the horizontal scalability required for processing the LOFAR 

archive, and (in the future) the SKA archive as well. Vertical scalability will be achieved by 

applying multi- and many-core techniques. 

2.2.4 Use Case Description 
Analysing the massive volumes of data stored in the archive is an acute problem. For example, 

even with the LOFAR data volumes (currently 28 PB), a significant percentage of the archived 

data is never used, mostly because only expert users are capable of accessing and processing 

such data. 
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Figure 5: The Low-Frequency Array or LOFAR, is a large radio telescope consisting of an array of approximately 
8000 omnidirectional antennas concentrated in 51 stations distributed throughout Europe. The central station is 
shown in the top right image, and a close up of the antenna’s is shown top left. The bottom images show the 
distribution of stations in Europe. Images courtesy of ASTRON (http://www.lofar.org/) 

 

The LOFAR radio telescope consists of around 8000 antennas in 51 stations. These antennas 

produce approximately 25 GB/s, which needs to be processed in real time to combine their 

signals into a single view of the sky. This data is stored in the LOFAR Long term archive (LTA), 

which is distributed over Amsterdam, Juelich and Groningen. Data is typically stored on tape 

and can be accessed via a web portal or SRM client. The data remains private to its originating 

project for a year following acquisition, but is made public afterwards.  

Individual observations produce up to 100TB of data. These are typically reduced to 16 TB 

before being stored in the archive. Each observation is stored in a well-defined directory 

structure, containing multiple files with both the metadata and the measurements themselves. 

A major hurdle is that the archive stores partially processed observations (also referred to as 

visibilities), not the images or sky maps that astronomers typically use as a starting point for 

their research. Once unknown sources are detected in the sky maps, the astronomers often 

http://www.lofar.org/
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need to run more detailed analysis on the visibilities directly. For this reason, the visibilities are 

stored in the archive, not the sky maps.  

The initial conversion of the observations into sky maps requires several processing steps, 

such as retrieving the data from tape, performing RFI (Radio Frequency Interference) removal, 

calibration, and imaging. Unfortunately, due to the large data volumes (tens to hundreds of 

TBs), and complexity of the tools, each of these processing steps take a significant amount 

time and effort by the astronomer. Further automating this part will significantly simplify the use 

of the stored observations, and allow the astronomer to focus on the science instead of the 

preprocessing of the data. 

2.2.5 Use Case Scenario  
In a typical use case an event is detected in the sky, for example a satellite detects a flash of  

gamma radiation at a certain position. Subsequently, astronomers want to observe this same 

patch of the sky with other instruments, such as optical and radio telescopes. Additionally, the 

astronomers want to check past observations to determine if any objects had previously been 

detected at the given position. To do so, data must be retrieved from the archive that covers 

this position on the sky, and be converted into sky maps. 

Besides inspecting single observations, astronomers also perform surveys where a large 

number of observations are combined to analyse certain features or detect certain events in 

large portions of the sky. For such surveys, a large number of observations must be processed 

by the same workflow, for example to create larger sky maps. 

The workflow 

The current pipeline is developed by Leiden University and SURFsara in the Netherlands. It is 

based on the following software: 

• uberftp client 

[http://www.lofar.org/wiki/doku.php?id=public:grid_srm_software_installation] 

• globus-url-copy client 

[http://www.lofar.org/wiki/doku.php?id=public:grid_srm_software_installation] 

• voms-client (only on the login node) 

[http://www.lofar.org/wiki/doku.php?id=public:grid_srm_software_installation] 

• CVMFS [https://cernvm.cern.ch/portal/filesystem] 

• PiCaS 

[http://docs.surfsaralabs.nl/projects/grid/en/latest/Pages/Practices/picas/picas_overvie

w.html] 

• python 2.7 or higher 

• pre-FACTOR [https://github.com/lofar-astron/prefactor] 

• DDF [https://github.com/mhardcastle/ddf-pipeline] 

A gridFTP enabled client is required for the interaction with the Grid storage (dCache). Voms 

tools should be installed and configured to support the LOFAR VO to allow users (or 'robot 

users') to create proxies with LOFAR attributes. Installing and configuring CVMFS with 

Softdrive mount point enables access to the LOFAR software tree from any compute node. 

A single server runs the PiCaS system which uses the CouchDB database for storing the 

descriptions of jobs. Python is required to execute the staging scripts and interact with the 

CouchDB API via a python-based client. The processing clients require outbound internet 

connectivity to retrieve job descriptions from PiCaS. 

http://www.lofar.org/wiki/doku.php?id=public:grid_srm_software_installation
http://www.lofar.org/wiki/doku.php?id=public:grid_srm_software_installation
http://www.lofar.org/wiki/doku.php?id=public:grid_srm_software_installation
https://cernvm.cern.ch/portal/filesystem
http://docs.surfsaralabs.nl/projects/grid/en/latest/Pages/Practices/picas/picas_overview.html
http://docs.surfsaralabs.nl/projects/grid/en/latest/Pages/Practices/picas/picas_overview.html
https://github.com/lofar-astron/prefactor
https://github.com/mhardcastle/ddf-pipeline
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Figure 6: The calibration and imaging pipeline for a single observation. The astronomer triggers the staging of a 16 
TB observation from the archive to temporary storage. This data is then first processed by the Direction Independent 
Pipeline which may run in parallel on up to 244 nodes (taking approx. 4 hours). Next, the Direction Dependent 
Pipeline is run on a single node (taking approx 4 days) and produces up to output 244 images of 25K x 25K 
resolution for inspection by the astronomer. 

As a first step in the processing pipeline (shown above), the observation data needs to be 

downloaded from the archive. This may require retrieving the data from tape and storing it on 

temporary storage (dCache). From there, the data is accessible via GridFTP.  

The workflow consists of 2 pipelines, the Direction Independent Pipeline (DI), and the Direction 

Dependent Pipeline (DD). Both pipelines perform calibration, which is essential to detect the 

weakest possible signals. Calibration is needed to remove interference from the instrument 

and the ionosphere, thereby increasing the sensitivity of the telescope significantly.  

Calibration starts by converting a sky-map of well known radio sources into visibilities, using a 

Fourier transform to convert to (u, v, w) space, and interpolating from a regular grid to the 

irregular grid measured by LOFAR. This gives the "ground truth" visibilities. Next, the observed 

visibilities of the well-known sources need to be mapped to match this ground truth. The 

mapping matrix is derived through a least-squares fitting algorithm (such as Levenberg-

Marquardt).  

The DI pipeline creates a single mapping matrix which is applied to the entire observation. This 

calibration serves as a starting point for the DD pipeline, which performs a similar calibration 

for dozens to hundreds of directions within the LOFAR array beam. 

The outputs of both pipelines are shown in Figure 7 below. Although images may be produced 

after DI, they are limited in resolution and contain residual errors caused by disturbances in 

the ionosphere which vary over the field of view. This is shown the left image in Figure 7. The 

DD takes the output of the DI as input and further reduces the errors to produce high resolution, 

low error images, as shown in the right image of Figure 7. 
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Figure 7: Output images produced after Direction Independent Calibration (left) and additional Direction Dependent 
Calibration (right). The image left clearly contains artifacts caused by the ionosphere. These are subsequently 
removed by the direction dependent calibration, shown on the right. Image courtesy of (Shimwel et al.: The LOFAR 
two meter sky survey). 

DI uses the pre-FACTOR package to perform the initial calibration. Internally it consists of 

several steps, some of which can be run in parallel. As shown in Figure 6, it splits the input 

data into 244 subbands which can be processed independently. Each subband becomes a 

separate calibration job. Each job requires a relatively small input of 1.2 GB, which is reduced 

to an output of around 3 MB. When all jobs are finished, a second calibration job combines the 

results into a single table approximately 100 MB in size.  

This table is then applied to the observation target, which again is split into 244 jobs, one for 

each subband. Each job requires around 60GB of input, and produces around 1.2 GB of output. 

The output of these jobs is then again combined into the final DI calibrated datasets, which 

consist of around 300 GB of data. The entire DI takes around 4 hours for a single dataset when 

running on 244 nodes.   

Following the crude direction independent (DI) calibration, direction dependent calibration (DD) 

is performed. This is an iterative procedure on the target field, which is called self calibration. 

It is currently implemented using the DDF package on a single node (using all the cores of one 

high-end CPU). This takes about four days uses the initial calibration output (300GB) to reduce 

the 16 TB of observation data to 0.5 TB. This data is then converted to a collection of (up to) 

244 images at 25k x 25k resolution (1.2 GB each). 

Currently, the processing is performed on the Gina cluster of SURFsara, which is located in 

Amsterdam.  Where the jobs of the DI pipeline can be run on relatively simple compute nodes 

with 8 GB of RAM and 100 GB of scratch space, the DD pipeline requires a single high-end 

machine with at least 256GB of RAM and 3 TB of scratch.  

To process a single observation, approximately 27K core hours are required to run the pipeline. 

To process the complete archive an estimated 47M core hours is currently needed. An 

additional 8 to 12M core hours is needed each year to keep up with the 5-7 PB of data produced 

yearly. Note that these estimates are for running a single pipeline on all data, using a single 

configuration. However, for different science cases different configurations or pipelines are 

used. Therefore, this estimate is a lower bound for the processing time that is required.  

2.2.6 Methods and tools 
Currently, the data is retrieved from the LTA using gridftp. The production of image cubes from 

this measurement data relies on a number of standalone applications (pre-FACTOR and DDF) 
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which need to be run in sequence. An EOSCpilot project in which the Netherlands eScience 

Center is involved is currently automating this workflow using the Common Workflow 

Language (CWL) and Docker / Singularity. These codes can be reused in PROCESS. 

2.2.7 Dataset description 
LOFAR uses the aperture synthesis technique for collecting data for imaging. Consequently, 

a LOFAR imaging run results in a large number of "visibilities" - signals correlated between 

different stations with a time delay determined by the direction on the sky of the target of the 

observation.  

A typical LOFAR observation takes 8-12 hours and results in a data set with a size of about 

16TB, after every eight consecutive frequency channels have been averaged into one channel, 

which always happens before ingestion into the LOFAR Long Term Archive. Currently, this 

archive contains 28 PB, and is growing at 5-7 PB each year.  

Each observation is stored in a so called “MeasurementSet” as defined in the Common 

Astronomy Software Applications package (CASA). CASA is developed by an international 

consortium of scientists under the guidance of the National Radio Astronomical Observatory 

(NRAO). 

For the LTA each MeasurementSet contains a number of directories (typically 244 of 488), one 

for each subband of measured frequencies. Each of these directories contains several “tables” 

(binary files), one for the measured data, and several for the metadata.  

The metadata includes the timespan of the observation, the time sampling, the frequency 

range and frequency channel width. It also includes the pointing of the observation, i.e. the 

right ascension and declination of the target (i.e., the sky coordinates independent of earth 

rotation) and the positions of the LOFAR stations in earth coordinates.  

The actual data consist of "visibilities", i.e. correlations between the antenna signals as they 

are combined per LOFAR station. These are single precision complex numbers in large binary 

files (typically 64 GB each). Although these binary files can be easily read, each complex 

visibility has to be paired with a point (u, v, w) in Fourier space, which requires correct 

interpretation of the metadata of the observation and calls for dedicated software. A number 

of software packages for interpreting radio interferometric data - a.k.a. "aperture synthesis" - 

are available. 

2.2.8 Requirement analysis 
The main requirements for this use case are:  

1. A user-friendly environment for selecting the data and workflows, launching the 

workflows, monitoring the results and downloading outputs. 

2. The possibility to use Docker or Singularity containers as workflow steps to allow each 

step to use different analysis tools and dependencies.  

3. A mechanism to run the workflows on suitable processing hardware. While some parts 

of the workflow may run in parallel on relatively simple compute nodes (24 cores, 8 GB 

memory, 100GB scratch storage), other parts currently run sequentially on a fat node 

with significant memory (256 GB or more, 3 TB scratch storage).  

4. An efficient data management system that is capable of efficiently transporting the 

MeasurementSets from the archive locations in Amsterdam, Juelich and Poznan to the 

processing locations.  

5. The capability to horizontally scale to a significant number of compute resources to in 

order to run a large number of (independent) workflows at the same time. Since 

processing the entire archive for a single science case already requires a significant 
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amount of core hours O(47M), handling multiple science cases simultaneously will 

require up to exascale resources.   

Software requirements 

1. Python virtual environment 

2. Support for Docker or Singularity containers 

3. gridftp for downloading measurement data  

4. Voms-client to manage gridftp access 

5. CVMFS client to distribute singularity containers  

6. PiCaS installation to distribute work 

Hardware requirements 

1. Access to a sufficiently fast network to download the measurement dataset to 

processes. At least 1 Gbit/s or faster, although 10 Gbit/s or higher is preferred. 

2. Access to the PiCaS installation from the compute nodes.  

3. Access to sufficient storage to temporarily store the measurement dataset, temporary 

data, and output image cube. O(20TB) in total. 

4. Access to CPU clusters for data preprocessing with fast access to the data. 

5. (In the future) access to GPU clusters for data preprocessing with fast access to the 

data. 

Security and privacy requirements 

The project will use public datasets that are already available online in the LOFAR archive and 

have no security and privacy constraints. Data collection will not be performed within the 

context of the project. The processed results (image cubes) produced within the project may 

also be distributed freely without any security of privacy constraints. 

2.2.9 Innovation potential 

Current state 

The current implementation of the LOFAR processing pipeline requires 4 days of processing 

for a single 8-hour observation. This excludes the extraction of the data from the archive to the 

processing location. In addition, and more importantly, significant expertise and effort is 

needed to reduce the visibility data from the observation to image pixels. 

Solutions from the PROCESS 

PROCESS will provide the astronomers with a user-friendly portal on which they can select 

the datasets and workflows they wish to use for processing. They can then launch the 

workflows from this portal, after which the PROCESS infrastructure will be used to select a 

suitable compute infrastructure and move the data from the archive to the location where it will 

be processed. Once available, the output images will be made available through the portal. 

This simple and easy access to exascale infrastructure will further open up the LTA to the 

astronomy community, increase the scientific output of LOFAR, and serve as a stepping stone 

for SKA, which will produce even more data.  

Refinement and Innovations 

Easy access to processing infrastructure from the LOFAR archive will increase the scientific 

output. Presently, the LOFAR archive is hardly used and its scientific output is very low. 

Key performance indicators 

The key performance indicator is how easy it is for astronomers to process the data in the 

archive, both for single observations and surveys (processing multiple observations). 

Therefore, this should reduce the effort required. 
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Moreover, instead of a waiting for about a week (including staging the data from tape to disk) 

to retrieve an image of the sky, it would be advantageous if this timespan could be reduced 

significantly. 

2.3 UC#3: Supporting innovation based on global disaster risk data 

2.3.1 Use Case Domain 
Probabilistic modelling of natural hazards, risk assessment and provision of open data 

products based on this modelling effort. 

2.3.2 Use Case Motivation 
The initial motivation for the use case was providing a simple and efficient way to publish the 

datasets that were used to produce the 2015 and 2017 UNISDR Global Assessment Reports 

(GAR 2015 and the 2017 Risk Atlas). The datasets had previously been shared with 

researchers (both in academia and e.g. at insurance companies) on request, however due to 

resource constraints of the UN infrastructure available at the time, direct access to data 

required hosting the data by the MNM-Team at LMU and building a simple download portal to 

provide more seamless access to data. 

Initially the secondary motivation was to collect data of the third-party use of the data and 

identify PROCESS components and approaches that would allow the emerging community to 

develop more fine-grained data curation and sharing practices. However, with the changes in 

the UNISDR approach to future assessment report, this community support became a more 

active topic of interest. As the 2019 GAR report is going to be based on a more open expert 

consultation approach, addressing data management support in a more proactive way through 

a high-level showcase (UNISDR/CIMA collaboration) has become necessary.   

2.3.3 Use Case Goal 
The use case goals are a) to increase the efficiency of data generation and curation (simulated 

data related to natural hazards) for probabilistic analysis purposes by the parties affiliated with 

the UNISDR Global Assessment process and b) to encourage and facilitate third-party use of 

these datasets. 

2.3.4 Use Case Description 
N.B. There is, at the moment, considerable uncertainty related to mechanisms the GAR-like 

data is produced and consumed as part of the global risk assessment process. The amount of 

data is conceptually based on the following formula: 

"Relevant surface area of area under analysis" X "resolution" X "number of scenarios needed 

for probabilistic analysis" X "size of an individual scenario data" 

The number of scenarios and the necessary resolution of the scenario data depends on the 

type of hazard. For example, in case of analysing the earthquake risk it is not necessary to 

pinpoint the exact position of the epicentre, as differences of the order of few kilometres do not 

influence the possible outcomes in case of a major earthquake. However, impact of a flash 

flood scenario may be dramatically different depending on small variations of location of the 

maximum rainfall, surface structure and e.g. slight variations in the elevation of building and 

infrastructure will have a major impact on the outcomes. Thus a global flood model will always 

unavoidably be a compromise (some of these compromises are discussed in detail by Rudari 

et al 2015 and Dottori et al 2016). The GAR 2015 dataset size (~1.5TB) should be seen as the 

minimum, with the follow-up activities likely increasing the storage requirements by at least an 

order of magnitude during the duration of the PROCESS project. 

https://www.unisdr.org/we/inform/gar
https://www.unisdr.org/we/inform/publications/53086
http://unisdr.mnm-team.org/
https://www.unisdr.org/archive/57277
https://www.preventionweb.net/english/hyogo/gar/2015/en/bgdocs/risk-section/CIMA%20Foundation,%20Improvement%20of%20the%20Global%20Flood%20Model%20for%20the%20GAR15.pdf
https://www.preventionweb.net/english/hyogo/gar/2015/en/bgdocs/risk-section/CIMA%20Foundation,%20Improvement%20of%20the%20Global%20Flood%20Model%20for%20the%20GAR15.pdf
https://www.sciencedirect.com/science/article/pii/S0309170816301257
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The PROCESS project supports the distribution of the GAR 2015 datasets using a simple web 

portal. However, the plans for GAR 2019 will present additional challenges in addition to the 

likely increase of resolution of analysis: 

• Loss calculation process will become a community-based effort aiming at scientific 

consensus (along the lines of the IPCC approach). Thus, there will be several datasets, 

produced through different methodologies and, at least initially, residing in different 

repositories (instead of a centrally managed system curated by UNISDR) 

• Interaction between different research groups will almost certainly lead to the need for 

supporting versioning of the datasets as the process of cross-correlation and analysis 

uncovers opportunities for refinements and improvements in the accuracy of the 

models. However, for traceability reasons all versions of the data would need to be 

Findable, Accessible, Interoperable and Reusable (so-called FAIR principle, promoted 

by the RDA). 

Thus, the key to the success of UC#3 is to showcase lifecycle support for disaster risk 

management data. This showcase would be aimed at convincing the data producers to apply 

solutions that are interoperable with the PROCESS approach (or, in an ideal case, adapt the 

PROCESS solution or PROCESS service). The initial key focus area of UC#3 will be in 

supporting the risk modelling community with analysis of external reuse, based on the data 

published using PROCESS tools becoming more active towards the end of the project. 

The UNISDR collaboration aims at solving two interrelated problems: how to support 

community uptake and broad range of innovation activities based on the new natural disaster 

risk related open data products, and how to enable more efficient data management of the 

disaster risk data in the face of increased amounts of data that will be produced in a more 

dynamic fashion by a distributed, heterogeneous collaboration. 

The work builds on the collaboration between UNISDR, LMU and LRZ that has supported the 

refinements of the Global Assessment Report (GAR) production process and has produced 

the first versions of the download portal that can be used to publish the GAR data as an open 

data resource. The datasets can be used to perform probabilistic risk assessment on a global 

scale and contain scenarios (typically thousands or tens of thousands tropical storms, 

earthquakes, floods etc.) and vulnerability and exposure information that can be used to 

assess the impact of particular hazard scenarios. Making GAR data publicly available will have 

a multitude of uses in education (from civil engineering to sociology of risk perception), policy 

formation (more accurate risk assessment in public investments and zoning) and industry 

(common dataset that can be used to increase resilience in the complex supply chain 

networks). 

At the moment the dataset is relatively small (on the order of several terabytes), but increased 

availability of more accurate GIS information and lifting of the current limitations related to 

computational, data transfer and storage capacities are likely to increase this by orders of 

magnitude – even without taking into account derived products and downscaled models that 

the innovation ecosystem supported by the GAR data will produce. UC#3 and UC#5 are strong 

candidates for cross-pollination and service reuse, as the diverse community brought together 

by UC#3 will allow testing the broader relevance and usability of the solutions developed in the 

context of UC#5 in a more multifaceted manner than the “pure” expert use by UC#5 users 

could. 

2.3.5 Software layers 
At the moment the focus is on providing a high-level framework that links the different hazard 

scenarios, exposure and vulnerability information together using the so-called AME format 

which is the consensus approach for the risk modelling community involved in GAR. The 
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different modelling components will produce their outputs in an AME compliant format, which 

allows calculating the estimated disaster losses (taking into account risk reduction policies, 

building codes, changes in population etc.) The overall focus of the use case is on modelling 

and simulation. 

2.3.6 Workflow 
The pre-2017 workflow of the overall GAR process is presented below: 

 

Figure 8: The pre-2017 GAR workflow. 

PROCESS support focuses on interaction and data sharing between the distributed hazard 

modelling teams and the risk computation team at UNISDR. Once the GAR process has been 

finalised, the hazard, exposure and vulnerability data would be turned into open data products. 

The post-2017 GAR workflow differs considerably from this model: 

 

Figure 9: The post-2017 GAR workflow. 
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The consensus process will encompass numerous teams performing analysis on a wide 

variety of datasets (many-to-many relationship between datasets, teams and analyses). The 

UNISDR/CIMA process represents just one of these combinations, albeit due to its scale and 

nature as a recognised UNISDR project, it is a more far-reaching effort than most of the 

contributions to the 2019 version of GAR. From the PROCESS point of view successful 

completion of the data generation is important mainly as a way to establish relevance of the 

project in the broader GAR community and to build foundations for deeper collaboration. 

Current software and hardware infrastructure used 

The current software infrastructure consists of running flood models with 90m resolution based 

on the following software components: 

• Matlab-based software components used for the generation of the input data of 

Continuum (starting from the CORDEX dataset), for the hydrological calibration 

procedure and for the probabilistic generation of a large number of flood scenarios, 

based on previously computed water depth hazard maps and on the results of the 

hydrological simulations.  

• Hydrological model (Continuum, written in Fortran) 

• Python-based loss computation solution for each scenario 

The data generation is performed on the LRZ cluster.  

2.3.7 Methods and tools 
While the basic structure of the data is grid-like, due to limitations of the resolution it is important 

to take into account a group of adjacent grid points. Thus the risk modelling is not a trivially 

parallel problem, and the ways to deal with this issue with the higher resolution datasets will 

need to be reviewed. 

Quality aspects of the prototype: the GAR data is, in principle, open and the key software 

framework (CAPRA-GIS) is a mature open source solution used by a global community 

involved in probabilistic risk modelling. The AME file format is a commonly accepted standard 

that will be more formally documented as part of this project. 

The developments can be tested both against earlier versions of the CAPRA software and by 

re-calculating the results of the earlier GAR publications (issued in 2009, 2011, 2013 and 

2015).  

In terms of data management, the developments envisage moving from a model where the 

bulk data transfer is sometimes performed by shipping physical hard drives to Geneva to a 

model that is producing simulation results directly into a shared repository. This means that 

the data services need to be integrated with workflows that are based on a very heterogeneous 

set of software solutions (different in-house developments either as stand-alone programs or 

running on top of a framework such as Matlab).  

2.3.8 Datasets’ description 
The exposure, vulnerability and scenario datasets are used to generate high-level global 

disaster risk assessment reports (e.g. the latest GAR15). There is an ongoing effort to provide 

more in-depth analysis of the flood risk by performing probabilistic modelling of flood scenarios 

with a resolution of less than 100m. The pilot is ongoing as a collaboration between the project 

and the CIMA research foundation in the context of the "UNISDR Sub-Saharan Africa 

Programme".  

While the end result of the analysis is a relatively compact dataset, the intermediary data 

structures are challenging (12-14 million individual files). Computational demands are 

estimated at 200 000 core hours. 

http://cordex.org/
http://www.cimafoundation.org/cima-foundation/news/unisdr-africa.html
http://www.cimafoundation.org/cima-foundation/news/unisdr-africa.html
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2.3.9 Requirement analysis 
An easy to use and extensible interface to disaster risk data is required. The interface should 

support data discovery by non-experts as well as integration with applications - including 

disaster risk assessment tools used in the Global Assessment Process - through an open API. 

For future engagement with the broader UNISDR community, the ability to efficiently support 

several indexing/curation approaches on top of the same datasets could be of interest. The 

versioning of data will also become a critical issue. 

While the final datasets of the UNISDR/CIMA pilot will be relatively modest in size, PROCESS 

will investigate (together with CIMA) the potential value of the intermediary results (a subset of 

the 12-14 million files) for third parties. 

Software requirements 

Matlab, Python, and Fortran. 

Hardware requirements 

High-end server multi-core nodes are sufficient. 

Security and privacy requirements 

The simulated dataset does not have any security or privacy issues associated with it. All 

datasets are available for free for non-commercial purposes to governments, international 

organisations, universities, non-governmental organisations, the private sector and the civil 

society (more details are available via http://unisdr.mnm-team.org/) 

2.3.10 Innovation potential 
PROCESS will build on ongoing collaboration between UNISDR, LMU and LRZ that has 

developed initial prototypes and a development roadmap to serve the disaster risk assessment 

community. The use case will be used to test the relevance and usability of PROCESS services 

with a community that has very diverse goals and technical capabilities. 

The use case directly supports the work of UNISDR and the 29 collaborating UN agencies 

(including e.g. WHO, WMO and UNEP). Through the UNISDR Science and Technology 

partnership the results of the project can be disseminated to a large group of NGOs, SMEs as 

well as research organisations in all the UN member states. This outreach activity does not 

need to be limited to strict UNISDR collaboration scope, but can include all the project results 

of potential interest for disaster management and risk reduction. 

The case may approach exascale resource requirements in the research mode (e.g. modelling 

losses on the building level in a large, populous country), while at the same time encouraging 

adoption of exascale-capable data services by a very large and diverse group of stakeholders 

(first responders, SMEs providing modelling services etc.). 

Current state 

The UNISDR/CIMA pilot is running on the LRZ infrastructure with completion expected in the 

first half of 2018. 

Solutions from PROCESS 

Access to computing capacity and temporary file storage.  

Refinement and Innovations 

Adoption of tools and approaches for workflow automatization. 

Key performance indicators 

1. Active users of the UNISDR data 

2. Successful completion of the UNISDR/CIMA pilot  

http://unisdr.mnm-team.org/
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3. Adoption of PROCESS tools to be developed by the broader UNISR/GAR community 

Novel approaches to HPC and data management 

The preliminary performance testing of the risk calculation seem to indicate that performance 

tuning depends on a multitude of factors, and partitioning the datasets in was to allow “in 

memory” processing will be investigated. 

The large number of intermediate files has, in the past, revealed limitations of common file 

systems. As such, the UNISDR pilot may serve as a stress testing tool for the PROCESS 

solutions. 

2.4 UC#4: Ancillary pricing for airline revenue management 

2.4.1 Use Case Domain 
Industrial / Airline domain 

2.4.2 Use Case Motivation 
In traditional indirect distribution, airlines publish some of their data via third party systems, 

alongside their own internal source of availability. It is then up to other third parties, Global 

Distribution Systems (GDSs), to use these sources of data to create itineraries and to correctly 

apply fares to them. It is only at the point that the customer makes a booking that the airline 

has visibility on that customer and their request. At this stage the customer decisions have 

been made based on the airline’s static data it published in advance and aggregated without 

the influence of the Airline. The data is static with respect to content (combination of services 

offered as a bundle) and price (pre-determined in advance and not at the time when the 

shopping request is processed). 

For this reason airline revenue management (RM) has been mainly around following aspect 

for more than 40 years: determining how much of seat inventory shall be sold for each of the 

previously determined static price-points. During the last decade - and mainly driven by on one 

hand the growth and success of so-called low-cost airlines, and on the other hand the 

increasing volume of flights booked on the airline's own website (were the airline has more or 

less full control about content and look and feel) - the focus has shifted from controlling how 

much of flight inventory to sell at pre-determined price-points to: 

• merchandising any service item that might be related to a passengers journey, (e.g. 

rental car, valet parking, taxi from/to airport, lounge access, travel insurances etc.), 

• unbundling of services, i.e. offering more choice options to the traveler by offering a 

large number of "à la carte" options (some of them could even be sold without the need 

to book a flight), 

• controlling the entire offer that is made to a shopper, i.e. content (services and 

conditions), form and price points (in case it is not a single price but multiple prices 

because of e.g. "à la carte" options and ancillaries). 

This means that selling ancillaries around the flight has become more and more important. For 

many airlines selling ancillaries has already become the main contributor to their contribution 

margin. 

2.4.3 Use Case Goal 
The first goal of the use case is an analysis of current ancillary sales and hidden sales pattern. 

Therefore two approaches will be pursuit: first we evaluate the option to generate artificial sales 

data based on internal airline knowledge and secondly we try to evaluate real sales data from 

partner airlines. 



D4.1 Use case analysis 
 

This version is a draft of D4.1 and is under review.  36 
 

The second goal is deriving a promising machine learning algorithm for pricing of offered 

ancillaries. Therefore we will train common machine learning algorithms (e.g. random forest 

and neural networks) and evaluate their performance. 

Lastly, a simulation should indicate the quality and chances of the pricing algorithms. Ultimately 

good quality pricing algorithms promise airlines significantly higher revenues from their 

ancillary sales. 

All of these business goals should be achieved while providing a platform that is capable of 

storing the incoming ancillary data in a way that allows easy exploitation for airlines. On the 

one hand, the platform should provide libraries for machine learning and quick processing for 

the model learning, while on the other hand storing the models in an efficient way such that 

several hundred million ancillary pricing requests a day can be answered. 

2.4.4 Use Case Description 
Ancillaries is a broad term for any services that goes beyond simple transportation from A to 

B. Ancillary in this sense can be anything from being able to check-in an additional bag to 

booking an “Uber” that transports the customer from the airport to his hotel. Although ancillaries 

have caught the attention of basically every airline, traditional RM software does not cover this 

topic at all, yet. 

The challenges we face are manifold. We need to store and analyse huge data volumes that 

major airlines already have today (e.g. Deutsche Lufthansa has more than 100 million 

passengers per year). Due to the advanced digitization we expect an exponential increase of 

the data volume. Beside the more dynamic or volatile booking data (we call this a passenger 

name record PNR) the solution needs a wide access to more data like airport basic data, 

vacation period in different countries, events like fairs, huge sport events etc. Also data like 

weather forecasts (e.g. snow conditions in the Alps) can be of interest. Also input from highly 

volatile social media streams like Twitter can be an interesting source to be analysed. And last 

but not least web-scraping can provide information about the airline's competitors and their 

offerings.  

Airlines are not operating alone. Major airlines cooperate with other, bigger and smaller, 

airlines in joint ventures, networks and strategic alliances (e.g. the Star Alliance, One World 

etc.). Therefore, the data created in and by such networks needs to be included in the analysis 

and dynamic pricing solution. 

To achieve this, we need an infrastructure that is capable of collecting, processing and 

analysing huge amounts of data. This needs to be done in a very dynamic way, because the 

result of the analysis (i.e. the calculated price of an ancillary) must be feed back into the 

shopping / booking process. Due to the growth of on-line retailers and an increasing number 

of on-line travel platforms, airlines expect a yearly increase in the quantity of requests by about 

20%. The infrastructure must be capable of responding to more than 100 million requests per 

day and within 500 ms per request. 

Within the dynamic pricing engine we must make use of new prediction methods that offer 

ancillaries to a customer at an optimal price depending on his/her shopping history and 

individual preferences, and by also considering attributes of the requested itineraries, e.g. 

• free golf bag for famous golfing destinations, 

• or, free skiing bag if the passenger travels to e.g. Innsbruck and there is snow in the 

Alps. 

We need to develop new algorithms and forecasting models to optimally price the provided 

ancillaries. This will include leading-edge methods and technologies from the domains of 
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artificial intelligence and machine learning - like deep learning, decision trees, support vector 

machines, neural networks etc. 

To evaluate these algorithms and models we need training and test data with a well known 

structure. Therefore the first step will be the development of a data generator for airline 

ancillary data. This is also necessary due to the high data protection level for customer-related 

data within the EU. 

Finally we will develop methods that assign a “booking probability” to each ancillary, since the 

customer only wants to be presented with ancillaries that match his/her preferences. It is 

obvious that if the customer is annoyed by the offered products (for example there may be too 

many of them, or they may not interest the customer), the likelihood of purchasing an 

interesting ancillary goes down significantly. 

2.4.5 Software layers 
For our use case, the key software layers can be divided into (a) a batch layer, (b) a stream 

layer and (c) a service layer. While the batch layer is used to build up the model by evaluating 

huge historical data piles (e.g. stored in HDFS) the stream layer is used to receive a continuous 

stream of live data to refine the model and integrate it into the model store (located in the batch 

layer). The service layer is used as the interface between e.g. the booking engine and the 

ancillary pricing engine. For this the Ancillary Price Calculator accesses the model store to 

calculate the price. 

Therefore these layers needs to have capabilities for: 

• the collection of dynamic and static data from different sources, like structured flat files, 

shopping behaviour (offers and corresponding orders), click-stream data, competitor 

information (e.g. from web scraping, fare filing), social media streams etc. 

• pattern recognition, modelling, predictive analytic methods and other AI methods 

• the process to calculate the relation/dependency between contents of offers (services), 

offered prices and booking probability 

• providing an interface to give access on ancillary price recommendations to booking 

engines and travel portals in real time 

2.4.6 Scenario   

 

Figure 10: Workflow scenario. 
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Current software and hardware infrastructure used 

Most software and hardware infrastructures at airlines' revenue management departments are 

still based on concepts which emerged in the 90s and early 2000s. Usually, there is a big 

monolithic piece of software that is really hard to maintain and difficult to extend. Furthermore 

data storage is organized in big Oracle instances which guarantee data consistency and 

transaction safety, but at the drawback of poor scalability. The rapid growth of passenger 

numbers and the opening of new business fields has led to the following requirements for new 

software and hardware which traditional solutions cannot answer: 

• Support for quick changes in the software: the market changes quickly and the internet 

allows the customer to easily compare offers. Hence, airlines have to react quickly to 

the market. 

• Elastic scaling of hardware: growing hardware costs are no longer expected, since the 

machines are often left unused (e.g. few bookings with European airlines during night 

hours in Europe). 

• Vertical scaling of data stores: the growing data volumes are approaching the limits of 

horizontal scaling of Oracle systems. Hence the need for vertical scaling. 

The service layer (right-hand side of the workflow diagram) uses state-of-the-art microservice 

software stacks such as Spring boot, Kubernetes etc. and provides RESTful services. The 

service registry uses the Netflix Eureka framework and is replicated to avoid a single point of 

failure. Eureka also facilitates dynamic load balancing. The services are accessed through an 

application gateway, for this Netflix Zuul is used which also integrates security services. 

The streaming and batch-layer is currently under development and therefore not yet fixed. It 

will likely rely on Hadoop/HDFS infrastructure and we plan to use HBase as an interface 

between the big data side and the microservice side. For the streaming layer, Apache Spark 

streaming looks promising. For the model building part, frameworks such as Tensorflow and 

H2o.ai will be evaluated. 

2.4.7 Methods and tools 
The goal within this project is to develop methods for ancillary pricing. Therefore we look at the 

historical data for common patterns: 

• When (with respect to the departure of the flight) was the ancillary purchased? 

• Does the length of the flight correspond to the volume of a certain ancillary's sale? 

• Can we isolate customer groups that are more prone to purchasing a certain ancillary 

(e.g. how to identify business travelers that might be more willing to pay for internet on 

the plane?) 

After looking at this historical data we try to identify the willingness-to-pay of the customers for 

an ancillary, i.e. when (with respect to the departure) to offer the ancillary at which price. 

Current research implies that this historical training is best done with AI methods of machine 

learning and deep learning, accompanied by regression and classification models, like e.g. 

decision trees, neural networks or support vector machines will be applied. The proper 

methods are to be evaluated in-depth during the first project phase. 

These requirements demands for a tool stack that offers state-of-the-art support for the 

aforementioned algorithms. 

2.4.8 Datasets’ description 
As an initial step we will start to generate sample data sets. 
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The data generated will be an approximation of the data coming from a booking process of 

major airline network carriers. Those carriers handle more hundreds of millions passengers 

each year and a substantial amount of passengers purchase multiple ancillaries along a flight. 

Common examples are advanced seat reservation (reserve your seat on the plane way ahead 

of the departure), an extra checked-in bag or lounge access at the airport. 

So, for each (simulated) passenger we have: 

• the flight product itself, which is a pre-packaged offer that the airline makes to all 

passengers. It includes the class of service (Economy, Premium Economy, Business, 

First) and a number of included services (flight, carry-on bag, checked-in bag, right to 

cancel, right for refund). 

• additional purchased services as 'ancillaries a la carte'. Examples are WLAN, an extra 

checked-in bag, etc. 

In the airline world, the central document is the "passenger name record" (PNR). Whenever a 

flight is ordered by a passenger, a PNR is created. Along with the PNR there may exist EMDs 

("electronic miscellaneous document"). These EMDs contain the sold ancillaries. For our data 

sets we will probably simplify this setting: 

 

Figure 11: Booking-Flight-Ancillary Relations 

Naturally this data comes with some sort of metadata that is usually stored with the data itself. 

As metadata we usually have information about the booking (date, time, sales channel) and 

the customer (frequent traveller number). 

For huge airline network carriers we expect about 1 billion ancillaries in our historical data set, 

since we have 

• about 100 million passengers with 

• in average 5 purchased ancillaries over 

• two years. 

We are in contact with airline partners who might provide real data sets at a later stage.  

A typical PNR contains roughly 1 to 2 KB of data. With the aforementioned figures and some 

extensions due to additional input channels, an average size of several TBs is expected. 

2.4.9 Requirement analysis 
1. The system needs to be capable to deal with the large passenger data sets that airlines 

generate. 

2. Scalable architecture which has the potential to: 

a. handle large amount of data 

b. handle data from different sources 

c. handle high volume of requests per day 

d. provide quick response times 
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e. be extensible in terms of continuously increasing data as well as increase in 

parallel requests being sent. 

3. This data does not only need to be stored, but has to provide efficient algorithmic 

usage. 

4. Tool-stack supporting Lambda Architecture principles especially for historical data 

processing. 

5. Establishing a consolidated data structure on which further statistical processing can 

be performed 

6. Processing of ongoing data streams to keep the consolidated data structure up-to-date 

(i.e. learning new data behavior into reference data). 

7. Distributed computing fundamentals based on the Hadoop ecosystem. 

8. Applying mathematical and statistical algorithms on consolidated data structure to 

identify an optimal reference model 

9. Applying variables of incoming requests on the optimal reference model to compute 

probability, estimates and forecast 

10. Efficient algorithmic usage means on the one hand the update of the model parameters 

within a reasonable timeframe (e.g. within a nightly time slot). On the other hand, this 

implies real-time responses with revenue-optimal prices upon customer request. 

The requirements for the ancillary use case can be split into several groups: 

Non-functional requirements 

• Provide data storage for at least two years’ worth of historical data. 

• Provide data storage for derived model parameters. 

• Process two years’ worth of historical data with machine learning algorithms (e.g. 
random forest, neural networks) in reasonable time (max. one day). 

• Respond to pricing requests for ancillaries in real time (< 500ms). 

• Provide scalability to respond to hundreds of million pricing requests per day. 

Software requirements 

Hadoop, HBase, Spark, Tensorflow etc. 

For the business side, common machine learning libraries have to be available. Furthermore 

we need access to the Hadoop file system as well as to the HBase data store such that we 

can look at the stored data. 

Software will be written in Java (at least Java 8). Additionally, an installation of the statistical 

software "R" is required for rapid prototyping of new algorithmic ideas. 

Hardware requirements 

For the first steps for our use case we need the ability to store data in the range of less than 

100 TB. The necessary compute power depends on the model building algorithms and tools 

we will use. This needs to be evaluated during implementation. We are, however, confident 

that the resources provided by the project partners are sufficient. 

Security and Privacy requirements  

Ancillary data is personal data. However, it does not carry the strictest privacy requirements, 

since the data does not contain names, addresses or credit card data. However it may contain 

data that directly connects to a person such as frequent traveller information. If using real data 

this will be considered as confidential information provided by the involved airlines. 

This results in the following requirements: 
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• The software is supposed to be run at airlines in the European Union. Therefore it has 

to comply with the "EU General Data Protection Regulation", if applicable. 

• The software needs to be deployable on sight at the customer's cloud service, for 

example Microsoft Azure.  

2.4.10 Innovation potential 

Current state 

When looking at the current state, we have to distinguish between the business side and the 

technical side. 

On the business side, if you ask any airline today for the most promising future revenue 

channel, the answer is always: ancillaries. Successful airlines like Ryanair and easyJet are 

prominent examples for airlines that make revenues far beyond the simple transportation from 

A to B. 

Although all airlines believe their revenue future lies in the ancillaries, their methods for 

generating ancillary offers are quite elementary: usually pricing is done by estimation and all 

customers are presented with all ancillary options. This leads to a poor look-to-book ratio and 

therefore poor revenues. The poor look-to-book ratio is mainly caused by the following 

reasons: 

• The available ancillary offers do not attract the given customer. 

• Pricing options do not suit the customer. 

While some airlines already apply rule-based pricing, completely automated pricing is not yet 

in use. 

On the technical side, airlines usually operate with old monoliths that rely on traditional Oracle 

databases. These databases tend to hit the limit of their capabilities when airlines grow. 

Therefore, expensive and badly performing software is use. Furthermore machine learning is 

currently not widely used, since traditional software usually does not contain efficient 

implementations of machine learning algorithms. 

Solutions from the PROCESS 

PROCESS will provide an architecture supported by a tool-stack ecosystem which will support 

our process of transformation of historical data by evaluating distributed and scalable 

computing algorithms based on LAMBDA architecture principles, processing of incoming data 

streams applying statistical and mathematical models as well as AI methods like machine 

learning and deep learning to compute probability, estimates, forecast and apply them on near 

real-time customer requests. 

This will help airlines solve the issues with their current data sets, opening new possibilities 

with the availability of machine learning algorithms. 

Refinement and Innovations 

With our use case prototype application we are planning to tackle the aforementioned 

obstacles for an increased ancillary sale. 

We will implement a tool that allows airlines to comb their databases with recent ancillary sales 

for matching offers for the current customer. We also intend to develop methods to generate 

revenue-optimal prices for these ancillaries, taking the current customer’s history into effect. 

Increased ancillary sales translate into huge revenue improvements, keeping in mind that 

major airlines serve up to 100 million passengers per year. 
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Key performance indicators 

The PROCESS project is a success to airlines if we can demonstrate that we have 

implemented a system that can efficiently maintain the airlines data, while at the same time 

using this data to generate dynamic prices for offered ancillaries. 

The final performance indicator will be the increase of revenue in the ancillary pricing when the 

system will be in use. Another, more technical, KPI can be the maximum request rate for 

querying the model.   

2.5 UC#5: Agricultural analysis based on Copernicus data 

2.5.1 Use Case Domain 
Agricultural Observation and Prediction. 

2.5.2 Use Case Motivation 
Global Change, which subsumes the accelerating influence of humans on the natural 

environment, can be experienced in manifold ways. The most prominent are climate change, 

land use change including changing land management intensities, changing demand for 

biomass resources, increasing inputs of nutrients, changing mass balances of glaciers and 

changing global cycles of important elements like carbon and nitrogen. These changes 

influence the availability, quality and allocation of water resources, the productivity of the 

biosphere, the intensity of land cultivation and land use on all scales from local to global and 

will force to adapt to changing future boundary conditions. 

With increasing area the characteristic land surface processes and features, like snow 

dominated mountain processes, intensive agriculture and irrigation, land use patterns and 

geological settings simultaneously influence the overall reaction of an area or watershed. It is 

therefore necessary to treat this large variety of land surface processes and human 

interventions in a consistent manner within one model.  

Therefore this use case analysis earth observation data as a spearhead activity for piloting and 

stress-testing advanced data analysis techniques that can be used to select and preprocess 

specific (e.g. spatially limited) time-series from the Copernicus datasets, that are rapidly 

approaching exascale level. 

2.5.3 Use Case Goal 
The aim of the use case is to realistically simulate natural processes and impacts of human 

interventions based on a few rigorous principles, which ensure maximum predictive power. 

Among them is a strict conservation of mass and energy and no calibration using measured 

streamflow records. The used software has been developed for the last 25 years with the aim 

to provide an integrated, stable and versatile tool to simulate land surface processes and to 

consider the dynamic interactions between the different land surface compartments an the 

human influences in the processes. 

The main focus is on Multi-Model Simulations which are seamlessly linked with observational 

data (including also sources like social media and local sensor networks to complement 

satellite observations) to improve accuracy, relevance and efficiency beyond what would be 

possible to achieve using either simulation or observational data on their own. 

2.5.4 Use Case Description 
The fundamental scientific problem is the sustainability of food production on the global scale, 

which is a multi-disciplinary problem requiring integrating simulation models from cell-level 

phenomena all the way to macroscale developments (such as climate change or soil erosion). 

The key inputs for the analysis are the Copernicus datasets, consisting of data from several 

satellites (Sentinel family) that produce radar and visible light data with up to 10m resolution. 
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The radar data covers the whole globe every 2 days, with a monthly data rate of about 3PB. 

The visible light data covers the globe every 2-5 days, with a monthly data rate of about 4.5BP. 

The availability of such fine-grained, global time series makes it possible to correlate and 

validate different Earth System Models that simulate the combined impact of several 

mechanisms with complex interaction patterns. The use case will use one such modelling 

system - the PROMET software - as a validation tool for services that provide efficient and 

semantically rich interface to Copernicus data sets. 

2.5.5 Software layers 
The use case is based on a tightly coupled modelling framework PROMET (Processes of Mass 

and Energy Transfer) that combines modelling the macroscale carbon cycle, water and energy 

inputs with the behaviour of water and key nutrients in the soil with analysis of plant metabolism 

and even human decision-making. This use case combines tools for 

• Modelling a wide variety of global, local and cellular phenomena 

• Simulation of the system-level combined impact of these processes 

• Basic pattern recognition tools, e.g. adaptive and Bayesian methods for social media 

analysis and for data mining from the Copernicus datasets. Deep learning to identify 

human structures and their changes over time being considered 

• Verification approach that allows adjusting simulation parameters based on the actual, 

observed development in the earth observation data during the simulation process. 

• Dimension reduction approaches to manage Copernicus datasets (multi-sensor, multi-

temporal data-cube) more efficiently 

The closed source code is written in FORTRAN 77 and 95. Any communication with 

PROCESS components will be processed over an interface provided by the PROMET 

programmers. 

2.5.6 Workflow 

 

Figure 12: Workflow of use case 5. 

The Use Case initially starts by accessing data sets from the Copernicus observations. These 

data are fetched via an adapter, which needs to be implemented during the project. The 

fetched data sets will be stored in the PROCESS storage facilities. It includes raw and 

metadata. 

With a newly developed preprocessor, some of the data will preprocessed on the PROCESS 

computing resources. This will maximize the parallelization degree and enlarge the possible 

processed amount of data within a given time frame compared to the actual processing. The 

processed data is again stored within the PROCESS storage resources. 

The closed-source PROMET will fetch this data via a new so-called PROMET-Adapter, which 

can grant access to the data storage and also grant access for the PROMET software to be 

executed on the PROCESS computing resources. 
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Current software and hardware infrastructure used 

PROMET is a proprietary model written in Fortran with Intel-specific instructions. It is 

parellelized with OpenMP and scales up to 16 cores. Current data processing of the 

Copernicus data sets is also proprietary and therefore closed-source. 

2.5.7 Methods and tools 
The PROMET framework combines the finding from over 700 peer-reviewed scientific papers 

that are used to create a combined system capable of modelling complex phenomena based 

on simulating the “first principle” behaviour of each of the interconnected subsystems. The 

scalability of the system is based on effective use of OpenMP library. 

2.5.8 Dataset description 
PROMET uses the Copernicus data sets in own, proprietary data formats. The processed 

Copernicus datasets consisting of data from several satellites (Sentinel family) are defined by: 

• XML files 

• RGB images 

• over all 7.5 Petabyte raw data each month 

This data is available from the Copernicus Open Access Hub. The Data Hub exposes two 

dedicated APIs for browsing and accessing the data stored in the rolling archive. The APIs are: 

• Open Data Protocol (OData) 

• Open Search (Solr) 

The OData interface is a data access protocol built on top of core protocols like HTTP and 

commonly accepted methodologies like REST that can be handled by a large set of client tools 

as simple as common web browsers, download-managers or computer programs such as 

cURL or Wget. 

OpenSearch is a set of technologies that allow publishing of search results in a standard and 

accessible format. OpenSearch is RESTful technology and complementary to the OData. In 

fact, OpenSearch can be used to complementary serve as the query aspect of OData, which 

provides a way to access identified or located results and download them. 

The metadata consists of the configuration of the preprocessing, which will include the 

description of the Copernicus data sets and the manipulation formula applied on each value 

field with the corresponding calculation value (weight). For example, to the measured amount 

of rainfall a certain error value needs to be added or subtracted. metadata in this could be tuple 

of (rainfall, addition, 0.012%). 

2.5.9 Requirement analysis 

• The use case requires linking and comparing modelling and simulation results with the 

actual observational data, supporting formation of hypotheses and quality assessment 

of the simulation tools. Providing this functionality requires: 

• Extraction of relevant time series from the Sentinel data (up to 7.5PB per month) 

• Storing the simulated data and associated metadata in a way that it can be linked with 

the Sentinel time series 

• Providing generic API for using Copernicus data with any modelling framework 

Software Requirements 

To enable PROMET processing more data sets from the Copernicus data, three main 

connectors between the PROCESS and the PROMET infrastructure are needed: 
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PROCESS-Copernicus-Adapter: To collect the data sets from the Copernicus database and 

to store it in the PROCESS storage, an adapter needs to be implemented realizing an efficient 

transport between these two storage units. 

PROCESS-PROMET-PrePROCESSor: To speed up the computation of the preprocessing of 

the Copernicus data sets a new preprocessor needs to be implemented. The aim is to execute 

the preprocessing massively parallel and completely on PROCESS computing resources. This 

pre-processor will be written in Python to be executable on HPC resources. 

PROCESS-PROMET-Adapter: This final adapter will provide a seamless transport between 

the PROCESS storage with the preprocessed Copernicus data sets and PROMET itself.  

Hardware requirements 

• Store raw Copernicus data sets 

• Computational resources for preprocessing 

Security and privacy requirements 

All used input data is open accessible and has therefore no special security and privacy 

requirements. The used software is a closed source project. Any provided source code needs 

to be processed confidentially.  

2.5.10 Innovation potential 
PROCESS will provide a generic API and web-based interface to Copernicus data that allows 

tight coupling of the modelling applications, observational data, and simulation results and 

associated metadata. 

The use case uses the tightly coupled modelling framework PROMET as a demonstrator of 

using the massive Copernicus datasets as a solution for challenging modelling problems. 

PROMET combines modelling the macroscale carbon cycle, water and energy inputs with the 

behaviour of water and key nutrients in the soil with analysis of plant metabolism and even 

human decision-making.  

The generalizable components of the use case are related to the identifying and staging of the 

relevant input data from the massive Copernicus datasets for use in the modelling solutions, 

and to the mechanisms that allow correlation of the simulation results and the observation time 

series using (near-) exascale data resources. 

Current state 

The current state of the use case uses none of the before described adapters. The necessary 

data sets are imported into the framework almost manually and any preprocessing is 

sequential. 

Solutions from the PROCESS 

PROCESS tools will make it possible to perform these multi-model simulations in a way that is 

seamlessly linked with observational data (including also sources like social media and local 

sensor networks to complement satellite observations) to improve accuracy, relevance and 

efficiency beyond what would be possible to achieve using either simulation or observational 

data on their own. 

The open, generic APIs developed will make it possible to use Copernicus data to refine, steer 

and validate the behaviour of any Earth System modelling system in much more flexible way 

than today. 

Refinement and Innovations 

PROCESS will provide a generic API and web-based interface to Copernicus data, which might 

be adapted to other open source databases.  
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With access to exascale computation possibilities, the use case can enlarge the data basis for 

its preprocessing and so reduce any uncertainty in the simulations. 

Key performance indicators 

• Examples of complex simulations based on preprocessed Copernicus data 

• Closed Source Software Adapters 

• Increasing Image Preprocessing 

• Intelligent Image Storing 

• Efficient data transfer in and out PROCESS 

3 Common conceptual model 
To generate a common conceptual model, we will firstly summarize the requirements related 

to PROCESS as given by each of the use cases, and then derive a set of generalized 

requirements, which then lead into an ensemble of building blocks as a solid basis for the 

overall PROCESS architecture. 

3.1 Requirements Analysis 
In the following, hardware and software requirements of any of the five initial PROCESS use 

cases are gathered. The requirements have been collected during a number of (technical) 

workshops and further technical discussions. In the remainder of this section, a summary of 

requirements is presented in a generalized form. The requirements are always divided into 

hardware and software requirements and differ in terms of quality and quantity on a per-use-

case basis, which is mostly due to the maturity of the given uses case. Some of the use cases 

have started from scratch, while others already bring advanced software to the table. 

3.1.1 Use Case 1: Exascale learning on medical image data 

Hardware requirements 

• Access to Accelerated Computing Resources for network training 

• Access to HPC Resources for pre-, post- processing and network testing 

• Access to data storage from all included resources, with low latency 

Software requirements 

• Common tools for machine learning and deep learning with the necessary GPU 

drives  

• Python development environment with support for Jupyter notebooks 

• Apache Spark and Hadoop frameworks and support for HDF5 

Summary 

To summarize, this use case targets aspects of Deep Learning and demands for a set of 

technical building blocks and their interplay as follows: 
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Figure 13: Conceptual model of use case 1. 

 

3.1.2 Use Case 2: Square Kilometre Array/LOFAR 

Hardware requirements 

• Fast connected resources (10 Gbit/s or higher) 

• Access to external PiCaS installation from the computing resources 

• Access to data storage of at least 20TB 

• Access to CPU clusters for pre-processing  

• In the future, access to GPU clusters for pre-processing 

Software requirements 

• Python development environment 

• Support for docker or singularity (CVMFS) containers 

• Support for gridftp  

• Workload manager (PiCaS token pool server) 

Summary 

To summarize, this use case targets aspects of Exascale Management and Calibration and 

demands for a set of technical building blocks and their interplay as follows: 
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Figure 14: Conceptual model of Use Case 2. 

 

3.1.3 Use Case 3: Supporting innovation based on global disaster risk data 

Hardware requirements 

• Access to HPC Resources 

• Access to data storage  

Software requirements 

• Matlab 

• Python development environment 

• Probabilistic risk calculations 

• Large-Scale, mathematical modelling 

Summary 

To summarize, this use case targets aspects of Probabilistic Analysis and demands for a set 

of technical building blocks and their interplay as follows: 

 

Figure 15: Conceptual model of Use Case 3. 
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3.1.4 Use Case 4: Ancillary pricing for airline revenue management 

Hardware requirements 

• Data storage on the order of several TB 

• Access to computing power (HTC or Docker) 

• Access to data storage  

Software requirements 

• Apache Hadoop, HBase and Spark 

• Java 8+ development environment 

• Machine learning capabilities (not specified at time of writing) 

Summary 

To summarize, this use case targets aspects of Deep Learning and demands for a set of 

technical building blocks and their interplay as follows: 

 

Figure 16: Conceptual model of Use Case 4. 

3.1.5 Use Case 5: Agricultural analysis based on Copernicus data 

Hardware requirements 

• Access to HPC resources 

• Access to data storage 

Software requirements 

• Transfer Copernicus data sets to data storage 

• Python development environment 

Summary 

To summarize, this use case targets aspects of Exascale Data Extraction and demands for a 

set of technical building blocks and their interplay as follows: 
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Figure 17: Conceptual model of use case 5. 

3.2 General Requirements 
To summarize, the following superset of requirements is derived from the use cases: 

Hardware requirements 

• Access to HPC resources  

• Access to Cloud resources 

• Access to accelerated computing resources  

• Access to external infrastructure from computing resources 

• Access to data storage on the order of 1PB (distributed)  

Software requirements 

• Common tools for machine learning and deep learning  

• Python development environment with support for Jupyter notebooks 

• Java environment 

• Apache Spark, Hadoop and HBase frameworks 

• Support for containers such as Docker and Singularity  

• Secure access to and extraction from external data resources 

• Grid support 

• Matlab environment 

• Data extraction tools 

• Large-scale modelling 

• Predictive analytic methods 

• Probabilistic risk calculation 

All these requirements lead to different Execution Models, namely: 

• Deep Learning 

• Exascale Data Management 

• Exascale Data Extraction 

• Probabilistic Analysis 

• Calibration 

• Pre- and Post-Processing 
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Looking at the use cases reveals a good portion of requirements and building blocks that can 

be found in many or nearly every use case. In addition to the commonly used services, a few 

extraordinary requirements (e.g. access to specialized hardware, such as machine learning 

clusters or GPGPUs) arise. Putting everything together we arrive at a common conceptual 

model that is able to cover any of the requirements presented by the five initial PROCESS use 

cases: 

 

Figure 18: Common conceptual model. 

The common conceptual model is enriched by certain (technical) necessities, namely: 

• Secure access: As PROCESS is thought to serve several communities and use cases 

concurrently, a user and security management component is mandatory. 

• Data Management: While a multitude of different data sources in different locations are 

accessed, a data management component is needed. 

o Access credentials to physical data stores must be passed on to the de-facto 

service provider and a potential translation must take place.  

o Potentially arising meta-data must be managed. 

• Computing management: Similar to data management, access to a variety of physical 

compute resources, including credentials delegation, must be made available. Within 

this component a service multiplex and potential credential translation will be 

implemented and ensured. 

3.3 Summary 
In order to fulfil the requirements, one can derive the following building blocks as the starting 

point for the PROCESS architecture: 

• Secure User Access to Management Platform 

• Execution management Framework 

• Distributed Data Management 

o Raw Data  

o Metadata  

• Physical Data Storage and Archives 

o Storage 

o Archives 
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o External Sources 

• Computing Resource Management for at least (but not necessarily limited to) 

o High-Performance 

o Cloud 

• Physical Computing Resources 

o High-Performance 

o High-Throughput 

o Cloud 

o Specialized accelerators (e.g. GPGPU) 

To summarize, the following table overviews the generation of specific requirements (and thus 

building blocks) by use cases: 

Table 4: PROCESS common concepts required per use case. 

PROCESS Execution Models 
Deep 
Learning 

Exascale 
Data 
Manage-
ment Calibration 

Proba-
bilistic 
Analysis 

Exascale 
Data 
Extraction 

Pre- and 
Post-
Processing 

Secure User Access to 
Management Platform 

x x x x x x 

Execution Model 
Management Framework 

x x x x x x 

Distributed Data 
Management 

    
 

    
 

  Raw Data  x x x x x x 

  Meta-Data  x x x x x x 

Physical Data Storages and 
Archives 

    
 

    
 

  Storages x x x x x x 

  Archives           

  External Sources   x  x x  

Computing Management           

  High-Performance  x x x x x x 

  Cloud  x x x x   x 

Physical Computing 
Resources 

    
 

    
 

  High-Performance  x      x x 

  High-Throughput  x x x x    

  Cloud  x x x x   x 

  Accelerated  x         

 

The table may also be used as a means of prioritizing certain technical areas throughout the 

development and implementation phase, simply by deriving their priority from the number of 

use cases relying on them. 
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4 Architecture 

4.1 Architecture components 
The project bases its developments on the architectural framework model presented in Figure 

19. This is a functional model, helping to align developments in each of the following “service 

component clusters”: 

• Computing and storage infrastructure, responsible for optimising the performance of 

the underlying infrastructure while providing consistent interfaces to physical computing 

and data resources to the higher-level services 

• SOA/Cloud solutions, supporting mapping of the “business processes” to mature, well-

documented and supported software and service components 

• Visualisation layer, supporting discovery and investigation of the input datasets, data 

pipeline design, scripting, as well as visualisation and further processing of the results 

of the analysis.   

The main challenges in processing of exascale data which we want to tackle in PROCESS are 

as follows: extreme data sizes and data structure complexity. The former often prevents 

migration of data to a remote computation location, while the latter requires extensive domain 

knowledge in order to be able to use data effectively [USDOE, 2010]. This forces users of 

exascale data to perform computations in situ, and only the largest research institutions and 

the best funded projects can afford to acquire access to an infrastructure able to house both 

the data and the extreme computational resources that can process it. Additionally, the expert 

domain knowledge required to be able to make sense of the data is often hard to find. These 

requirements make exascale processing prohibitively expensive for smaller players. 

Designing an architecture which alleviates some of these problems and brings exascale data 

closer to smaller research organizations, and even to individual researchers is a crucial step 

in fulfilling the objectives of PROCESS. The architecture must be able to decouple access to 

the data from their use in computation, and to provide simplified access to individual 

components of the data. 

In PROCESS, we will also design a reference architecture (in JRA1) that not only addresses 

exascale data management challenges related to infrastructure owned by the consortium but 

also deals with data management challenges across existing Research Infrastructures (RI). 

RIs play an increasingly important role in the advancement of knowledge and technology in 

Europe. They are a key instrument in bringing together stakeholders with different 

backgrounds to look for solutions to many of the problems which the exascale data society is 

facing today. 

Research infrastructures (RIs) offer unique research services to users from different countries, 

attracting young people to science, and helping shape scientific communities. RIs are hosted 

at research institutes, use a combination of high-performance computing (HPC), grids and 

clouds, and are often interconnected with high-capacity networks. RIs are accessed by the 

scientific community through a layer of high-level services that efficiently and transparently 

manage the execution of complex distributed CPU and data-intensive applications. Often these 

applications, modeled as workflows, are composed by loosely coupled tasks or jobs which 

communicate through file exchange systems [Agarwal 2012], [Wang 2013]. Such file exchange 

is facilitated by Distributed File Access Services (DFASs) which offer a single point of entry to 

discover and manage files and replication to improve file availability. Despite the effort to move 

computation to the data, there are cases where this is simply not possible. Technical 

constraints such as privacy and security issues, lack of computing power or the need for 

specialized hardware prevent computation from reaching the data [Vairavanathan 2013], 

[Tudoran 2016]. 
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Typically, scientific workflows need access to datasets which are processed to generate new 

datasets, which have to be further processed by subsequent tasks to achieve a defined goal 

[Simonet 2015]. Therefore any DFAS which supports such an execution model needs to 

maintain strict consistency throughout its file access points. To enable use of off-the-shelf 

software and to hide the complexity of the network from the application developers and end 

users some DFASs offer standardized protocols [Sim 2007], [Mandrichenko 2005], [SNIA 

2010] which decouple the development of client software from the DFAS, enabling 

implementation of clients that can present the DFAS as a POSIX file system through network 

transparency. Network transparency hides the way protocols transmit and receive data over 

the network; thus any operation that can be performed on a local file can also be performed 

on a remote file. To scale with increasing request load, Distributed File Access Services 

(DFASs) often employ redundant pools of servers. Despite the availability of RIs, DFASs do 

not always take advantage of their capabilities. It is rarely the case when DFASs interact with 

network devices (switches, routers, etc.) to optimize data transfers and maintain quality of 

service (QoS). The main hurdle for interacting with network devices to optimize data transfers 

is the configuration of these devices, each of which relies on different protocols and interfaces. 

This makes large data transfers between RIs difficult to facilitate and slows down the life cycle 

of scientific applications [Chen 2013], [Kluge 2013], [Kreutz 2015]. 

From the point of view of computations, the focus of the project will be to facilitate simulation, 

modelling and development of mathematical method and tools for exascale data processing. 

This, in particular will include: 

• services that enable execution of simulations models as interactive workflows using 

heterogeneous software, including modern languages for scientific computing 

• services that facilitate access to HPC and cloud resources by using well-defined 

standards 

• services that facilitate programming for multicore architectures 

• benchmark and monitoring services 

According to the requirements analysis, the main demands placed on the architecture are: an 

exascale data-capable, service-oriented, and cloud-based architecture allowing exascale 

computational research even for organizations which do not possess extreme resources. 

Considering the demands, a modular open-source architecture is proposed (Figure 19). It is 

divided into three main modules: (1) exascale data module led by work package 5 (green 

boxes), (2) exascale computing module led by work package 6 (red boxes), and (3) service 

orchestration module led by work package 7 (blue boxes, it includes a user interface). 
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Figure 19: The initial functional design of the PROCESS architecture. 

Users access the architecture through an application-oriented scientific gateway which 

provides secure access in the form of an interactive environment. The environment is 

represented as a script application programming interface (API), command-line interface (CLI), 

and graphical user interface (GUI). Authentication and authorisation of the user is performed 

by a dedicated service.  

In order to alleviate the problems with processing exascale data, each of use case scenarios 

will be expressed as a set of containers or virtual machines. Commonly, workflow/scenario 

steps consist of applications that have enormous dependencies. This approach will unlock the 

full potential of the infrastructure, and also provide a secure and isolated environment. 

However, it implies virtualization/containerisation of an application environment as well as its 

execution environment. The architecture will provide a containerized application repository, 

which will offer a container or virtual machine per workflow/scenario step. 

The core of the platform services is the virtualization layer. This component will be responsible 

for deployment of application services. Once the services are deployed, they will be 

orchestrated by high-level descriptions automatically. This element will be responsible for 

resource allocation, configuration of all services and management of their lifecycle. 

To reach an exascale-capable infrastructure, interoperability across multiple computing 

centres is essential. The whole infrastructure is divided into two parts: (1) an extreme large 

data service-oriented infrastructure, and (2) an extreme large computing service-oriented 

infrastructure. The first part is modelled as a distributed virtual file system (DVFS), an 

abstraction layer on top of a more concrete file system. It allows applications to access different 

types of file systems (within a data storage federation) in a uniform way. It also supports access 

to files from multiple hosts via a computer network. The main requirements are to fit the 
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federated architecture principles and to avoid forcing users to rely on any specific client. DVFS 

also includes a manager for metadata and supporting data services (such as monitoring). 

The second part is responsible for management of computing resources. It is modelled as an 

interactive computing environment, allowing to access different computing resources in a 

uniform manner. It supports extreme large computations that require heterogeneous 

infrastructures. It offers HPC computations, HTC computations as well as cloud computations, 

and supports accelerators. 

4.2 The initial technology-based architecture 
A preliminary list of required technologies has been identified during the first PROCESS 

technical meeting in Amsterdam, (February 2018), which focused on the initial analysis of the 

use case requirements. The objective is to establish, as soon as possible, a testbed for the 

application owners within PROCESS to try and play arround with various solutions they are 

currently experimenting with. It will also help create synergy between the application and 

technology developers in the PROCESS project. 

Integration as a whole is depicted by Figure 20. Users will interact with the architecture through 

a Model Execution Environment (MEE). The whole architecture is driven by a SOA approach, 

and so RESTful interfaces are dominant. MEE will provide authentication and authorisation 

services. It will be integrated with Jupyter and offer browsing of files through LOBCDER. MEE 

will be connected to a TOSCA template repository through SSL, and Cloudify through a REST 

API. Following successful authentication and authorisation, users will be able to specify a 

workflow. Cloudify will obtain its description in a TOSCA template and deploy dedicated 

Docker/Singularity images on corresponding infrastructure elements. In order to achieve this 

functionality, Cloudify will include three plugins: (1) the LOBCDER plugin, (2) the Rimrock 

plugin, and (3) the Atmosphere plugin, exploiting the underlying REST API (and WebDAV, 

within LOBCDER plugin). HPC resources will be managed by Rimrock through the GSI-SSH 

protocol, and cloud infrastructures will be governed by Atmosphere. The distributed virtual file 

system will be provided by LOBCDER. It will provide direct access to data sources through a 

dedicated virtual file system driver. However, if the service is complicated (for example data 

filtering, data integration etc.), then it will go through the DISPEL Gate. LOBCDER is also 

integrated with DataNet which will be responsible for management of metadata. More details 

about the technologies are provided in the next section, which focuses on the current state of 

the art and a description of the relevant tools. 
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Figure 20: The technology components of PROCESS’ architecture (the yellow circle with the letter M represents a 

monitoring agent from Zabbix)8. 

                                                 
8 The names of the technology currently listing in this document are subject to change according to the need of the project 
realization as well as dynamic developments of use cases. The list of technologies will be revised along the lifetime of 
PROCESS project taking into account the technologies that will be developed for both resource and data management 
deployed and used  across existing European Research Infrastructures (RI). 
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5 State of the art of services 

5.1 State of the art of extreme large data services 

5.1.1 Challenges facing Exascale data management 
In 2009, at the supercomputing conference in Portland, Oregon, Computer world projected 

exascale implementation by 2018. They define exascale computer as a system which is 

capable of at least one exaFLOPS, or a billion calculations per second. Comparing to the 

capacity of petascale computer that exascale capacity is a thousand fold higher. The 

american DoE (Department of Energy) listed in the description of the Advanced Scientific 

computing Research eight challenges facing exacale computing, ranging from processor 

architecture to programming model and reliability. Data management has been mentioned at 

two levels: (1) memory bandwidth capacity, (2) data movement and I/O systems. The other 

major challenge is related to cost and energy. The estimated system power for an exa-scale 

computing is 200 MW. This is impossible to achieve if the target is between 20-40 MW. In this 

case all factors that can lead to more power consumption cannot be considered. 

One way to achieve exa-scale is to use mulitple peta-scale computers, or even use a large 

number of less performing computers. This is not a new idea and this is what grid, cloud, big 

data platform were aiming at and could not achieve. The overhead of such systems can cause 

high latency, which prevent to reach the goals for exa-scale computing. Petabytes and 

exabytes of data and metadata are generated and processed by the exascale applications. 

These amount of data has to be transferred back and forth between different components and 

processing units. This makes communication overhead a big issue for such systems. 

Granularity of data transfer determines the amount of communication overhead. There should 

some evolution in software and hardware to reduce the transfer cost between storage and 

processing units. The next generation of extreme-scale systems will be fully distributed, hence, 

both software and hardware needs to be loosely coupled and work as a unique unit 

asynchronously. This challenges makes time of execution as another significant overhead in 

exascale systems. 

In the following paragraphs we summarize the major challenges facing exascale computing: 

Power and energy: This is known as the most important challenge to reach 1000x faster 

computational power. Reaching exascale computing with a combination of current 

technologies and devices needs hundreds of megawatts of power [Reed 2015]. Hence, it may 

have some technologies, software, and hardware devices that are not efficient for exascale 

systems. To handle this problem, there are some techniques such as thinking of redesigning 

power-care cooling and processing circuits [Reed 2015]. However, improvement in hardware 

and architecture level such as decrease in latency and increase in bandwidth onely would not 

be able to reach energy efficiency. Redesign of network and processing devices can make it 

easy to provide more efficient solutions in software level. For example, a manageable 

hardware device can be easily controlled by software in case of need. Further, redesign of 

circuits may need to have another type of software with new features (i.e. locality-aware). Thus, 

all aspects of an exascale system affect the amount of energy need to be consumed. 

Memory and storage: Having 1000x faster computing systems needs similar higher memory 

and storage capability in terms of capacity and speed. Without such memory and storage 

capability, we cannot envision having an efficient exascale computing system. The 

computation of the next-generation processors will be noticeable, however, similar scaling of 

memories regarding speed and capacity has not fully addressed yet.  If enough memory 

bandwidth as same as the computation power does not feed the system, the computational 

level of an exascale system does not work well. A heterogeneous architecture will get both 

hardware and software levels to unlock heterogeneous exascale system [Schulte 2015]. 
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According to the envision of memory requirements for an exascale system, none of the current 

memory solutions are able to reach the exascale targets [LLNL 2014]. Another challenge in 

reaching memory targets for exascale systems is the conflicting objectives of bandwidth and 

capacity. A solution to support exascale systems is to provide a heterogeneous memory 

architecture besides considering energy consumption while memory can be a major 

responsibility for a large fraction of power consumption of the whole system [Schulte 2015]. 

Hardware architecture: Development of hardware components and communication devices 

may solve other challenges or ease the way we can tackle current challenges. This effort may 

include design of a more energy efficient CPU core, model a new circuit with more controlling 

features, propose a new communication link/device, increase in the capacity and/or 

transmitting speed of memory & storage devices etc. This development can be done based on 

the exascale architecture and the major needs to have a plausible exascale computing system. 

To do so, there would be applied system and/or application options to enable resiliency. In this 

review, we do not want to focus on pure hardware approaches. However, we will discuss 

hardware aspects in cases they help, provide or ease system and software solutions. 

Programming approaches: As the computing power (clock rate) becomes flat in a single 

core, parallel computing of applications on several CPU cores seems to be more logical to 

reach more computational power. In exascale systems, we need to consider parallelism of 

applications on billions of processing cores, which would need a big change in all aspects of 

the previously provided software and systems. 

Existing programming approaches and technologies do not provide efficient performance for 

extreme-scale HPC systems. Lightweight parallelism will be required to make such systems. 

Hence, an evolution of programming models will be required. There are two different ways for 

the evolution of programming languages [Bergman 2008]: 

1. Innovation provides a new paradigm to the programming conceptual model. 

2. Standardization improves existing standards by combining current concepts of related 

programming models and technologies. 

It seems a combination of both can be the best choice to serve all features that we expect from 

a programming paradigm for applications in exascale systems. 

There is a need to accelerate communication while the next generation of extreme-scale 

computing will be distributed. Lack of these abilities will result in dramatic decrease in 

parallelism performance due to the complex nature of the system. Another problem of current 

programming models is the lack of prevention of applications from using much of a specific 

resource, which causes failures [Snir 2014]. Some of the most important issues in current 

programming techniques that need to be enhanced for exascale applications are provided 

below [Norman 2017], [Bergman 2008]: 

1. Developing portable programming models. This is specifically beneficial for data-

intensive applications. 

2. Making a trade-off between portability and performance. 

3. Algorithmic and programming techniques to handle poor locality 

4. Debugging capabilities for distributed systems. This is now very hard to debug a code 

that run on millions of processing units. 

5. Nontraditional software stack 

6. Programming abstraction for resilent exascale applications 

7. Loosely-coupled programming models 

8. Automatic parallelism at extreme scale programming algorithms 
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Resiliency: According to the prediction based on the current large scale systems and 

technology advancement, this is expected to exhibit a widespread increase in the rate of faults 

in the next generation of exascale systems. As a result, many errors and thus malfunctions will 

be propagated from simple components of the extreme computing system, which would have 

dramatically corrupt the final results of the whole processing units. The resiliency issue is not 

the same as the fault issue, however, fault and error management is a must to reach resiliency. 

Numerous computing devices are going to bind together to reach the exascale computational 

power. The probability of facing failures in a single component is quiet low. In contrast, the 

more the number of components work together in the same system, the higher is the risk of 

facing a failure in one of the components and the more effect does the faults would have on 

the overall performance of the system. 

Resiliency at exascale systems can be provided with different solutions. The major solution is 

to prevent the system from any faults and errors. To do so, the first step would be avoiding the 

system from error occurrence. In the next step, error detection would be a vital necessity for 

such systems if any error has been occurred. After detecting these errors, the first urgency 

operation would be decreasing the negative effects of the occurred error. Recovery from the 

last point before the time in which the error occurred is the next step. Diagnosis is another 

solution that not only does it detect the root causes of the occurred fault but it does also take 

some decisions in order not to face such failures in future [Snir 2014]. 

Scalability: Existing design of software for centralized architecture of HPC systems has limited 

scalability, which is a serious bottleneck for extreme-scale computing systems [Wang1 2016]. 

This concern motivates alternative solutions to expose intra-node parallelism such as 

distributed architectures to support scalability [Wang1 2016]. To achieve extreme scalability, 

some problems should be addressed that are provided below [Wang1 2016], [Chakroun 2015], 

[Wang2 2016]: 

1. Lightweight, asynchronous, and loosely coupled software systems 

2. Fully distributed load-balanced and locality-aware management algorithms 

3. Locality-aware encoding 

4. Auto-tuning compilers 

5. Distributed and n-dimensional data structures for metadata 

6. Shared memory threading techniques 

7. Inter-node distribution techniques 

Fault tolerance: Once we think of having an extreme-scale computing system, we should be 

aware of higher error rate of such systems because of the complexity of the system in hardware 

and application levels [Snir 2014]. Thus, the nominal computation power of the system in reality 

would be marginal because of this obstacle.   

Faults and errors are directly effect on the resiliency. Fault tolerance and error prevention is a 

must to reach resiliency. A failure in general can either cause incorrect results or make some 

problems to run an application (i.e. increase in execution time).  A fault itself is not necessarily 

the cause of an error (i.e. an active fault will cause an error while a dormant fault will not), 

however, it shows that the system is vulnerable and it is not fully immune from deficiencies. 

There are six different sources of failures: hardware, software, network, environment, human, 

and unknown [Bergman 2008]. Most of these failures comes from hardware and software 

sources respectively, including both intermittent and hard failures [Bergman 2008]. 

In this section, we specifically discuss software related faults. These software related fault 

sources are grouped into three domains: (a) software itself is the reason of faults; (b) software 

cannot overcome hardware problems results in faults; (c) incorrect firmware in software is the 
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responsible for hardware faults. Same as the fact that each fault does not necessarily causes 

an error, all software errors are not equally bad. Hence, some approaches such as prevention, 

prediction, tolerance, detection, containment, and recovery can be applied according to the 

severity of the faults [Snir 2014]. 

5.1.2 Exascale data management projects 
Since 2011 a number of projects tackling various issues in exascale computing have been 

initiated worldwide. Some of these projects have already produced useful outcome in terms of 

methods, techniques, and tools. Table 5 lists a couple of large exascale projects in EU and 

US. While we are collecting applications requirements in PROCESS and assessing our own 

suite of tools, we are also studying the methods and tools developed in these projects.  At this 

point in time our investigation are at a very early stage, in terms of software selection 

considering maturity of the code and whether it is still active and has some developers and 

users communities to support. Unfortunately for software developed in short lifetime projects 

(3 to 4 years) these two requirements are often not satisfied. Nevertheless, the methodologies 

and ideas developed in these projects will the PROCESS project to avoid pitfalls and speed 

up the PROCESS development process. 

Table 5: Overview of exascale data management projects. 

Project Name Description 

1. CRESTA 
The CRESTA software collection contains a collection of software 

designed and enhanced to exploit future exascale platforms and to 

support applications on exascale platforms [CRESTA]. 

2. Mont-Blanc 

Provides software tools that help programmers and sowtware 

architects to observe and understand the behaviour of applications 

running on an ARM-based system, locate and fix errors in the code, 

and explain observed performance inefficiencies [Mont-Blanc] 

3. MaX 

projects 

MaX addresses the challenges of porting, scaling, and optimising 

material science application codes for the peta- and exascale 

platforms in order to deliver best code performance and improve 

users´ productivity on the upcoming architectures [MaX_projects]. 

4. Exascale 

project 

Developed a comprehensive and coherent software stack that will 

enable application developers to productively write highly parallel 

applications that can portably target diverse exascale architectures 

[Exascale_project] 

 

5.1.3 Distributed file systems: a current overview and future outlook 
Many applications require access to data sets that do not fit on a single server. Additionally, 

such application might have varying degrees of performance, availability and fault-tolerance 

requirements. One way to address these issues is by making use of a distributed file system 

(DFS). In the following sections we give an overview of several established DFS solutions 

(GFS, HDFS, GlusterFS, Ceph, Lustre and cloud-based object storage), while also taking a 

look at future challenges we expect to be relevant for the advancement of DFS design. For the 

established solutions, we highlight differences in their design and outline characterizing 

aspects. For the future challenges, we discuss novel research projects and how these attempt 
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to tackle the challenges. Besides focussing on fault tolerance and scalability characteristics, 

we briefly consider the solutions in the context of exascale computing to see whether they 

would be appropriate. 

The capacity of storage devices has been ever growing since the inception of the first hard 

disk drives (HDD's) more than 60 years ago. State-of-the-art technology currently limits HDD 

storage capacity for a single device at around 10TB, with technology to support ~100TB HDD's 

expected by 2025 [hgst14][astc]. However, many modern applications deal with data sets sized 

beyond what fits on a single machine or server. Moreover, these applications potentially require 

varying degrees of performance, availability and fault-tolerance. To facilitate this, one has to 

make use of a distributed file system (DFS). DFSs are not a new technology, traditional 

solutions like the Network File System (NFS) have been around since the 1980s 

[Sandberg85designand]. Although these traditional technologies are still being used, it are the 

developments in high-performance computing (HPC) and the advent of big data and cloud-

based applications that have lead to the development of many novel DFS designs and 

architectures. Moreover, since we are slowly but steadily heading towards the era of exa-scale 

computing, it will be interesting to see how DFS designs are developing in this regard. With 

this work, we provide an overview of several established state-of-the-art DFS solutions while 

also highlighting novel research projects and regarding them in an exa-scale computing 

context. 

In the case of a DFS, the file system manages access to storage devices attached to multiple 

machines or servers. In order for the file system to actually manage data stored on multiple 

servers, these servers will have to communicate with each other over a network. Thus in the 

case of a DFS, another layer is placed on top of the traditional file system in the form of a 

network protocol to facilitate the communication between servers. This additional layer of 

abstraction should allow for a DFS to mount storage devices physically attached to different 

servers on multiple client machines.   

From a design perspective, there are three properties that are desirable for a DFS, namely: 

transparency, fault tolerance and scalability [levy1990distributed].Transparency means that 

ideally the complexity of the distributed file system should be completely abstracted away and 

thus be hidden. Interaction with the DFS should mimic that of interacting with a local file 

system, the user or client should not be concerned with the intricacies of where and how the 

data is distributed and/or replicated. Fault tolerance means that in the event of a transient 

server failure (e.g. a failing HDD) or partial network failure (i.e. network partition) the system 

should continue to function, ideally without any compromising of data integrity. Lastly, 

scalability means that the system be able to withstand high load and allow for new resources 

(such as servers) to be integrated into the system with relative ease. In essence, a DFS will 

always comprise of a set of servers. There are however many ways in which these can be 

arranged architecturally to realize distributed storage. 

Since data in a DFS will be distributed among several servers and will likely have to be 

replicated in places to ensure availability in case of a server failure, the notion of state becomes 

blurry. In 2000, Brewer proposed the CAP theorem, which essentially suggests that it is 

impossible for a distributed system (and thus a DFS) to provide Consistency (C), Availability 

(A) and Partition tolerance (P) guarantees all at the same time [brewer2000towards]. The 

theorem was formalized and proved correct in 2002 by Gilbert and Brewer and states that at 

most two out of the three guarantees can be provided simultaneously [gilbert2002brewer].  The 

probability of server failure increases with the number of servers used, some form of replication 

is thus required to provide fault-tolerance. However, since data is replicated, failures in such a 

concurrent system can lead to state inconsistencies. Consistency in this context refers to the 

notion that replicated copies are identical. More formally, the strict consistency guarantee 
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states that there must be a single total order on all concurrent data operations such that to an 

outside observer, they appear as a single operation, essentially behaving as though the 

operation was performed on a single machine.  While occasional server failures are inevitable, 

it is desirable for a distributed system to be continuously available. Availability thus refers to 

the guarantee of a distributed system to always provide a response to a request eventually (i.e 

it should not fail or give an error).  Communication among servers happens via a network. 

Similar to how server failures are inevitable, it is likely that there will be errors and failures in 

the network (e.g. loss of network messages or corruption). Partition tolerance refers to the 

ability of a system to cope with partitioning within a network, a situation that can occur when a 

certain set of servers is unable to deliver network messages to other servers in the network. 

In accordance with this guarantee, only complete network failure should allow the system 

respond incorrectly. In any other case, the system should behave as expected.   

Given the seemingly hard limitations presented by the CAP theorem, the choice for a DFS will 

almost always come down to a CP or AP design, as a we would like our DFS to continue 

functioning in the case of network errors (i.e. we cannot give up P). However, regarding the 

`two out of three' formulation as a hard limitation on distributed system design is an 

oversimplification. In a 2012 article reflecting on his initial proposed idea, Brewer argues that 

the traditional notion of CAP has served its purpose (which was to ‘open the minds of designers 

to a wider range of systems and tradeoffs') and that system designers should be freed of these 

perceived limitations [brewer2012cap]. In it he states that while networks can behave 

unreliably and partitions can occur, such events are relatively rare. Why should a system 

therefore have to choose between C or A when the system is not partitioned? Systems can be 

designed to deal with partitions explicitly and perform recovery afterwards. The choice between 

the three guarantees should not be thought of as a hard choice (e.g. choosing P means losing 

either C or A), but in terms of probabilities (e.g. the probability of P is deemed lower than other 

failures).  When a distributed system is able to detect partitions, it can explicitly account for 

them in a three stage process: partition detection, partition mode, recovery mode. In the first 

stage, the network partition must be detected and the system should enter partition mode. 

While in partition mode, the system should either impose limits on certain operations (reducing 

A) or record extra information regarding operations by storing the intent of an operation so it 

can be executed after partition recovery (hiding the reduction of A). In the last stage, the system 

will have to reimpose C by essentially re-computing the state. Note that the last stage can lead 

to merge conflicts which can either required to be resolved manually or automatically (by 

imposing a deterministic choice on what option to choose).  Ultimately the key insight here is 

that when there is a network partition, there need not be a hard choice between either C or A: 

a choice between C and A can be made on sub system level granularity 

In the realm of HPC, supercomputers comprising of thousands of interconnected servers are 

being used to solve the world's most complex problems. We see application of HPC in both 

the scientific domain and industry: ranging from modelling global climate phenomenon to 

designing more efficient drugs. Currently, the state of the art in HPC is at the peta-scale (in the 

order of 1015 FLOPS), first achieved in 2008 [firstpetascale]. However, we now see an 

enormous increase in the size of commercial and scientific datasets. Consequently, it is likely 

that the current peta-scale technologies will not be able to handle this and that we will require 

new solutions to prepare ourselves for the next milestone: exa-scale computing 1018 FLOPS).  

Exa-scale systems are expected to be realized by 2023 and will likely comprise of ~100,000 

interconnected servers; simply scaling up peta-scale solutions will likely not suffice 

[vijayaraghavany2017design]. Evidently, this raises many challenges in how the required 

hardware but also how to design applications that can make use of that many computing 

nodes. However, what is relevant for this paper is how the large volumes of data involved will 

be stored. Exa-scale systems will need novel DFSs, sufficiently scalable to accommodate for 
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the increase in memory capacity requirements. While not the solely focus of this paper, we will 

attempt to take this into account when discussing DFSs and recent research projects to see 

how well they might be suited for an exa-scale computing context. 

Established DFS solutions 

Before the advent of big data and cloud computing there were three main prevalent storage 

architectures: direct-attached storage (DAS), storage area networks (SANs) and network-

attached storage (NAS) [mesnier2003object].In the case of both DAS and SAN, the file system 

running on a client node will see the storage device as being attached locally since all the 

administrative complexity is manifested in the lower level protocols and hardware. The 

advantages of SAN compared to NAS are thus performance and scalability, however these 

come at the cost of tight coupling between servers in the form of expensive dedicated 

supporting hardware and specialized network layer switches [vacca2006optical].With the 

advent of cloud computing and open-source big data toolkits there is a trend of solving 

scalability issues using commodity hardware at the application level of abstraction. The need 

for specialized hardware and infrastructure and lack of application level configurability of SAN 

therefore largely rules it out as a solution for current day large scale data storage needs. Ideally 

what we want is solution that was designed from the ground up with modern scalability needs 

in mind running on commodity hardware like the Google File System 

(GFS)[ghemawat2003google], Hadoop Distributed File System (HDFS) 

[shvachko2010hadoop],  GlusterFS [glusterfs], Ceph [weil2006ceph], and Lustre [lustre]. 

Cloud-based object storage 

Although arguably not a DFS at the same level of abstraction as those previously discussed, 

we deemed it necessary to discuss the object storage services provided by practically all major 

cloud providers. These services essentially provide a complete virtualization of storage, not 

burdening application developers with the intricacies of cluster management or the cost of 

running and maintaining a private cluster. Additionally, these services are comparably trivial to 

set up and provide easy to use interfaces. Here we will briefly discuss the advantages and 

disadvantages of these services and discuss the consistency models offered by the three 

major cloud providers: Amazon, Microsoft and Google.  There are many advantages to cloud-

based object storage. For system designers and application developers, an object interface 

that abstracts away nearly all of the administrative complexities that come with distributed data 

storage is a major selling point. The relative ease of use and pricing of cloud services make it 

so that large scale data storage is available to small companies or even individuals, and not 

just in the reach of large enterprises or universities. Since the major cloud providers have data 

centers all around the globe, data can be replicated over these data centers and can thus lead 

to better performance when accessed from varying locations.  With respect to the interfaces 

provided for these services, in addition to the availability of language bindings for practically 

all popular programming languages in the form of official or third-party libraries, they all provide 

very similar RESTful API's for interfacing with them over HTTP/HTTPS. Since the interfaces 

are web-based it means that cross platform data sharing is trivial. It must be noted however 

that while the interfaces are similar, they are not identical. Thus there is the risk of vendor lock-

in. Fortunately, efforts are being made by the SNIA to standardize the interface for clients in 

the form of the Cloud Data Management Interface (CDMI) [cdmi].   

In terms of CAP, usually cloud-based object storage solutions used to fall in the AP category, 

providing high availability (through replication) and partition tolerance while offering only 

eventual consistency [mahmood2016achieving]. Informally put, eventual consistency only 

guarantees that given the absence of future updates, eventually all read operations on a 

particular data item will yield the latest version. It should be noted that preservation of the 

ordering of operations is not at all guaranteed. One of the most obvious use cases for eventual 

consistency is the hosting of large sets of unstructured data that are not subjected to frequent 
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change such as static images or videos. Where it evidently falls short is when stale reads can 

compromise the business logic of an application. In an effort to allow for stronger consistency 

guarantees for replicated cloud storage, Mahmood et al. propose a system enabling causal 

consistency for cloud storage services [mahmood2016achieving]. With causal consistency, 

preservation of the causal relationships between operations is guaranteed. More specifically it 

guarantees that write operations that are potentially causally related must always be observed 

in the same order, while concurrent writes may be seen in a different order 

[tanenbaum2007distributed].Today, the major cloud providers offer different consistency 

guarantees for their object storage services. Since major cloud providers have immense 

backing infrastructures, they are able to offer virtually unlimited storage capacity. This means 

that at least in terms of memory capacity, cloud-based object storage is scalable to petabytes 

and even exabytes. They offer it at a level of abstraction that is easy to interface with from a 

system designer or application developer point of view. They major downside however will be 

the relatively high latency of the web based interfaces, making it unsuitable for latency sensitive 

(HPC) workloads. With regard to consistency, the major cloud providers initially only offered 

eventual consistency for their object storage services, ruling out their use in applications which 

rely on stronger consistency restraints. However, we are seeing efforts being made in both 

academia and industry to improve these services by providing stronger consistency models in 

the presence of high availability and partition tolerance. Although at a higher level of 

abstraction than the previously discussed DFSs, cloud-based object storage can be an 

appropriate solution when extremely low latency is not required. 

Challenges 

The existing open-source solutions mentioned in the previous section are production ready 

and can be used today. However, there is also an active research community with respect to 

improving DFS design, both in academia and in open-source communities. For this section, 

we have chosen three challenges that we expect to be relevant for the advancement of DFS 

design. We will briefly describe them and novel research projects attempting to address these 

challenges.   

Scalability of metadata management 

To ensure future use of current DFS designs means that they not only have to be scalable in 

terms of actual storage capacity, but also in metadata management. In a comparison of typical 

file system workloads, it was found that nearly half of all operations are metadata operations 

[roselli2000comparison]. It is for this reason that there is a continuous effort being made to 

make metadata management more scalable. Here we will briefly go over the metadata 

scalability characteristics of the discussed DFSs and take a look at two recent research 

projects.  From the discussed DFSs we have observed the inherent lack of metadata scalability 

of GFS and HDFS, since they both feature a design with only a single metadata server. Lustre 

allows for multiple metadata servers, but relies on explicitly storing the locations of files. 

GlusterFS somewhat improves on this aspect by not explicitly storing metadata regarding file 

locations but instead it opting for algorithmic placement. It must be noted however that even 

with this in place, all the other metadata operations still happen on the data storage servers. 

The design of Ceph is probably the most scalable with respect to metadata management, since 

it allows for a cluster of metadata servers and also features algorithmic file placement and 

dynamic metadata workload distribution.  A notable recent development in relational databases 

is NewSQL, a class of databases seeking to combine the scalability characteristics of NoSQL 

databases with the transactional characteristics of traditional relational databases. In a 2017 

paper Niazi et al, present HopFS, a DFS built on top of HDFS, replacing the single metadata 

server with a cluster of NewSQL databases storing the metadata [niazi2017hopsfs]. They 

attempt to address the issue of metadata management scalability by storing all HDFS 

metadata in a Network Database (NDB), a NewSQL engine for MySQL Cluster. They tested 
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their solution on a Spotify workload (a Hadoop cluster of 1600+ servers storing 60 petabytes 

of data) for which they observed a throughput increase of 16-37x compared to regular HDFS. 

What makes this solution noteworthy is that it is a drop-in replacement for HDFS, allowing it to 

be used in existing Hadoop environments, allowing them to scale beyond the limits imposed 

by the single metadata server approach.  Using a similar approach, Takatsu et al. present 

PPFS (Post-Petascale File System), a DFS optimized for high file creation workloads. In their 

paper they argue that modern DFSs are not optimized for high file creation workloads, and that 

for exa-scale computing this can turn out to be a serious performance bottleneck 

[takatsu2017ppfs]. They have evaluated their system against IndexFS (2014), a middleware 

for file systems such as HDFS and Lustre aiming to improve metadata performance [rennie]. 

With respect to file creation performance, they observed a 2.6x increase in performance. They 

achieved this by employing a distributed metadata cluster design using key-value metadata 

storage and non-blocking distributed transactions to simultaneously update multiple entries. 

Although only tested on relatively small clusters comprising of tens of servers, it good to see 

that an effort is being made to improve upon aspects such as file creation performance, which 

might turn out to be a bottleneck in an exa-scale context. 

Small file performance 

There is a discrepancy in performance between DFSs with respect workloads involving many 

small files as opposed to workloads with fewer, but larger files. In a comparative analysis of 

various DFSs, it was established that the design of GFS, HDFS and Lustre make them not well 

suited towards workloads involving many small files, while Ceph and GlusterFS seemed to 

perform reasonably well for both types of workloads[depardon2013analysis]. That being said, 

there is room left for improvement with regard to small file workload performance. Here we will 

briefly highlight two recent research projects attempting to address this issue.  In their paper, 

Zhang et al. present HybridFS, a DFS framework that runs on top of multiple DFSs and 

dynamically chooses which DFS to use for file placement [hybridfs].  HybridFS is a DFS 

framework that runs on top of multiple DFSs and features an additional metadata management 

server that is in charge of file placement on the underlying DFSs, features a partial metadata 

store for small files and can perform dynamic file migration to balance storage usage on the 

DFSs. They have evaluated their solution on an 8 node cluster running Ceph, HDFS and 

GlusterFS. They observed a best-case performance increase of 30% in read/write operations 

when compared to single DFS. HybridFS is definitely a step in the right direction with regard 

to providing a workload agnostic DFS framework. With respect to exa-scale computing, the 

relatively small cluster size on which it was tested and the fact that the additional metadata 

management server introduces an additional single point of failure limit its scalability and 

thereby suitability for exa-scale computing.  A different approach is taken by Fu et al., who 

present iFlatLFS (Flat Lightweight File System), an OS level file system designed as a 

replacement for file systems such as Ext4, ReiserFS or XFS when deployed on storage servers 

in a DFS [fu2015performance]. The file system was explicitly designed to address the issue of 

poor small file performance. In iFlatFS, data can be directly addressed from disk instead of 

through a hierarchical file tree as is the case for the conventional file systems. They achieve 

this by using a much simpler metadata scheme that occupies much less space, which allows 

it to be entirely cached in memory. This in turn means that all metadata requests can be server 

from memory, instead of having to go through disk. They have tested their solution using the 

Taobao File System (TFS, developed by Alibaba) in which they observed an almost twofold 

increase in 1KB-64KB file performance when compared to Ext4. 

Decentralization 

In the solutions discussed so far we have seen various approaches to positively influence the 

scalability characteristics of a DFS. A recurring concept is that of decentralization, distributing 

responsibility of certain aspects of the system to multiple non-authoritative servers instead of 
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relying on a single or multiple dedicated centralised servers. Removing a single point of failure 

by distributing the workload should help to increase fault tolerance and scalability. We see 

such an approach in GlusterFS and Ceph, which both feature a decentralized approach 

towards file placement. Here we will briefly discuss a recent project that seeks to go even 

further, a completely decentralized peer-to-peer DFS.  Currently an open-source project with 

active development from a community of developers, the InterPlanetary File System (IPFS) is 

a DFS protocol designed to allow all connected peers to access the same set of files 

[benet2014ipfs]. The author describes it as being similar to the Web in a single BitTorrent 

swarm exchanging objects within a Git repository. It makes use of distributed hash tables, 

incentivized block exchange and a self certifying namespace to create content addressable 

peer-to-peer network of files. Any type of data can be stored as an object in IPFS, with integrity 

validation and automatic deduplication as built-in features.  Removing all single points of failure 

by taking a completely distributed peer-to-peer approach is very interesting, since it in theory 

provides infinite scalability. However, having to rely on servers beyond your control likely rules 

it out for latency sensitive or mission critical applications. That being said, leveraging a globally 

distributed network of interconnected machines as a DFS is very relevant to at least capacity 

requirements. One can envision that given a large peer count, storing exabytes of data 

becomes almost trivial. Generally, we expect that the concept of decentralization will play a 

significant role in the development of future DFSs to cope with ever increasing scalability 

demands. 

Summary 

The goal of this state of the art study is to have an overview of the state-of-the-art of DFSs. 

We have evaluated the design of several well established DFS solutions while also taking a 

look novel research attempting to solve the challenges of future DFSs.  With respect to the 

established solutions, we have seen drastically varying designs. From single metadata server 

architectures such as GFS/HDFS, to clusters of metadata servers in the case of Ceph and 

Lustre. GlusterFS and Ceph both employ algorithmic file placement, which mean that there is 

no need to explicitly store file location metadata. Purely based on high-level design 

comparison, Ceph seems to cater the most to modern scalability requirements and will 

therefore be a likely candidate to be used in an exa-scale computing context. Lastly we 

discussed cloud-based object storage, which with its immense backing infrastructure is be able 

to store exabyte sized data sets. However, for latency sensitive applications like HPC it is 

unlikely to be a good fit.  We have taken a look at recent research and presented them in the 

context of three challenges that we deemed relevant for future DFS designs. Firstly, we 

discussed the issue of scaling metadata management. We found that with respect to metadata 

clusters, we are seeing efforts being made to incorporate techniques from the database world 

such as distributed transactions and NewSQL databases to speed up metadata performance. 

Secondly, we discussed the issue of performance in small file workloads. We regarded two 

research projects attempting to tackle this issue. The first of which by running multiple DFSs, 

each optimized for certain file sizes, and having an additional layer on top of it dynamically 

choosing an appropriate underlying DFS based on the type of workload. The second 

introduced an entirely new HDD level file system to be run on the storage servers in a DFS, 

increasing performance by reducing the size of stored metadata, allowing it to be stored 

entirely in main memory. Lastly we discussed the concept of decentralization with respect to 

DFSs. We regarded IPFS, a completely decentralized peer-to-peer DFS allowing for all peers 

to access the same set of files.   

This state of the art is far from exhaustive and that there are a lot of current DFS solutions and 

research projects that we have not covered. There is a lot of ongoing research into developing 

new techniques and designing refined architectures for future DFSs preparation for building 

exa-scale system. We will extend the state of the art in course of the project lifetime. 
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5.2 Data Delivery service for extreme data application 

5.2.1 State of the art 
Many proposals attempt to realize storage federation and unify data access. These proposals 

are often tightly coupled with a storage infrastructure or technology which minimizes flexibility 

and makes it difficult to adapt to hardware and software changes. Existing solutions often 

implement “ad-hoc” interfaces to provide access to users and applications. These designs 

reduce interoperability and in most cases are specific for grid or cloud environments. Globus 

Online [Foster2011] is a data transport service that federates GridFTP [Bresnahan2007] 

resources for moving large quantities of data across geographically distributed storage 

systems. Although Globus online is able to transfer huge amounts of data, it is limited to 

coordinating transfers between GridFTP servers. 

The approach described in [Abu-Libdeh2010] implements redundant storage techniques on 

cloud systems to allow customers to avoid vendor lock-in, reduce the cost of switching 

providers and to tolerate provider outages or failures. 

This approach is limited to the Amazon S3 storage. PhysiomeSpace is a solution developed 

with the VPH community in mind [Testi2010]. PhysiomeSpace puts emphasis on sharing and 

managing medical images and supports almost any type of biomedical data. However, it uses 

a custom developed client to make the data available to users making it less flexible and 

requiring more effort to maintain compatibility of the custom client with the service. Additionally, 

the proposed solution is limited to use Storage Resource Broker (SRB) [Rajasekar2006]. 

VeilFS is a system that attempts to unify access to files stored at heterogeneous data storage 

systems that belong to geographically distributed organizations [Dutka2014].This approach is 

designed to only use local storage. VeilFS also uses custom access protocols forcing users to 

adopt a dedicated client implemented only for VeilFS. Unlike existing proposals, our approach 

takes advantage of all available technologies to offer a large scale collaborative storage 

environment to the VPH community. Our architecture is able to federate multiple, 

heterogeneous and independent storage resources and present them as a unified storage 

space. 

Hadoop Distributed File System 

The Hadoop Distributed File System (HDFS) was developed as part of the popular open-

source big data framework Hadoop and officially released in 2011 [Shvachko2011]. The design 

of HDFS was heavily inspired by that of GFS, one might even go as far as stating that is an 

open-source implementation of GFS. However, in contrast to GFS, Hadoop (and thereby 

HDFS) is an Apache project and is thus available under the Apache opensource license. This 

has lead to widespread use of HDFS, in the context of Hadoop but also as a separate entity 

[hadoop2018]. In GFS, the locations of chunks are not persistently stored on the master (they 

are determined by the HeartBeat messages) while in HDFS the NameNode does maintain 

persistent location information. Although GFS is optimized for append-only operations, it does 

allow for random writes within files. In HDFS random writes are not possible, only append write 

operations are allowed. Lastly concurrent writes in GFS can lead to consistent but undefined 

state. HDFS on the other hand employs a single-writer, multiple-reader model meaning that 

files will always be consistent and defined. The limitations of HDFS are identical to those of 

GFS. While scalable to thousands of servers and capable of storing tens of petabytes of data, 

the single server metadata management severely limits its further scalability. 

GlusterFS 

GlusterFS is an open-source networked file system designed for running on commodity 

hardware [Gluster2018]. It is marketed as being a scale-out NAS system, relying on a more 

traditional client server design rather than employing a metadata server based architecture like 

GFS or HDFS. GlusterFS is fully POSIX compliant, runs on commodity Ethernet networks but 
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also on Infiniband RDMA (an alternative networking standard often used in the context of 

HPC). While it is a user-space file system like GFS and HDFS, it can be mounted as native 

storage on Linux via File system in User space (FUSE) or NFS. In GlusterFS, data is stored 

on sets of servers called volumes. Each volume is a collection of bricks, where each brick is a 

directory exported from a server. Data is subsequently distributed and potentially replicated on 

servers within a volume. The level of redundancy within a volume is customisable. Distributed 

volumes: files are simply distributed without replication, limiting the placement of a file to at 

most one brick. Replicated volumes: for better availability and reliability, files can be replicated 

across bricks within a volume. Distributed replicated volumes: files are distributed across 

replicated sets of bricks in the volume, potentially providing improved read performance. 

Dispersed volumes: based on erasure codes, stores encoded fragments of a file on multiple 

bricks in such a way that the original file can be recovered with only a subset of the encoded 

fragments. Distributed dispersed volumes: similar to replicated vs. distributed replicated 

volumes, providing higher reliability. Besides the customisable replication within GlusterFS, 

what makes its design stand out is the fact that it does not maintain a separate metadata index 

of file locations. Instead, the file location is determined algorithmically using its elastic hashing 

algorithm (EHA). Given a path and file name, the hashing algorithm will determine where this 

file will be placed. Not having to explicitly store a metadata record is huge advantage in terms 

of scalability. However, a possible disadvantage of such a placement strategy is that while file 

placement might be uniform, uniformity of the actual distribution of data need not be, since not 

all files are equal in size. 

With respect to CAP, GlusterFS favors consistency and availability by default. However, with 

replication enabled, GlusterFS allows you to set up a server quorum which effectively allows 

you to trade in availability for partition tolerance. In the event of a network partition, i.e. when 

different sets of servers are concurrently handling different writes, we can end up with 

inconsistent state for the same files. When no quorum is set up, clients are always allowed to 

perform write operations, regardless of any network partition (high availability). As a 

consequence, any file that is left in an inconsistent state will be marked as such, and will require 

manual intervention to resolve the merge conflict. When a quorum is set up, only a single set 

of servers is allowed to perform write operations. 

This means that availability is sacrificed for the servers not in this set, write operations will 

simply. However, this does mean that the system is able to handle network partitions. 

Ceph 

Ceph is an open-source storage system providing object, block and file storage. It was initially 

presented in 2006 by Weil et al. as a research project [Weil2006]. In 2011, Weil founded 

Inktank Storage to lead the development of Ceph, which was subsequently acquired by Red 

Hat in 2014, now making them the lead development contributor. As with the previously 

discussed DFSs, Ceph is designed to be run on commodity hardware. It is POSIX compliant 

and natively mountable in Linux. Like with GFS and HDFS, there is a decoupling of data and 

metadata. Data transfer occurs between client and data storage servers directly, while 

metadata operations are handled by metadata servers. However, unlike GFS and HDFS which 

employ a single metadata server, in Ceph, metadata is managed by an actual cluster of 

metadata servers (MDSs). It there by attempts to tackle the problem of metadata management 

scalability, allowing for up to tens or hundreds of MDSs to form a metadata cluster [Maltzahn]. 

Within this cluster, the metadata workload is attempted to be evenly distributed by the use of 

dynamic subtree partitioning, delegating the workload for parts of the file hierarchy to certain 

MDSs taking into account metadata popularity. Additionally, it allows MDSs to serve in standby 

mode, ready to take over in the event of an MDS failure, thereby increasing fault tolerance. 

Similarly to GlusterFS’s EHA, Ceph uses its Controlled Replication Under Scalable Hashing 

(CRUSH) to algorithmically determine where objects are to be placed. In Ceph, data is stored 
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in a distinct cluster referred to as the Reliable Autonomic Distributed Object Storage (RADOS), 

exposing a single autonomous object store to clients and the metadata cluster. Within this 

cluster, objects are stored in conceptual object storage devices (OSDs) which are stored on 

the local file system of a server. Since 2017, besides allowing OSDs to be run on top of 

conventional Linux file systems, Ceph now offers its own file system called BlueStore which is 

optimized for the OSD design (thereby removing the translation overhead due between OSD 

semantics and traditional file system semantics) [Ceph2018]. Within the data cluster, data 

replication is available and customizable. Similar to GlusterFS’s dispersed volume, Ceph too 

uses erasure codes in replication. Ceph offers a lot of customizability with respect to 

consistency and availability. Not only does it support MDS/OSD clusters ranging from a handful 

to hundreds of servers, allowing for high availability, it also offers a choice between strict or 

relaxed consistency models within these clusters. With regard to partition tolerance, Ceph 

supports a cluster of monitors which maintain a map of the storage cluster, keeping track of 

the state of the storage servers allowing for action to be taken when necessary. In agreement 

with the revised take on the CAP theorem and given the amount of customizability Ceph offers, 

it is not appropriate to label it as either a CA, CP or AP system, thus we will refrain from doing 

so. 

Lustre 

Lustre is an open-source DFS tailored to HPC environments, scaling up to thousands of 

servers and storing petabytes of data [Lustre2018]. It is fully POSIX compliant, natively 

mountable on Linux and can be run over standard Ethernet or HPC oriented interconnects 

such as Infiniband. In Lustre, storage and transfer of data and metadata are performed by 

different servers. Similar to the design of Ceph, metadata is stored on a cluster of metadata 

targets (MDTs).The metadata is distributed over these servers via the Lustre Distributed 

Namespace (DNE), an approach along the same lines as Ceph’s dynamic subtree partitioning. 

However, unlike Ceph, clients do not access MDTs directly. Instead the client endpoint for 

metadata operations are the metadata servers (MDSs). The same goes for data storage; files 

are stored in objects on object storage targets (OSTs) while the client request for the objects 

are handled by object storage servers (OSSs), which delegate the requests to the ODTs. Thus 

we see a clear separation of the actual storage of data/metadata and the handling of their 

respective client requests. This should help in distributing the workload, at the cost of requiring 

more servers. Lustre was originally designed for use in HPC, whereby it was assumed that the 

storage devices provide internal redundancy and fault tolerance. Therefore Lustre does not 

provide any file system level replication. However, a high level design is provided by the Lustre 

team for file level replication [Lustre2018].In terms of consistency, Lustre is able to provide 

strong consistency via a locking mechanism. Lustre aims to achieve high availability by 

providing fail over mechanism, essentially allowing redundant servers to take over in the event 

of server failures. 

The exascale application viewpoint 

The advantages to the design of GlusterFS. First of all, it offers POSIX file semantics, which 

means that it is mountable like any other traditional file system and adheres to strict 

consistency requirements. Secondly, its replication via erasure codes is a more space efficient 

way of replicating data than naively storing multiple copies. But the main advantage however 

is the fact the design does not feature a server explicitly storing file location metadata. With 

respect to scalability, not requiring a metadata server that can potentially be a performance 

bottleneck is a significant benefit. For certain workloads, a disadvantage of the design of 

GlusterFS is that it works on file granularity (as opposed to aggregated data blocks or chunks). 

Such a design can introduce more internal administrative overhead when for example 

replicating huge numbers of small files. However, we deem it likely that its approach of having 

a decentralized Namespace will manifest itself in exa-scale DFS solutions of the future. 
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The design of Ceph, allowing for clusters of not only data, but also metadata and monitor 

servers provides it with excellent scalability characteristics. Currently, it is currently already 

being used by Yahoo to store petabytes of data and is chosen as the technology to prepare 

their infrastructure for storing exabytes of data [Yahoo2018]. This in combination with the level 

of customizability makes Ceph a good candidate for an exa-scale computing DFS. 

There are several clear advantages to Lustre’s design. The first of which is that it allows for 

clusters of data and metadata, like Ceph. Secondly, the handling of client requests and actual 

storage of data and metadata occurs on different machines. In terms of scalability this is a 

clear advantage since it allows for explicit control over how many server to dedicate to the 

handling of client requests and actual storage. Similarly, availability can be customized by 

introducing redundant backup servers to a cluster. The number of files that are stored in a 

single object is customizable as well, which means that Lustre is not necessarily tied to single 

type of workload with respect to file size. However, the lack of replication at the software level 

makes it a poor fit for failure sensitive commodity hardware, especially when the cluster size 

grows. That being said, its metadata and data cluster architecture, given hardware providing 

built-in redundancy and fault tolerance, make it a good candidate for an exa-scale computing 

DFS. 

5.2.2 LOBCDER 

Technology Readiness Level 

TRL 6: Have been used in VPH-share (FP7 project) production environment for more than two 

years. We note here that for the PROCESS project we will have to reconsider certain 

components of the LOBCDER in the light of more recent state of the art technologies.  

TRL 7-8: According to the EC definition9 TRL 8 is defined as “system complete and qualified”. 

For LOBCDER to reach this level, LOBCDER will be subject to a series of tests and evaluations 

which will aim to prove that LOBCDER in its final form is able to meet its operational 

requirements under the range of conditions in which LOBCDER will be expected to operate. 

To achieve this goal, we are now investigating several existing assessment tools, the so called 

Technology readiness calculators10,11,12.  In the short term, we will update the LOBCDER code 

by replacing two components of the LOBCDER systems namely the virtual file system library 

(potential library is Apache Commons Virtual File System) and the Java Webdav Server Library 

(io.milton) 

Main features of the service in the PROCESS project 

Distributed Virtual File System. 

Architecture 

LOBCDER is a data storage federation which can be used to persistently store binary data 

(files), ensuring consistent, safe and convenient access from various entry points, including 

the Master Interface, Atomic Service Instances and custom clients. Externally, LOBCDER 

mimics a WebDAV server and can therefore be accessed by any DAV-compliant software. 

                                                 
9 https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf 

10 Nolte, William L.; et al. (20 October 2003). "Technology Readiness Level Calculator, Air Force Research Laboratory, 
presented at the NDIA Systems Engineering Conference". 

11 Technology Readiness Assessment Guide, DOE G 413.3-4A Approved 9-15-2011, https://www.directives.doe.gov/directives-

documents/400-series/0413.3-EGuide-04-admchg1/@@images/file 

12 From NASA to EU: the evolution of the TRL scale in Public Sector Innovation https://www.innovation.cc/discussion-
papers/22_2_3_heder_nasa-to-eu-trl-scale.pdf 

https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf
https://www.directives.doe.gov/directives-documents/400-series/0413.3-EGuide-04-admchg1/@@images/file
https://www.directives.doe.gov/directives-documents/400-series/0413.3-EGuide-04-admchg1/@@images/file
https://www.innovation.cc/discussion-papers/22_2_3_heder_nasa-to-eu-trl-scale.pdf
https://www.innovation.cc/discussion-papers/22_2_3_heder_nasa-to-eu-trl-scale.pdf
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Data delivery service for an extreme data application will be based on the Large OBject Cloud 

Data storagE fedeRation (LOBCDER) technology [LOBCDER1, LOBCDER2], which is 

agnostic from the back-end storage available technologies to offer a large-scale collaborative 

storage environment. It  does not assume any central control of the back end storage and thus 

by design it fit the federated architecture principles, and it does not require to use a specific 

client, any client which use WebDav protocol or REST interface can be used on top on the 

LOBCDER backend. LOBCDER is a Virtual File System which scales, is technology agnostic 

and operates over federated heterogeneous distributed systems (no central control). LOCDER 

is able to federate multiple, heterogeneous and independent storage resources and present 

them as a unified storage space. Some of the basic features provided by LOBCDER like the 

access transparency, file management policy, actual file transfers and the location 

transparency can be found across multiple services like EUDAT set of services B2ACCESS, 

B2DROP, B2SAFE, B2STAGE, and B2FIND, or the EGI online storage and data transfer 

services. The module architecture of LOBCDER simplify the use the integration of like the 

EUDAT and EGI technology which are widely used across European e-Infrastructure. On top 

on these basic services LOBCDER offer more advanced services like Replicas management, 

Migration management and support in case of concurrent access to files coherency and 

partitioning [Koulouzis1 2016]. The LOBCDER system has also network services extension 

that be interesting to consider during the project  which allow in case of programmable 

networks (SDN) to optimize the speed of large data transfers, by either selecting the best 

replica or rerouting the traffic in case of network congestion [Koulouzis2 2016] (see Figure 22). 

These advanced services can be easily ported to the EUDAT service eco-systems as the 

LOBCDER has a flexible Plug-In Architecture which allows to substitute any of the basic 

services. 

 

Figure 21: Conceptual design of LOBCDER [Koulouzis3 2016]. 
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The core of LOBCDER technology is the resource layer which creates a logical representation 

of the physical storage space and manages physical files. It contains the WebDAV resources, 

the resource catalogue and the task component. This layer provides a WebDAV representation 

of logical resources which are stored and queried in the persistence layer. Logical resources 

hold metadata such as the modification date and length. The persistence layer also provides 

information on how to access physical data, which includes endpoint credentials. The backend 

provides the necessary abstraction to uniformly access physical storage resources. This is a 

virtual resource system (VRS) API used by a grid resource browser. A virtual file system (VFS) 

Client performs operations on physical data, which are translated to specific storage resources 

by VFS Drivers. Different driver implementations allow transparent access to storage 

resources, whether these are cloud, grid or other resources. The persistence layer is a 

relational database which holds the logical file system that is made up of Logical Resources 

(Each logical file has N Physical Data Resource Identifier (PDRI)s which are associated with 

Storage Site.) and provides Atomicity, Consistency, Isolation and Durability (ACID) [Koulouzis3 

2016]. Its performance analysis is described separately with more details in Section 6.1.1. 

 

Figure 22: Interaction of the main SDN components. When an HTTP consumer requests data LOBCDER 
provides the data transfer from heterogeneous storage backends, while the the NEWQoSPlanner aggregates 
information collected from the network, reserves paths and controls the flows via SDN controllers [Koulouzis1 
2016]. 

Plans for integration with other systems (from PROCESS) 

In process LOBCDER can be used as a Distributed Virtual File System (DVFS). LOBCDER 

has its own metadata storage system, which has to be synchronized or adapted to the meta-

data federated storage to be developed in Task JRA2.3. On the front-end side LOBCDER has 

a WebDAV interface and thus any WebDAV client application can seamlessly use LOBCDER 

as DVFS, while on the back-end LOBCDER is able to use a wide range of storage systems 

like local file system, SFTP, WebDAV, GridFTP, SRM, LFC iRODS, OpenStack-Swift, vCloud, 

AWS S3. 

LOBCDER presents a webdav interface in the front, which mean means it supports the 

standard webdav method (COPY, LOCK, MKCOL, MOVE, PROPFIND, PROPPATCH, 

UNLOCK). LOBCDER expose a set of REST Resources, which have been defined in the VPH-

share and need to be replaced or adapted for the PROCESS project 

• Archive: Generates archives given a folder path. Each file and folder is added at 

runtime from the backend to the archive  
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• DRIDataResource: Used by the DRI service to supervise resources for corrupted files. 

• DRItemsResource: Used by the DRI service to supervise resources for corrupted files 

etc. 

• Item: Gets resource properties like length owner physical location etc. 

• Items: Gets resource properties like length owner physical location etc. 

• PermissionsResource: Sets and gets permissions for a resource 

• SetBulkPermissionsResource: Sets permissions for folder and subtree 

• Translator: This service translates long authentication tokens to short so they can be 

used by WebDAV clients 

• TTL: Sets an expiring temporary directory to store data. This is to stop having unused 

directories lying in LOBCDER. When using this after TTL time has elapsed since the 

last access, the directory is automatically removed by the system. 

5.3 Federated Metadata storage service for extreme data application 

5.3.1 State of the art 

Characteristics of metadata in scientific research 

Research nowadays still did not manage to produce a metadata standard which can be 

recognized and applied through various branches of science. Despite constantly growing in 

capacity and complexity datasets that a single project can produce, common interdisciplinarity 

in current research, there is no unified approach for scientific metadata management. One can 

vary between not even scientific domains only but sometimes even between individual 

applications. However, it seems that the scientific world becomes more aware of the 

importance of systematic and enhanced metadata management. The potential it brings in 

automatization of scientific analysis, the possibility of logical data independence in scientific 

applications asks for adequate technological support: metadata scientific management tools 

which will be able to properly manage the variety of metadata and noticeably improve scientific 

discovery. 

From applicability point of view in conventional approach metadata can be perceived in 3 main 

categories, which reflect the aim and nature of the metadata: 

• descriptive metadata - integrated within datasets, adjusted to simplify the navigation 

and read data variables, produced by researchers 

• ad-hoc text annotations - most informative but very time consuming to produce, 

frequently overlooked in metadata management due to high cost, produced by 

researchers 

• provenance data - generated automatically, holds information about the data 

generating process, data transformations, the historical analyses and their associated 

data movement, produced by applications/workflows 

Another useful categorisation of metadata can be outlined relying on two attributes relevant to 

data-centric research: 

• source of the metadata 

• metadata storage type 
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Table 6: Categorisation of metadata. 

 

In Table 6 a distinction was made based on those attributes. The common metadata acquisition 

sources are scientists or application developers (labelled as ‘Human-generated’) and software 

libraries and tools (‘Automatically acquired’). Metadata is often stored within the data files 

(labelled as ‘Integrated’) or in separate files or database systems (‘Segregated’) [BLANAS 

2015]. We briefly discuss these categories in the following paragraphs. 

• User-defined metadata prior to data generation: Starting from the top right corner in 

Table 6, some metadata are provided explicitly by a scientist at the moment of data 

production. Examples include data type and endianness information, or the 

dimensionality and chunking strategy of an array for defining the layout of data on a 

disk. Under this paradigm, a particular file format, such as HDF5, or data encoding 

defines the collected metadata in advance and stores the metadata within the dataset. 

• Ad-hoc metadata that annotate a dataset: Another way to acquire metadata is to 

explicitly request it by the domain expert. Many times, however, important information 

that describes specific features or properties of the data cannot be shoehorned into this 

rigid format. Scientists describe these properties in plain text that accompanies the 

dataset. As shown in the top left corner in Table 6, such metadata can be logically 

thought as an annotation to an existing dataset which is stored separately from the 

data. Common techniques that use this metadata management paradigm include 

publishing readme.txt files at the same website or file system folder as the dataset, as 

well as electronic or face-to-face communication. In certain instances this form of 

metadata is captured in the logbooks of scientists and can only be acquired through 

direct communication. 

• Workflow-based metadata: Several scientific workflow systems are in use to automate 

task coordination and management in complex workflows. Workflow systems collect 

information that is mainly related to the provenance of the data and is used to quickly 

identify (or repeat) the process that generated a specific fragment of a dataset. Each 

workflow system stores and manages provenance metadata differently, and no 

standardized interface to access lineage information from applications currently exists. 

Should a scientist desire to access the provenance metadata, they first need to learn 

the data model and the query interface of the workflow system.  

Every piece of any of mentioned metadata type is independently generated and collected 

throughout the usual cycle of data-driven scientific discovery: 

• data creation 

• processing 

• analysis 

• archival 
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• sharing 

Project specific dataset collected in this cycle can become an input for the next cycle, in an 

effort to produce yet another metadata. Due to the distinct metadata schema sometimes 

datasets cannot be compared nor reused. Such situation is often due to lack of integrated 

metadata management framework that enriches scientific data with information that is: 

1. well-structured, holding crucial to data discovery information 

2. stored within each dataset and can be accessed via established data access and 

querying interfaces,  

3. acquired, propagated, and managed automatically 

[BLANAS 2015] In the extreme-scale data era that many scientific domains are entering, it 

becomes necessary to collect information-rich metadata that go beyond provenance. Rich 

metadata may include multi-resolution snapshots of data, summarizations, and semantic 

relationships among datasets. To support this, new types of metadata emerge: 

• Identity information includes the dataset name or any other unique identifier, the 

application pro- ducing the dataset, and reproducibility information such as the task and 

its parameters that were used to produce the result. 

• Dataset descriptions include summary statistics, derived variables, the resolution of the 

dataset, and the location of low-resolution snapshots of data for quick visualizations. 

• Performance and profiling information are historical access patterns, the presence of 

augmented datasets (such as indexes, partial replicas, or materialized views), and the 

locations of physically re- organized layouts of the data for faster access. This category 

also includes prior response time and energy consumption measurements that can be 

used for optimization decisions. This information can be readily leveraged for 

exploratory scientific data analysis. 

• Relationships among various datasets or tasks, such as derived variables of a dataset, 

or possible computations to derive such a variable upon request. This includes 

information on different views of the same dataset, such as a sorted replica or a bitmap 

index. Relationship metadata captures how analysis results are computed and where 

the results are stored. 

• User-defined metadata. Users and applications will be able to specify additional 

metadata to extend the semantic information conveyed as metadata. 

 

Challenges for metadata in exascale applications 

Exascale science requires richer metadata that is embedded within scientific datasets. An 

information-rich metadata management framework should allow scientists to understand a 

dataset through multi-resolution summaries that have been retained from prior analyses and 

are embedded in the data. Metadata-aware analysis tools can leverage multi-resolution 

summaries and accelerate exploratory data analysis. The summaries of the datasets from prior 

analyses can be visualized instantly. This substantially increases the scientific re-use value of 

the dataset, but introduces complexity that need to be addressed [BLANAS 2015]. 

With the emergence of large-scale storage architectures that separate metadata management 

from file read/write operations, metadata management has become a research problem on its 

own. Partitioning of the metadata among the servers is of critical importance for maintaining 

efficient MDS operation and a desirable load distribution across the cluster. What is more 

although the size of metadata are relatively small compared to the overall size of the data 

storage system, metadata operations may make up over 50% of all file system operations. In 

petabyte/exabyte-scale distributed file systems that decouple read and write from metadata 
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operations, behaviour of the metadata server cluster will be critical to overall system 

performance and scalability [WEIL 2004]. 

Technology overview  

In order to select a database solution for the aforementioned application we need to introduce 

some basic concepts that are crucial to designing database architecture and as a consequence 

strongly connected with their applicability as an answer to the stated problem. As described in 

the previous sections metadata storage in exascale applications require scalability in order to 

grant required efficiency regardless the use case characteristics. Metadata intensive use cases 

in exascale workflows require efficient processing of metadata operations despite significant 

read/write operations load imposed on the metadata management system. Constantly growing 

metadata database footprint requires storage infrastructure to grow together with grow 

together with the increase of that footprint. This means that in order to handle both trivial (less 

metadata intensive) and heavy loads, as well as and adapt to the constantly growing data 

quantity scalability is priority feature of the database solution for metadata storage. Current 

database solutions provide scalability on different levels. In order to understand differences 

between them there is a need to introduce concepts of ACID, BASE and CAP theorem. 

CAP Theorem 

Brewer first presented the CAP Theorem in the context of a web service [GILBERT 2012]. A 

web service is implemented by a set of servers, perhaps distributed over a set of 

geographically distant data centers. Clients make requests of the service. When a server 

receives a request from the service, it sends a response. The CAP Theorem was introduced 

as a trade-off between consistency, availability, and partition tolerance. We now discuss each 

of these terms. 

Consistency  

Consistency, informally, simply means that each server returns the right response to each 

request, i.e., a response that is correct according to the desired service specification. (There 

may, of course, be multiple possible correct responses.) The meaning of consistency depends 

on the service. 

Trivial services: Some services are trivial in the sense that they do not require any coordination 

among the servers. For example, if the service is supposed to return the value of the constant 

π to 100 decimal places, then a correct response is exactly that. Since no coordination among 

the servers is required, trivial services do not fall within the scope of the CAP Theorem. 

Weakly consistent services: In response to the inherent trade-offs implied by the CAP 

Theorem, there has been much work attempting to develop weaker consistency requirements 

that still provide useful services and yet avoid sacrificing availability. A distributed web cache 

is an example of one such system. 

Simple services: For the purposes of discussing the CAP Theorem, we focus on simple 

services that have straightforward correctness requirements: the semantics of the service are 

specified by a sequential specification, and operations are atomic. A sequential specification 

defines a service in terms of its execution on a single, centralized server: the centralized server 

maintains some state, and each request is processed in order, updating the state and 

generating a response. A web service is atomic if, for every operation, there is a single instant 

in between the request and the response at which the operation appears to occur. 

(Alternatively, this is equivalent to saying that, from the perspective of the clients, it is as if all 

the operations were executed by a single centralized server.) While there are several weaker 

consistency conditions used in practice (e.g., sequential consistency, causal consistency, etc.), 

we focus on atomicity due to its simplicity. 
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Complicated services: Many real services have more complicated semantics. Some services 

cannot be specified by sequential specifications. Others simply require more complicated 

coordination, transactional semantics, etc. The same CAP trade-offs typically apply, but for 

simplicity we do not focus on these cases.  

Availability 

The second requirement of the CAP Theorem is that the service guarantee availability. 

Availability simply means that each request eventually receive a response. Obviously, a fast 

response is better than a slow response, but for the purpose of CAP, it turns out that even 

requiring an eventual response is sufficient to create problems. (In most real systems, of 

course, a response that is sufficiently late is just as bad as a response that never occurs.) 

Partition-tolerance 

The third requirement of the CAP theorem is that the service be partition tolerant. Unlike the 

other two requirements, this property can be seen as a statement regarding the underlying 

system: communication among the servers is not reliable, and the servers may be partitioned 

into multiple groups that cannot communicate with each other. For our purposes, we simply 

treat communication as faulty: messages may be delayed and, sometimes, lost forever. (Again, 

it is worth pointing out that a message that is delayed for sufficiently long may as well be 

considered lost, at least in the context of practical systems.)  

ACID 

ACID is a set of properties of database transactions intended to guarantee validity even in the 

event of errors, power failures, etc. In the context of databases, a sequence of database 

operations that satisfies the ACID properties, and thus can be perceived as a single logical 

operation on the data, is called a transaction. Database transactions greatly simplify the job of 

the application developer. As signied by the acronym, ACID transactions provide the following 

guarantees [PRITCHETT 2008]: 

Atomicity 

All of the operations in the transaction will complete, or none will. 

Consistency 

The database will be in a consistent state when the transaction begins and ends. 

Isolation 

The transaction will behave as if it is the only operation being performed upon the database. 

Durability 

Upon completion of the transaction, the operation will not be reversed. 

BASE  

Scaling database systems to dramatic transaction rates requires a new way of thinking about 

managing resources [PRITCHETT 2008]. The traditional transactional models are problematic 

when loads need to be spread across a large number of components. Decoupling the 

operations and performing them in turn provides for improved availability and scale at the cost 

of consistency. BASE provides a model for thinking about this decoupling. As ACID provides 

the consistency choice for partitioned databases, then how do you achieve availability instead? 

One answer is BASE (basically available, soft state, eventually consistent). BASE is 

diametrically opposed to ACID. Where ACID is pessimistic and forces consistency at the end 

of every operation, BASE is optimistic and accepts that the database consistency will be in a 

state of flux. Although this sounds impossible to cope with, in reality it is quite manageable and 

leads to levels of scalability that cannot be obtained with ACID. The availability of BASE is 

achieved through supporting partial failures without total system failure. Here is a simple 
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example: if users are partitioned across five database servers, BASE design encourages 

crafting operations in such a way that a user database failure impacts only the 20 percent of 

the users on that particular host. This lead to higher perceived availability of the system. 

Storage solutions 

In order to choose appropriate storage solution for the application we need to take into 

consideration both standard ACID compliant databases, as well as other solutions that are 

implemented in the style of BASE. Up to now a plethora of database solutions have been 

implemented in order to respond to particular needs and applications. In particular many 

NoSQL (not only SQL) databases provide features that support various usage scenarios 

defined by CAP theorem. In order to grant scalability of the metadata database solution we 

aim for Partition Tolerance. As stated by Brewer by enforcing Partition Tolerance, 

compromising other qualities of database system such as Consistency or Availability is 

inevitable. 

RDBMSs 

RDBMS falls into the consistent and available category. The integrity model is ACID [BOICEA 

2012]. RDBMS can be scaled by sharding or full replication, but these strategies come with 

complexities and limits, the major one being that you will always need to have redundancy per 

shard which means operational complexity increases as well as having to make the application 

tier aware of the sharding scheme. [MongoDB1]. This implies significant cost for the application 

tier that makes these solutions practically useless for general purpose metadata storage that 

requires scalability. The complexity caused by the data model evolution performed just to allow 

for scalability cannot be justified for the users praising clarity and understandability of data 

model - which is a key to effectively manage metadata store.   

MongoDB 

NoSQL is a class of database management system different from the traditional relational 

databases in that data is not stored using fixed table schemas. Its main purpose is to serve as 

a database system for huge web-scale applications where they outperform traditional relational 

databases [BOICEA 2012]. MongoDB stores data in flexible, JSON-like documents, meaning 

fields can vary from document to document and data structure can be changed over time 

[MongoDB1]. MongoDB offers consistency, durability and conditional atomicity. RDBMSs 

offers integrity features that MongoDB doesn't offer like: isolation, transactions, referential 

integrity and revision control. MongoDB uses BASE integrity model instead [BOICEA 2012]. 

MongoDB 4.0 will add support for multi-document transactions, making it the only database to 

combine the speed, flexibility, and power of the document model with ACID data integrity 

guarantees. Through snapshot isolation, transactions provide a globally consistent view of 

data, and enforce all-or-nothing execution to maintain data integrity [MongoDB2]. 

CouchDB 

Unlike traditional relational databases, where each action performed is necessarily subject to 

database-wide consistency checks, CouchDB makes it really simple to build applications that 

sacrifice immediate consistency for the huge performance improvements that come with 

simple distribution [CouchDB1]. CouchDB, never use locks. This makes every part of the 

system always available to handle requests. In exchange, try to afford the cluster a moment to 

bring itself up to date after any change. Alternatively, store relevant state locally, such as by 

using PouchDB, which will keep itself up to date with your cluster automatically [CouchDB2]. 

CouchDB is ACID compliant. Within a CouchDB server, for a single document update, 

CouchDB has the properties of atomicity, consistency, isolation, and durability (ACID). 

Transactions across document boundaries nor transactions across multiple servers are 

available [CouchDB3]. 
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Conclusions 

Discussion presented in the State of the Art research description leads to the following 

conclusions regarding proposed solution: 

1. Scalability - MongoDB for its’ capability of sharing 

2. Failover - MongoDB for its’ replication feature 

3. Access protocol - REST over HTTP for ease of access, straight-forward client 

adaptation 

4. Metadata representation format - JSON documents, HAL for linking and discoverability 

5.3.2 DataNet 
DataNet is a complex web-based platform for metadata storage, access and manipulation 

provided in a convenient Software as a Service delivery model. It allows for management of 

metadata repositories for scientific applications. The use of commonly adopted REST interface 

makes it easily adaptable for various e-Science applications. Thanks to the growing popularity 

of a REST architectural style and ubiquitous use of HTTP, the implemented solution is widely 

supported in vast majority of programming languages, hence the straightforward integration 

for many workflow applications. DataNet federated deployment model supports scalability 

which makes it suitable for extreme data applications and exascale computing. Its performance 

analysis is described separately with more details in Section 6.1.2. 

Technology Readiness Level 

The DataNet has been deployed in the PLGrid Polish National Infrastructure where it was used 

in semi-production environments. Due to this fact we're considering current DataNet to be TRL 

6. Our research up-to date have shown that for the needs of the PROCESS project we would 

need to perform significant refactoring of this tool to enable required flexibility and scalability. 

While reaching this goal we're going to integrate well established solutions such as MongoDB 

as the backend, or Docker solution for manageable deployment and availability. After the 

refactoring and reconfirmation that the modified prototype is functioning properly (is still at TRL 

6), we are planning to provide fully production deployment on limited scale (e.g. in single site). 

At this phase after running series of tests we would be able to consider DataNet to be at TRL 

7. Later in the project we are going to provide additional mechanisms allowing scalability of the 

solution beyond single site.  When we would confirm that our platform is scaling well and that 

metadata are stored in optimal way in the cloud of DataNet services we would be able to assign 

this tool the TRL 8. 

Main features of DataNet application in the PROCESS project 

1. metadata repository management via web-based platform 

2. REST access to metadata resources 

3. JSON serialization format for metadata 

4. support for schema-less and schematic metadata 

5. authorization and authentication integrated with the project ecosystem 

6. isolated metadata repositories for different applications/scientific user groups 

7. metadata repository monitoring 
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DataNet architecture 

 

Figure 23: Conceptual design of DataNet 

Platform components 

1. web-based portal 

2. metadata repositories 

3. monitoring system 

DataNet implements a SaaS delivery model. A user accesses the platform using a web-based 

user interface. The web-based portal allows for deployment and management of metadata 

repositories using a web browser and it will support the PROCESS project security solution by 

implementing an appropriate authentication/authorization mechanisms. 
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Figure 24: Conceptual design of Metadata repository. 

Metadata repository is an application built on top of a database (document based noSQL 

database solution such as MongoDB) and provides accompanying a REST interface which 

allows to access and manipulate metadata. The REST interface provides authentication and 

authorization mechanisms in order to control metadata access. Metadata repository is 

wrapped into a Docker container and deployed in a Docker Swarm cluster. User can define 

and deploy several metadata repositories for different purposes. As repositories are deployed 

in a virtualized computing environment, performance of a single repository is not directly 

affected by the load handled by other repositories. Different repositories can be deployed in 

different infrastructures - different Docker Swarm clusters. Therefore, as the metadata 

management system can be distributed on both repository and infrastructural level, system is 

scalable and ready to be used by a multi-user/multi-application community generating high 

load. 

Metadata repositories are constantly monitored by a centralized monitoring system. System 

allows a user to verify state and performance of their repositories. 

Plans for integration with other systems 

1. PROCESS project security solution - authentication/authorization (Identity Provider) for 

web-portal, token exchange for API usage 

2. data management system (LOBCDER) - possible integration for handling data-

metadata coupling 

5.4 Secure and trusted storage and data access 

5.4.1 State of the art 

Secure data access 

The recent advances in the general ICT and cloud computing technologies facilitate global 

data availability and access over the network for cooperative group of researchers, including 

wide public access to scientific data. To enable such a global availability the whole data 

lifecycle should be supported including the benefits of the data storage/ preservation, 

aggregation, and provenance on a large scale and during long/unlimited periods of time. During 

different stages of data processing, data can be processed and stored on different systems 

that may be in the different administrative and security domains. It is important that the 
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supporting infrastructure ensures data security (integrity, confidentiality, availability, and 

accountability), and data ownership protection. With current needs to process large datasets 

that require powerful computation, there should be a possibility to enforce data/dataset policies 

to ensure that they are processed only on trusted systems and complying with other data 

protection requirements, in general enabling a data-centric security model. Researchers must 

trust such Secure Data Centric Infrastructure (SDCI) infrastructure to process their data and 

be ensured that their stored data are protected from unauthorized access or tampering. Privacy 

issues also arise from the distributed character of the considered infrastructure that can span 

multiple countries with different national policies. This makes the access control and 

accounting infrastructure an important elements. 

Data-centric security models 

The recent advances in the general ICT and cloud computing technologies facilitate global 

data availability and access over the network for cooperative group of researchers, including 

wide public access to scientific data. To enable such a global availability the whole data 

lifecycle should be supported including the benefits of the data storage/ preservation, 

aggregation, and provenance on a large scale and during long/unlimited periods of time. During 

different stages of data processing, data can be processed and stored on different systems 

that may be in the different administrative and security domains. It is important that the 

supporting infrastructure ensures data security (integrity, confidentiality, availability, and 

accountability), and data ownership protection. With current needs to process large datasets 

that require powerful computation, there should be a possibility to enforce data/dataset policies 

to ensure that they are processed only on trusted systems and complying with other data 

protection requirements, in general enabling a data-centric security model. Researchers must 

trust such Secure Data Centric Infrastructure (SDCI) infrastructure to process their data and 

be ensured that their stored data are protected from unauthorized access or tampering. Privacy 

issues also arise from the distributed character of the considered infrastructure that can span 

multiple countries with different national policies. This makes the access control and 

accounting infrastructure an important elements. 

The future data infrastructure requires different data centric operational models and protocols, 

which is especially important in situations when the object or event related data will go through 

a number of transformations and become even more distributed, between traditional security 

domains. The same relates to the current federated access control model, which is based on 

the cross administrative and security domains identities and policy management.  When 

moving to generically distributed data-centric models, additional research is needed to address 

the following issues: 

• maintaining semantic and referral integrity, i.e., linkage between data at the different 

stages of their transformation 

• data location, search, access 

• data integrity and identifiability, referral integrity 

• data security and data centric access control 

• data ownership, personally identifiable data, privacy, opacity of data operations 

• trusted virtualization platform, data centric trust bootstrapping 

Existing cloud providers such as AWS and Microsoft Azure offer configurable services for 

identity and access management. A cloud developer can make use of these services to build 

a security infrastructure for managing authentication and authorization in their applications. 

However, these services are limited or not usable in scientific contexts in various ways: 
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• They do not provide a complete lifecycle management for security services or allow the 

management of context in dynamic settings where the necessary computing 

infrastructure is created on-demand. 

• They do not support rich authorization models such as attribute-based access control 

model. For instance, AWS employs an identity-based authorization model for 

user/tenant account but this is not defined for the deployed services [IAM]. 

• Cloud developers are charged for the security-related services and pertinent network 

traffic. For instance, Azure charges developers based on the number of access control 

transactions and the quantity of data transferred from/to Azure data centers [AAD]. 

There are two fundamental problems related to security to be addressed for distributed SDCI. 

The first problem is associated with the dynamic provisioning of a security infrastructure for 

identity and access management. Considering the fact that research data is both 

geographically and logically distributed, collaboration between researchers imposes that 

certain security services are in place during the time of collaboration. The second problem, 

also called as dynamic trust bootstrapping, refers to establishment of trust between partners 

in on-demand cloud provisioning [MembreyP] [DemchGriSec]. With dynamic trust 

bootstrapping, researchers from different organizations can establish a chain of trust when 

sharing data, results, and VM instances for reproducing experiments.  

Dynamic Access Control Infrastructure (DACI)  

The extended Dynamic Access Control Infrastructure (DACI) [Ngo 2012] has been developed 

in the EU funded CYCLONE project that allows deployment of the configurable access control 

infrastructure as a part of depoyed on-demand cloud based application or service. DACI 

presents a virtual infrastructure to provide access control services to an on-demand cloud 

formation. The following basic security services are provided with DACI: 

• Authentication and identity management service: provides authentication service, 

issues, and verifies attribute statements binding to authenticated subjects using the 

Security Assertions Markup Language (SAML) specification [SAML]. 

• Authorization service: provides the authorization service compliant with the XACML-

SAML profile [SANLXACML 2005]. 

• Authorization service: provides the authorization service compliant with the XACML-

SAML profile [SANLXACML 2005]. 

These services provide a basic infrastructure for managing access control in dynamic 

environments. Since certain use cases involve sensitive data, DACI services were extended 

with three additional services pertinent to security: encryption service that provides protection 

of data at rest (or on the move), key management service for storing/exchanging keys, and 

distributed logging. Moreover, helper tools for assisting the specification and verification of 

policies are made available [Turkmen 2013, Turkmen 2015]. 

Trust Bootstrapping of the on-demand provisioned security infrastructure 

The initialization and deployment of a security infrastructure in on-demand cloud provisioning 

over multiple cloud providers imply that there is a dynamic mechanism to establish trust 

between involved parties and to populate necessary information for the proper function of the 

infrastructure. This process, also known as trust bootstrapping, may involve the collection of 

keys/certificates from all partners, retrieval of list of identity providers (in a federated setting), 

and so on. Some of this contextual information needs to be provided in a preconfigured manner 

while other information can be retrieved automatically. For instance, bioinformatics 

researchers are often affiliated with an organization that is part of a larger network, such as 

eduGAIN [eduGAIN], where the retrieval of certain information with respect to identity of users 

can be automated.  
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The Dynamic Infrastructure Trusted Bootstrapping Protocol (DITBP) [MembreyP 2012] 

leverages the Trusted Platform Module (TPM) and can be effectively implemented using 

available technologies and tools. TPM is typically available on all CPU boards and supported 

by majority of cloud platforms. 

The DITTBP subset has been implemented and tested with the software TPM in the CYCLONE 

project testbed. It has been implemented using keylime [keylime] for bootstrapping trust within 

cloud nodes and the services running on them. It can be considered as an instance of DITBP 

that employs a cloud verifier to periodically check the integrity of the node. There are three 

steps involved during the deployment of a VM node with keylime: 

1. Key generation in which the tenant creates a fresh symmetric key Kt for each new node 

it requests and shares the key with the node and the verifier using secret sharing 

2. Node initiation that refers to the instantiation of the node with the respective tenant 

configuration through cloud-init 

3. Key derivation in which the secrets are installed to cloud nodes according to a secure 

key derivation protocol. 

Additional research in this direction are needed, in particular in the PROCESS project to enable 

data centric data infrastructure capable of processing distributed large/exascale 

heterogeneous datasets on distributed exascale computing infrastructure. There are not many 

research in the area of the Trusted Computing Platform Architecture (TCPA) [tcpa 2007] due 

to complexity of this security domain but demand and interest is growing. 

In the condition that majority of modern computer motherbords are equipped with TPM, recent 

researches are revisiting the TCPA and TPM functionality to enable secure bootstrapping of 

the VM running application code with hardware based root of trust realisedby TPM which 

contains hardware based private key and can be used for deriving the Attestation Identity Key 

(AIK) that can be used for VM identification [TCPAIK 2016]. The problem with the TPM initial 

binding to the CPU and environment and protection against the Cuckoo attack is addressed in 

the research by [Parno 2008, Parno 2010]. 

Federated access control and Single Sign On (SSO)  

Federated access control is a common practice currently with web based applications. It 

provides a basis for the Single Sign On (SSO). Federated access is based on using federated 

identity service that maps multiple user credentials to one selected identity or credentials, 

typically provided by user home organisation. A typical example of using federated access 

control is a site that allows users to login with their Google or Facebook account. For 

universities and research organisations, the federated access control allows using user identity 

from their home organisation to access resources and services at all federation member 

universities. EGI Federated AAI is the federated access control and federated identity 

management service provide by EGI community. GEANT community is operating eduGAIN 

service to interconnect national identify federations.  

The OpenID standard [openid] provides a framework for the communication that must take 

place between the identity provider and the OpenID acceptor "relying party". The OpenID 

protocol does not rely on a central authority to authenticate a user's identity. An extension to 

the standard (the OpenID Attribute Exchange) facilitates the transfer of user attributes, such 

as name and gender, from the OpenID identity provider to the relying party.  The basic 

technology is provided by the SAML and OAuth2 protocols discussed above. These protocols 

allow a relying party to delegate the login to the identity provider. The identity provider performs 

the login and confirms to the relying party that this user is known. The identity provider provides 

the relying party with an access token, identity and optionally attributes such as the user’s 

email and name.  
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Federated identity management is widely used by European research and academic 

community. It allows researchers to deploy their own scientific applications and platform over 

one or more cloud infrastructures using federated access control infrastructure and other 

services federated nationally or internationally among cooperating organizations. Such 

deployments can be done with the dynamic allocation of network resources for the isolation of 

the VMs inside a dedicated private cloud, including virtual network and replicated user data. 

The widely use among European research community the eduGAIN framework provides 

access to research infrastructures and other resources. The initiative faces a number of both 

technical and organizations challenges. Below we describe the two protocols used in 

eduGAIN. 

The SAML and OAuth2 protocols are designed for logging in to web sites. In this scenario the 

identity of the user is established and a session cookie is used to maintain the authenticated 

state of the user. Research environments, however, often use different authentication 

protocols such as X.509 certificate based protocols (e.g., ssh) and proprietary protocols used 

by databases. Initiatives such as COmanage [comanage] provide an infrastructure to associate 

an X.509 public key with a federated identity. This, however, is not yet an established 

technology. 

The SAML and oauth2 protocols require the relying party (see above) to be registered with the 

identity provider. This is needed to guarantee the security of the protocol. At the same time 

this can be used as a statement of trust that the identity provider considers the relying party 

trustworthy. Note that this is not required. For example, anyone can create a Google account 

and use this to register any website for ‘login with Google’. Google does not verify that the 

website is trustworthy. On the other hand, the Dutch DigiD [digid] that can be used to login with 

government agencies and some private organizations such as insurance companies has a 

very strict procedure for accepting new relying parties. This may be compared to TLS 

certificates that may be obtained from Let’s Encrypt15 that only verifies the DNS really belongs 

to the site and the requester of the certificate can indeed control the contents of the site or one 

of the traditional certificate providers that also validate that the requesting organization exists 

and is trustworthy. 

These protocols allow providing attributes of the user known to the identity provider to the 

relying party. Normally the relying party requests a profile about the user. On the first login the 

identity provider confirms with the user that, for example, his or her email address is requested 

and whether or not this is acceptable. While attributes such as name, email, scientific role and 

detailed affiliation are in general required for an RI to grant access, such attributes are rarely 

available from the identity provider for privacy reasons.  In practice, academic and research 

institute’s identity services have strict rules to accept relying parties for their services and are 

much more reluctant than e.g., social login services such as Google and Facebook in providing 

attributes that reveal the true identity of the identified person. 

In practice granting access to research infrastructure (RI) to new users may be tricky. A proper 

federated identity management for European research infrastructures. Such initiatives are 

starting at the national level  where trying to establish a truested identity manager whic acts as 

a SAML/oauth2 proxy, relying on the research institutes and providing the required attribute 

management and support for e.g., X.509 certificates, like the  Science Collaboration Zone 

(SCZ) [SCZ] is an attempt to create such an entity for the Netherlands and the Clariah [Clariah] 

project providing a research infrastructure to humanity scholars, this proved impossible from 

an organizational perspective.  
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Exascale application viewpoint 

Authentication and authorisation will be an important element and should be carefully consider 

when it comes to exascale computing as no data center or single computing center will be able 

to deliver exascale needed resources by its own. Computing across multiple data centers is 

thus a must, and therefore solutions which will claim to achieve or target exascale have to use 

common and well established authentication and authorisation frameworks that are been 

developed in European initiatives like PRACE, EGI or GeANT. At this moment there are a 

number of initiatives for federating identity across and beyond europe to make access to 

resource more easy like EGI Check-in service [EGI-Check-in], eduGAIN [eduGAIN]. 

5.5 Integration of data management with service orchestration 
The idea of integrating the results of service orchestration directly into the data management 

suite of a distributed, cloud-based storage and data sharing system originates with the need 

to provide access to on-demand produced data. When accessing and processing very large 

datasets – in the domain of Big Data – it is often not possible to use the standard extract – 

transform – load paradigm. The cost of the extract step may be too high. We need to be able 

to provide a way to do the transformation in-situ, where the dataset is stored. Details on how 

this can be achieved in a generalized and safe way will be described in WP7. Here in WP5 we 

need to deal with the problem of accessing on-demand generated data through the data 

management infrastructure envisaged for PROCESS. 

The basic tool for data management in PROCESS is the LOBCDER – a distributed data 

federation and management system. LOBCDER provides unified interface to access all 

federated data via a WebDAV frontend. Behind this frontend, it manages a 2-level (logical and 

physical) catalogue of resources, which it accesses through a virtual file system (VFS) stack 

composed of a client and a driver. Our goal is to provide a VFS capable of running on-demand 

transformations of data, which is then made available via the WebDAV frontend. 

WebDAV allows access to a file system represented in the classical directory-file hierarchical 

structure. The service orchestration tools of WP7, on the other hand, represent their results by 

their properties. The VFS driver which we need to design and develop must thus be capable 

not only of executing a service-based data transformation process; it must also be able to 

transform property-based descriptions of data sets into a hierarchical structure 
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Figure 25: The method of integration of the DISPEL process enactment into LOBCDER. 

The method of integration of DISPEL-driven access to data into the LOBCDER's virtual file 

system is shown in Figure 25. The DISPEL VFS driver will provide access to one or more file 

hierarchy trees with pre-configured DISPEL process descriptions. Upon user's request through 

the LOBCDER's WebDAV interface, requesting to retrieve a file from a subtree belonging into 

the DISPEL VFS driver space, the appropriate DISPEL process will be parametrized according 

to the properties of the requested file and executed on a configured DISPEL Gate. The output 

data from this data process will be streamed back through the LOBCDER's WebDAV interface 

to the requestor. 

5.6 State of the art of extreme large computing services  

5.6.1 Challenges facing exascale computing 
Despite continuous  increase in the compute power of the HPC systems still even the biggest 

system on the latest edition of the TOP500 list13 provide only fraction (about 1/10) of the 

ExaFLOP. In turn it seems clear that at least initially reaching exascale computing capabilities 

would require combination of the multiple HPC systems. Running tasks in such combined 

system is related with multiple challenges. The basic one is related to the heterogeneity of 

such systems, as they are operated by multiple entities. This heterogeneity may involve both 

access mechanisms (protocols, credential types), software installed on those clusters (such 

as OS type and version, queuing system). Additionally each cluster usually run its workloads 

in internal private LANs which do not allow inbound connections from the Internet (due to 

                                                 
13 https://www.top500.org/list/2017/11/ 

https://www.top500.org/list/2017/11/
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mechanisms such as NAT). This in turn introduces additional restrictions for the designed 

infrastructure, such as the lack of ability for direct p2p communication between jobs running 

on different clusters. One of the important goals of the project would be to provide mechanism 

allowing such communication with minimal overhead required for the exascale system. 

5.6.2 Exascale computing projects 
Exascale project14 - the US project focusing on the acceleration of the process of the exascale 

systems delivery including those providing exascale compute services 

ECOSCALE15 - the EU project focusing on paving the way toward the energy-efficient exascale 

systems 

5.7 Interactive execution environment 

5.7.1 State of the art 
Several solutions already exist to support interactive execution of large-scale computations on 

hybrid underlying infrastructures. This section provides a basic description of the available 

mechanisms and tools which support creation and sharing of executable documents for data 

analysis. In this section we also provide a brief introduction to scripting notebooks, in particular 

their integration with HPC infrastructures in order to support building extreme large computing 

services as well as their extensions mechanisms needed to add support specific to the 

PROCESS project. We also present the results of comparison of their functionality. Part of this 

work has been submitted to KUKDM 2018 conference [KUKDM2018]. 

RNotebooks 

The purpose of R Notebooks [Rstudio] is to provide user-friendly interface for working with 

RMarkdown documents (i.e. a document format designed for creation of code notebooks 

initially for R language but now extended with a few more alternative ones.)  R Markdown 

syntax utilizes well-know markdown format (.md file) and integrates it with code chunks, in 

order to create one comprehensive document. R Notebooks enables programmers to use R 

Markdown notebooks interactively (execute particular chunks of code separately), with 

standard programming IDE features, like syntax highlighting, coding suggestions and some 

other features 

Architecture 

The R Notebooks are connection of R Markdown with RStudio (which is IDE for R). The 

following layers of the R Notebooks stack might be distinguished: 

1. RStudio or RStudio Server 

2. R Markdown editor, that is embedded in the RStudio IDE 

3. Knitr package, that manages chunks execution and rendering of the final document 

4. Engines for running the code chunks 

5. R Markdown renderer 

                                                 
14 https://www.exascaleproject.org/ 

15 http://www.ecoscale.eu/ 

https://www.exascaleproject.org/
http://www.ecoscale.eu/
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Figure 26: Flow of the R Notebook execution. 

Figure 26. provides the visual representation of the process of code execution and preparing 

the notebook for further rendering. There are following steps of the code execution process: 

1. Knitr package discovers languages needed for chunks and invokes specific engines, 

for example Python or Bash. 

2. Chunks are executed in the separate processes for languages different than R, which 

is executed in the same R session process as notebook. 

3. The standard output (and errors), as well as any return value from code chunks (ex. 

pictures) is returned to Notebook HTML document. 

After executing code chunks the markdown document with code output is rendererd by the 

pandoc, universal document converter. Pandoc is integrated in RStudio, but can also be used 

as a standalone application and as such it can be installed on Windows, Mac OS or Linux 

platform.As a terminal based application it is widely used in many systems for converting 

documents, supporting over 30 document formats. In the R Notebooks it is used for rendering 

variety of formats, most commonly html pages, pdf document or slides.  

Functionality 

R Notebooks is mainly designed for use with the R language. However, apart from that the 

knitr library works also with a few other languages. As for now R Notebooks can operate with 

some of these, namely Python, SQL, Bash, Rcpp and Stan. There are also some ways to 

manually integrate some other languages in your R Notebooks. Chunks of different types can 

be placed in a single document, but the communication between non-R chunks is limited to 

the file system or environmental variables usage (with some exceptions like Rcpp which allows 

to compile C++ code to the R version). The user is responsible for providing an engine for each 

language they want to use. 

RStudio natively supports scalability only in the sense of multiple R users. It handles team of 

R programmers allowing for project sharing, collaborative editing, session management, and 

IT administration tools like authentication, audit logs, and server performance metrics. These 

features are only available in the RStudio Server Pro version of the project (in some limited 

sense also in basic RStudio Server). 

To effectively utilize the cluster resources RStudio Server Pro provides a load balancing 

feature, which ensures that a new R session will go to machine with the most availability, and 

that features like the admin dashboard and project sharing will scale new RStudio nodes are 

added. This requires having RStudio Server Pro installed on every node of the cluster. 
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Integration with HPC infrastructures 

Integration of R Notebooks with HPC cluster can be achieved indirectly by utilization of some 

packages that are available for the R environment. One example of such a package is rslurm. 

It provides a simple api for executing jobs on the SLURM workload manager. It is designated 

for solving embarrassingly parallel problems, in which there is no communication between 

individual tasks.  This way requires running the notebook on the machine that has access to 

the SLURM system of the HPC cluster. It can be achieved by installing on this edge node the 

RStudio Server, accessing it remotely via web browser and deploying the SLURM job. 

Internally, R Notebooks provides also integration with Spark via R Spark libraries that can be 

obtained from CRAN. The integration is done simply by utilizing the package in the R code 

chunk. An example is the sparklyr package. There is also a direct access to SparkUI to observe 

jobs triggered from R Notebook. 

Extensibility 

As far as RNotebooks are concerned, there is not much that an ordinary user can do, as this 

is an inherent part of the RStudio, which does not allow for any substantial extensibility. Apart 

from some minor features that enhance the code production like RStudio Snippets (simple text 

macros that can be created by user to enable quickly insertion of commonly used code 

snippets) or similar RStudio Addins (which provide a mechanism for executing R functions 

interactively from within the RStudio IDE), the only feature that deserves attention, in the 

context of notebooks is the opportunity to define custom templates for R Markdown documents. 

Regarding  R Markdown itself,  it is possible to quite effortlessly write your own engine for 

executing unsupported languages - as an example, a tiny engine that allows to incorporate GO 

language chunks in the R Markdown notebooks. Of course, such engine is quite impaired, as 

it does not allow for communication between chunks and does not handle visual outputs. 

Nevertheless, the knitr library seems to be a very powerful tool, so more comprehensive 

solutions should be possible. 

DataBricks 

The Databricks [Databricks] platform can be used in various fields of computer science. It is 

used by scientific teams, engineering teams and in enterprise. In the industry, it has been 

applied in such areas as advertising and marketing technology, energy modeling, enterprise 

technology software, financial service, healthcare and life sciences, Internet of Things, 

manufacturing and industrial, media and entertainment, public sector, retail and consumer 

packaged goods and telecom. Its use cases include, among others just-in-time data 

warehousing, machine learning, graph processing and cybersecurity analytics. The Databricks 

platform has been successful in projects belonging to some of the largest companies in the 

world: 

1. Viacom - the company has built a real-time analytics platform based on Apache 

Spark  and Databricks, which constantly monitors the quality of video feeds and 

reallocates resources in real-time when needed. 

2. Shell - Databricks provides Shell with a cloud-native unified analytics platform that 

helps with improved inventory and supply chain management. 

3. HP - Databricks provides HP Inc. with a scalable, affordable, unified analytics platform 

that allows them to predict product issues and uncover new customer Services. 

Architecture 

DataBricks can only be run by using two possible cloud platforms: Amazon Web Services 

(AWS) and MicroSoft Azure.  The architecture of Databricks using AWS platform is shown in 

Figure 27. It consists of Databricks UI web application deployed on its own private cloud and 

Databricks runtime running on AWS. Such setting requires proper configuration of AWS from 

its user. After proper setup, Databricks is capable of submitting Spark’s jobs on AWS. 
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Figure 27: Architecture of DataBricks using  AWS Cloud. 

Running Databricks on Azure platform is simpler as, in comparison to the AWS setup, the 

Databricks web application is build-in the Azure platform. As a result the application which 

submits a Spark’s job and the jobs themselves are run on the same cloud platform. In 

Databricks, two different types of resources can be created (in both AWS and Azure): 

1. Standard Clusters: Databricks’ standard clusters have a lot of configuration options to 

customize and fine tune your Spark jobs. 

2. Serverless Pools (BETA): With serverless pools, Databricks auto-manages all the 

resources and you just need to provide the range of instances required for the pool. 

Serverless pools support only Python and SQL. Serverless pools also auto-configure 

the resources with right Spark configuration. 

Functionality 

The Databricks platform is not just an interactive notebook. It is the technological ecosystem. 

It includes elements, such as infrastructure management software, interactive notebook and 

backend software based on Apache Spark (Databricks Runtime). All components are supplied 

by the manufacturer as a whole. The functionality provided by Databricks is a superset of the 

Apache Spark functionality.The Databricks platform can thus be used wherever Apache Spark 

is currently used. It is worth mentioning that the Databricks Runtime engine is fully compatible 

with the free version of Apache Spark. Therefore, the vendor lock-in does not occur here. Due 

to the fact that Databricks provide the entire technical ecosystem and significantly simplifies 

the usage of a complicated tool such as Spark, it may bring attention of new users. The big 

advantage of using Databricks is also the ability to significantly optimize the company's 

expenses, through use “serverless” pool feature. On the other hand the use of services 

provided by Databricks, has some limitations. Actually the users of Databricks ecosystem are 

not allowed to use their own infrastructure. They are obliged to use the services of cloud 

providers as Microsoft Azure or AWS. 

Databricks Notebook allows to create blocks of code in the following languages: Scala, Python, 

R, SQL and Markdown. Different programming languages can be used in one block of code. 

What is more, if SparkContext and SQLContext objects are shared by the same Spark cluster 
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connected to the notebook, objects defined using one programming language can be seen 

from the other programming language. In addition, Databricks provides tools for managing a 

special file system (dbfs - DataBricks File System). The Databricks platform uses Databricks 

Runtime, which is build based on Apache Spark. For this reason, the platform uses the same 

programming model that is used in Spark, namely RDD (Resilient Distributed Dataset). The 

ability to scale an software running on the Databricks platform is similar to the scalability of the 

Apache Spark application. However, due to the fact that the Databricks platform uses 

serverless architecture, it is possible to flexibly increase computing resources. 

Integration with HPC infrastructures 

The users of Databricks ecosystem are not allowed to use their own infrastructure. They are 

obliged to use the services of cloud providers as Microsoft Azure or AWS. 

Extensibility 

At the moment the Databricks notebooks cannot be extended by the users in any way. The 

only extensions to the notebooks can be done by the developers from Databricks company. 

As a result the end user is limited to the languages and solutions designed and build-in the 

platform by the creators. 

Beaker Notebook 

Beaker Notebook [Beaker] is an environment to work with datasets. It supports multiple 

languages and allow users to mix them, so that proper tool is always used. The interactive 

development style of its cell structure fits well with data science applications and research. It 

enables user to work in multiple languages at the same time, which can be useful in complex 

data processing flows. This application is targeted especially to scientists, but everyone who 

need to create a data flow or implement an algorithm in various languages can you use it 

effectively. 

Architecture 

Beaker notebook is built on modular architecture as shown in Figure 28. 

 

Figure 28: Architecture of Beaker notebook. 

As shown in the Figure 28, a Core Server module uses multiple plugins (eg. Groovy, R etc.) 

responsible for the whole functionality starting from GUI elements to evaluating languages. 

Actual languages that can be run are implemented by this backend server - it is using standard 

native backend. When we run R or Python in beaker we are accessing the R or Python that 

we already had installed on our computer. Particularly for Python we use the IPython protocol 

so beaker is like a frontend communicating with the IPython backend. On the server side it 

uses the nginx reverse proxy and that makes all the servers appear as single server to the 

client. It makes it easier to program, but it is also very useful for security, because it means 

that authentication and encryption can be done in one place. Thanks to such a modular attitude 
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expanding it is relatively simple. It is one of the reasons why there are so many possibilities for 

running it (Docker, Electron based native application, Windows native application) and there is 

plenty of programming language plugins. 

Functionality description 

Currently supported languages include Python, Python3, R, JavaScript, SQL, C++, 

Scala/Spark, Lua/Torch, Java, Julia, Groovy, Node, Ruby, HTML, and Clojure. Individual cells 

can be run independently of others and contain different programming languages. Beaker 

provides native autotranslation that lets a developer declare specific variables in a cell in one 

language, then access these seamlessly in a different cell and language. Such capability frees 

developers to utilize those inherent strengths of the individual languages in pursuit of their 

research, without spending time dealing with intermediary files. Beaker offers a rich charting 

API for Groovy, which can also be leveraged by other languages through a simple JSON 

interface. Not only does it produce beautiful, interactive charts but it also handles large 

datasets that would normally bring your browser to a halt. This level-of-detail feature 

dynamically resamples the data based on the zoom level and window size, to keep the frame 

rate high. Beaker also works with p5.js, ggvis, plotly, Bokeh, matplotlib, ggplot2. 

Integration with HPC infrastructures 

For this moment there is no version of beaker for HPC infrastructure. Developing it is written 

in the road map of this tool, but it does not seem to be highly prioritized. However, due to its 

architecture, running beaker on such machines should be possible because of its docker 

version.  

Extensibility 

A user can add Beaker support for his/her own language  by using a specific API provided by 

the tool. The detailed instructions can be found in the documentation [Beaker] 

Jupyter 

Jupyter notebook [Jupyter] is the open-source application supporting creation and sharing 

documents ( "notebooks") code, source  equations, visualization and text descriptions. Its 

applications include: data transformation, numerical simulations, statistical modeling, data 

visualization, machine learning and much more. The project was developed to support 

interactive data processing and computing. Currently Jupyter is used by many companies and 

univerities including  Google, Microsoft, IBM, Bloomberg, O'Reilly, University of California, The 

University of Sheffield, The George Washington University, Clemson University, Michigan 

State University, Northwestern University, New York University and much more. 

Architecture 

 

Figure 29: Jupyter architecture. 

As shown in Figure 29, the Jupyter notebook is a client-server application that allows working 

with notebook documents via a web browser. The application can be run locally, which does 

not require access to the Internet, or it can be installed on a remote server, then access will be 

carried out by the network. The user creates and edits notebooks via a web application 

available in a web browser. Frontend is responsible for running the code, it is also involved in 

storing this code, its execution results and notes. When a user saves a document, all data is 

sent to the server. The server is responsible for saving and loading files from disk. Documents 

are stored as a file with the extension JSON .ipynb. In this way, the notebook server allows the 
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user to perform editing, even without a kernel for a particular programming language. The 

notebook console uses the IPython kernel which is a separate process that is responsible both 

for running user code. The frontend communicates with the IPython kernel via JSON messages 

sent by zeroMQ sockets. 

Functionality 

Jupyter has support for many programming languages and this a list is constantly growing, 

thanks to the fact that the project is an open-source project. After selecting an existing 

notebook or creating a new one, we can write the code and perform its fragments. The result 

of the code is displayed under the appropriate cell immediately after the calculation. Jupyter 

can display text and images as well as very complex, interactive visualizations. 

Integration with HPC infrastructures 

Jupyter developers do not provide any mechanisms for integration with HPC infrastructures. 

The solutions that could be found on the web are only partially efficient. One of the simplest 

ways is to run the server as a batch job on a HPC cluster and forwarding the appropriate ports. 

Several libraries also enable submitting jobs directly from the server running Jupyter to HPC 

queuing systems, but up to our best knowledge none of them seems to be mature enough and 

actually provides a working solution. There is also the possibility to run Jupyter in a docker 

container. 

Extensibility 

The kernel process can connect simultaneously to several frontend applications. In this case, 

the various frontends will have access to the same variables. This design facilitates the 

construction of a wide variety of frontends based on the same kernel, but also opens up the 

possibility of support for new programming languages on the same frontends by writing kernels 

in these languages. Currently, there are two ways to create a kernel for a different languages. 

Wrapper kernels reuse communication mechanism and only implement that part which is 

responsible for the execution. Native kernels implement the two parts in the target 

programming language. 

Cloud Datalab 

Google Datalab [CloudDatalab] is freeware interactive notebook delivered by Google. It’s 

primary goal is to provide data exploration, analysis and visualisation and machine learning 

models building on Google Cloud Platform. Therefore Datalab is mostly aimed for Google 

Cloud Platform users. Datalab has been used for data querying and basic machine learning to 

calibrate temperature forecasts [Arvalez 2016]. It is also used as tool for educational machine 

learning environment at Howard University. 

Architecture 

Cloud Datalab runs interactive Jupyter notebooks. Cloud Datalab is packaged as a container 

and run in a virtual machine (VM) instance. This VM is provided by Google Compute Engine - 

Google service responsible for running instances on Google Cloud hardware resources. Cloud 

Datalab notebooks can be stored in a Google Cloud Source Repository. Figure 30 presents 

typical Google Cloud Cluster. Such a cluster is composed of a head node and a set of compute 

nodes. Users interact with the head node that then coordinates work out to the compute nodes. 

Datalab Notebook runs on one of cluster VM instances. 
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Figure 30: Cloud Datalab running in  Google Cloud Platform. 

Functionality 

Cloud Datalab is a powerful interactive tool created to explore, analyze, transform and visualize 

data and build machine learning models on the Google Cloud Platform. It runs on Google 

Compute Engine and connects to multiple cloud services (like Google BigQuery, Cloud 

Machine Learning Engine, Google Compute Engine and Google Cloud Storage) easily so user 

can focus on one’s data science tasks. It enables analysis of data using couple of programming 

languages (currently supported ones are: Python, SQL, and JavaScript (for BigQuery user-

defined functions)). It is easily scalable, allows for running local analysis on sampled data and 

running training jobs on terabytes of data seamlessly. 

Integration with HPC infrastructures 

It is possible to install datalab on the Google Cloud Dataproc (Spark/Hadoop - based service, 

allowing for Google Cloud Platform - integrated clusters creation). Up to our best knowledge, 

there is no  possibility of using Datalab with external Clusters. 

Extensibility 

Google provides users with a way to extend datalab notebook, by using an ‘%extension’ 

command. However currently only MathJax (JavaScript display engine for mathematics) is 

supported. It is also possible to add your own features implementations to the Datalab itself 

since it is an open source project. Thus you can create your code,  commit it and then create 

a pull request in order for the Datalab team to review your implementation before incorporating 

one into the project. 

Apache Zeppelin 

Zeppelin [Zeppelin] is an interactive notebook designed for the processing, analysis and 

visualization of large data sets. It provides native support for Apache Spark distributed 

computing. Zeppelin allows to extend their functionality through various interpreters (eg. Spark, 

Scala, Python, shell, etc.). Examples of projects and institutions using Zeppelin, are: 

1. Helium -  instead of writing a code and running it,  a user runs packaged code  and get 

result on the notebook 

2. Hortonworks - an organization dedicated to creating, distributing and supporting 

platforms that are ready data management solutions for companies. One of the 

services offered by the use of the Apache Spark with Zeppelin. 
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Architecture 

 

Figure 31: Architecture of Zeppelin. 

Figure 31 shows the architecture of Zeppelin. A client communicates  with  a server using  

REST API or WebSocket. The server sends the processed jobs to the interpreters - engine 

processing tasks. Interpreters can be combined into groups, so they can operate 

simultaneously on the same Notebook. 

Functionality 

It is possible to use multiple languages in a single document created in Zeppelin. The user can 

take advantage of available interpreters by grouping them in groups of interpreters and decide 

which of the groups to use, which gives him access to all the languages of the collection. 

Zeppelin provides built in native support for the Apache Spark platform. For data visualisation, 

Zeppelin provides some basic chart types. It also offers the ability to display automatically 

aggregated data using built-in functions in a graph. The notebook can be shared between 

contributors and modified simultaneously. 

Integration with infrastructure HPC 

It is possible to run Zeppelin on HPC using a connection to a YARN cluster.   

Possible extension  

A user can easily create own interpreters, it is also possible to extend backend and frontend 

of Zeppelin by using provided API 

Comparison and conclusion 

 

Table 7: Interactive execution environment comparison. 

Name of  the 

tool/ 

environment 

Large data 

sets 

support 

Infrastructure 

(HPC/Cloud) 

Extension 
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mixing 

langua
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in one 

docum

ent 

Additional 

note 
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R Notebook 

using 

additional  c

ustom 

libraries 

(e.g. for 

Apache 

SPARK) 

using custom 

libraries 

communicating 

with HPC 

queuing 

systems (e.g. 

SLURM) 

possiblity to 

add own 

engine  

for executing 

unsupported 

languages 

Yes 

some of the 

features  

(e.g. project 

sharing, 

collaborative 

editing, 

session 

management, 

server 

performance 

metrics, using 

cluster, load 

balancing etc.) 

available only 

with the 

commencial  R

studio Pro  

DataBricks 

the whole 

platform is 

based 

on Apache 

SPARK 

Available only 

on Amazon 

Web Services  

or MicroSoft 

Azure 

almost none Yes  

Beaker 

using 

additional 

custom 

libraries 

no specyfic 

support for 

HPC; docker 

version 

available 

A user 

can  add 

Beaker 

support for 

unsupported  

language by 

using a 

specific API 

provided by 

that tool.  

Yes 

Currently, a 

new version – 

BeakerX is 

available 

which actually 

is  a collection 

of kernels and 

extensions to 

the Jupyter 

interactive 

computing 

environment. 

Jupyter 

using 

additional 

custom 

libraries 

no mature 

solution for 

HPC; docker 

version 

available 

Possibility to 

add 

unsupported 

language by 

writing 

a new 

Jupyter 

kernel 

No  
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Cloud Datalab 
 

support for 

Google data 

services 

(e.g. 

BigQuery, 

Cloud 

Machine 

Learning 

Engine etc) 

only Google 

Cloud Platform 
limited Yes using Jupyter 

Zeppelin 

native 

support for 

Apache 

Spark 

possible to run 

on HPC using 

connection to 

YARN cluster 

possibility to 

add own 

unsupported 

laguages 

Yes  

 

Although there exists many Interactive execution environments that could be considered to be 

extended for PROCESS requirements, many of them have some drawbacks. DataBricks and 

Cloud Datalab require to be run on specific cloud resources. Zeppelin and DataBricks are 

based on Apache SPARK solution which potentially limits their usage to that platform. 

RNotebooks seems to be promising, however some important features are only available with 

a commercial version of Rstudio. BeakerX (the sucessor of Beaker) and Cloud Data are 

actually based on Jupyter solution that seem to be most popular base for building such 

environments. 

The goal of the Interactive Execution Environment is to bridge the gap between users of 

computational services (who are not expected to be familiar with the complexity of developing 

and executing extreme large scale computational tasks with the use of modern HPC 

infrastructures) and the underlying hardware resources. Accordingly, the IEE is envisioned as 

an interface layer where applications can be accessed and their results browsed in a coherent 

manner by domain scientists taking part in the PROCESS project and beyond. 

The following properties are regarded as particularly desirable: 

• A means of implementing the “focus on services and forget about infrastructures” 

concept 

• Provides two ways of accessing the underlying computational resources: through a 

user-friendly GUI and programmatically, via a dedicated RESTful API 

• Can be embedded in any external environment (such as Jupyter) via API integration 

• Interfaces computational clouds and traditional HPC (batch job submission) using 

Rimrock and public cloud access libraries, as appropriate. 

The features which need to be provided by the environment are as follows: 

• Registration and administrative management of computational resources 

• Deployment of computational tasks on the available resources 

• Infrastructure monitoring services 

• User-friendly access to PROCESS datasets 

• Security management (users, groups, roles) 

• Administrative services (billing and logging) 

• Integration with external tools via standardized APIs 
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Following preliminary discussions with use case developers and the project's architecture 

team, the following tools have been identified as usable in the context of the PROCESS project 

- in addition to the previously discussed notebook solutions, which can function as an 

embedded feature in a comprehensive GUI.  

5.7.2 EurValve Model Execution Environment 
The EurValve Model Execution Environment is an execution environment for data processing 

pipelines. Originally conceived in the context of the EurValve project, the goal was to develop 

a decision support system for procedures related to heart valve abnormalities, enabling 

clinicians to decide upon the optimal course of action for any specific patient (i.e. choose 

between medication/surgery and advise on the possible strategies and outcomes of the latter). 

While the aforementioned DSS does not, by itself, involve large-scale processing, it is based 

on a knowledge base whose production is one of the principal goals of EurValve. Assembling 

this knowledge base calls for processing a vast array of patient data (for both prospective and 

retrospective patients) through the use of dedicated pipelines, consisting of multiple services 

and making use of various types of supercomputing infrastructures (both traditional batch HPC 

and cloud models). Its performance analysis is described separately with more details in 

Section 6.1.3. 

 

Figure 32: EurValve Model Execution Environment (MEE) architecture. 

MEE allows additional visualization interfaces to be plugged in; therefore it could be used to 

embed a selection of computational notebooks (such as the ones presented above), 

exposing their functionality in a secure and accessible manner. It can also provide a top-level 

interface to any underlying data storage solution, thus integrating the PROCESS toolkit into a 
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coherent whole. Further details concerning the MEE can be found at 

http://www.cyfronet.krakow.pl/cgw17/presentations/S7_2-EurValve-MEE-Oct-2017-v02.pdf. 

Technology Readiness Level 

The platform is regarded as having reached TRL 6 given that a prototype is in operation in the 

EurValve project – see https://valve.cyfronet.pl. Deploying MEE in support of PROCESS use 

cases would advance this to a production infrastructure, consistent with the requirements of 

TRL 8.  

Main features of the service in the PROCESS project 

The service can be extended to account for the requirements of PROCESS. More specifically, 

the following extensions are contemplated: 

1. Creation of a new type of pipeline step in MEE which would be implemented as a 

Jupyter notebook, with the user able to adapt/modify code prior to execution. This 

would be achieved by embedding the Jupyter environment in MEE itself. When a 

pipeline is to be executed (note that a pipeline will correspond to a PROCESS 

application run), the GUI would display a Jupyter widget enabling users to interact with 

the script which encapsulates the base application logic. This script would then be sent 

for execution by a Jupyter engine residing on the available hardware infrastructure 

(HPC or cloud resources). 

2. Enabling MEE to interact with Docker containers deployed in the cloud or on specially 

prepared cluster nodes (via the Singularity engine available on Prometheus and MUC 

clusters) 

3. Implementing a REST endpoint for MEE itself to enable its functionality to be invoked 

remotely. 

PROCESS platform components 

The components which would be beneficial for PROCESS are outlined above. In general, MEE 

itself is envisoned as a standalone component which may be used to invoke PROCESS 

application runs on the underlying resources. 

Plans for integration with other systems (from PROCESS) 

MEE integrates with Atmosphere and Rimrock directly. It is capable of requesting Atmosphere 

to launch VMs in the cloud, and of scheduling HPC jobs with Rimrock. External usage of MEE 

is currently possible via its web-based GUI, however a RESTful interface may be added as 

needed. 

5.7.3 Rimrock execution environment 
Rimrock stands for Robust Remote Process Controller Controller [RIMROCK1], [RIMROCK2] 

is a service that simplifies interaction with remote HPC servers. It can execute applications in 

batch mode or start an interactive application, where output can be fetched online and new 

input sent using a simple REST interface. What is more, by using a dedicated REST interface 

users are able to submit new jobs to the infrastructure. This solution would support efficient 

creation and sharing of executable documents for analysis of heterogeneous research 

datasets. Its performance analysis is described separately with more details in Section 6.1.4. 

Technology Readiness Level 

RIMROCK is currently actively used in production in the Polish national-wide HPC 

infrastructure PLGrid (https://submit.plgrid.pl/) in our opinion it already surpassed original TRL 

6 and should be now considered at TRL 7. The work planned in the PROCESS project 

including further testing and integration with other EU e-Infrustructures (such as the clusters 

provided by the LMU/LRZ, UvA or UISAV) would certainly pave the way towards the TRL 8.  

http://www.cyfronet.krakow.pl/cgw17/presentations/S7_2-EurValve-MEE-Oct-2017-v02.pdf
https://valve.cyfronet.pl./
https://submit.plgrid.pl/
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Main features of the service in the PROCESS project 

The RIMROCK may be used as component of the whole PROCESS workflow (or directly via 

external tools used by the PROCESS use-cases if needed) by: 

1. providing unified gateway to the multiple HPC clusters (such as Prometheus, LRZ 

Linux-Cluster and SuperMUC , UvA and UISAV clusters), 

2. taking care of the unified JOB identification so upstream clients would not need to keep 

records where the job has been scheduled, 

3. hiding underling complex HPC access protocols by exposing simple RESTful API 

4. allowing scheduling, monitoring and terminating HPC jobs 

5. supporting common resource access methods (such as gsissh and grid middlewares)  

6. controlling common job queuing systems (currently PBS and SLURM with plans for 

extensions) 

7. allowing running simple task on the UI node (without submitting on the cluster) 

Architecture 

 

Figure 33: Rimrock architecture. 

Rimrock is a service which simplifies the management of processes and tasks executed in the 

high performance computing infrastructure. The service stands out by unifying access to 

computing and storage resources  with  the  popular  REST  interface  communication  

paradigm and  by  utilizing  user  rights  delegation  making  it  possible  to  chain multiple, 

intermediary services within a single user session [Pajak 2015]. It supports file stage-in/stage-

out using GridFTP and it is compatible with PBS, SLURM, GLite and QCG. 

Plans for integration with other systems (from PROCESS) 

As RIMROCK is acting as gateway for the HPC infrastructures exposing the REST API it is 

going to be integrated with the MEE which would use it as backend to those infrastructures. 

5.7.4 Atmosphere cloud platform 
Atmosphere [Atmosphere1], [Atmosphere2] is a hybrid cloud environment facilitating the 

development and sharing of computational services wrapped as cloud virtual machines, with 

access to external data sources (such as LOBCDER, mentioned above). Atmosphere supports 

the entire cloud service development lifecycle and provides a set of pluggable interfaces which 

can be included in portals and web applications. It is compatible with a wide range cloud 

middlewares of open-source and commercial vendors, and provides interfaces to both public 

and private cloud resources in the form of a technology-agnostic UI and RESTful APIs. Its 

performance analysis is described separately with more details in Section 6.1.5. 
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Technology Readiness Level 

As Atmosphere is currently running in production mode in the PL-Grid environment, where it 

provides access to cloud resources which are made available to the PL-Grid consortium 

(https://cloud.plgrid.pl), and also supports all the operational use cases of the VPH-Share 

infrastructure (https://vph.cyfronet.pl), it should be regarded as having attained TRL 7. 

Deploying the platform in PROCESS, with its attendant use cases, would provide qualified 

testing and demonstration necessary for achieving TRL 8.  

Main features of the service in the PROCESS project 

In the Process project Atmosphere can be used to spawn Virtual Machines hosting system 

components in selected cloud setups (such as the OpenStack cloud in place at ACC Cyfronet 

AGH). To be able to perform this function, the Atmosphere host must be able to talk to the 

cloud head node. Atmosphere can also manage VMs deployed in commercial clouds, such as 

Amazon EC2 and Google Cloud Platform. 

Architecture 

The architecture of Atmosphere is briefly outlined in the following image. 

 

Figure 34: The architecture of Atmosphere. 

Atmosphere itself provides a RESTful API (see https://github.com/dice-

cyfronet/atmosphere for a descrtiption thereof), which can be used to implement higher-level 

UIs, such as the VPH-Share Cloud UI. 

PROCESS platform components 

Atmosphere can process incoming requests by way of a RESTful API and can therefore 

integrate with external services and GUIs. Note that Atmosphere is directly integrated with the 

Model Execution Environment (MEE) described above. MEE can direct Atmosphere to spawn 

virtual machines upon which individual pipeline steps can be computed, then clean up unused 

resources once the computations have concluded. 

Plans for integration with other systems (from PROCESS) 

The API provided by Atmosphere can be interfaced by any component capable of 

communicating with a RESTful web service. Ideally, the entity issuing calls to Atmosphere 

should be the one responsible for orchestration of services in the PROCESS framework, i.e. 

the service or component which decides where to deploy specific computational tasks. 

Atmosphere handles the actual communication with the underlying cloud platform, deploys 

VMs and returns access details which the service orchestrator requires to actually 

communicate with the VMs in question. 

https://cloud.plgrid.pl/
https://vph.cyfronet.pl/
https://github.com/dice-cyfronet/atmosphere
https://github.com/dice-cyfronet/atmosphere
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Atmosphere is directly integrated with the Model Execution Environment (MEE) described 

above. MEE can direct Atmosphere to spawn virtual machines upon which individual pipeline 

steps can be computed, then clean up unused resources once the computations have 

concluded. 

The atmosphere usage tutorial is available as a live document at https://vph.cyfronet.pl/tutorial/ 

5.8 Benchmarking and monitoring services 
Main properties: 

• Collecting performance data using state-of-the-art tools for distributed systems, such 

as Netlogger, Zabbix, Zipkin and Graphite 

• Querying and processing distributed databases and search engines, together with 

visualization dashboards such as Grafana, ElasticSearch, Logstash and Kibana 

• Processing extremely large metric data sets as well as discrete event information 

 

Figure 35: Benchmarking and monitoring services. 

Core features: 

• Registration and de-registration of services in/from the monitoring and benchmarking 

system 

• Management of services being monitored/benchmarked and relevant details (metrics, 

triggers, events, graphs, etc.) 

• Integration with the project security system to control access 

• Enabling integration with external project components 

5.8.1 State of the art 
As the basic requirement for the monitoring component is stability and scalability we've decided 

to look for existing well established components that may be integrated into the system. Such 

systems have matured for many years which would go long way in fulfilling our goals. However 

big task would be integration of those solutions into the project to ensure smooth operations 

even at extreme scale. Below we're briefly describing analyzed systems. 

https://vph.cyfronet.pl/tutorial/
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Nagios 

As one of the most well known and widely used monitoring system with history dating to 1996 

(with initial Open Source release under NetSaint name in 1999 and following release as Nagios 

in 2002) [NAG-HIST] is a natural candidate for our system. At present it offers both free and 

Open Source version known as Nagios Core as well as commercial version (Nagios XI). The 

solution is focusing on providing alerting services both for external checks (like ping, HTTP) as 

well as internal checks (like disk/memory/CPU usage). It is easily extendable and offers a 

standardized plugin mechanism. Plugins may be developed in any technology providing they 

return appropriate output. They may be called either locally or remotely e.g. via NRPE solution 

or SSH. Nagios Core configuration is stored in hierarchical set of flat configuration files (in plain 

text) which might be not as easy to manage as the solution based on a database but on the 

other hand offers great speed and reliability. 

Zabbix 

Zabbix is another well established solution with initial stable release in 2004 (with earlier beta 

and internal releases dating 1998) which is comparable to Nagios. It offers similar alerting 

features as Nagios with additional out of the box continues load monitoring and visualization 

(through tables and graphs). In contrary to Nagios, Zabbix requires installation of agents on 

monitored nodes to allow internal checks, which allows more consistent platform but at the 

same time may be more complex especially in heterogeneous systems. Zabbix offers large set 

of predefined monitoring templates for various types of services. It keeps it configuration in the 

database and allows very straight-forward management via the GUI or Web API. 

Icinga 

Icinga has been originally created as a fork of Nagios in 2009. It's goal was to allow better 

scalability for large deployments. Later the Icinga2 has been compliantly redesigned and 

rewritten to allow modern UI and wide range of RDBMS backend, yet still providing backward 

compatibility with the Icinga1 / Nagios plugins.  

Munin 

Munin is a tool writtedn in Perl, which allows monitoring system resource usage. It is also 

capable of graphing collected resource data (using the RRDtool). This system may be used in 

combination with an alerting system (such as Nagios) to check for bottlenecks.  

Cacti 

Cacti is antother resource monitoring tool using RRDtool to graph collected usage data. It is 

composed of a PHP frontend and a scalable C backend (Spine). It is especially well suited to 

graph network usage based on data collected from network switches or routers via the Simple 

Network Management Protocol (SNMP). 

Ganglia 

Ganglia is yet another load monitoring tool especially well suited for large tightly-coupled 

systems like Clusters. To reach this goal a set of optimisations were implemented such as the 

ability to use Multicast instead of Unicast to reduce the trafic overhead related to the monitoring 

platform. 

Collectd 

Collectd as the name suggests may be used to collect data from numerous sources both 

directly from nodes as well as indirectly e.g. via the SNMP. Collected data may be then written 

to disk or sent to other services via the network which makes this tool perfect as a building 

block for larger and more complex systems. 

Elastic Stack 

Elastic Stack is a name for a set of tools composed of: 
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1. Data Collectors: 

1. Beats - responsible for collecting metrics data from nodes including both 

generic data (such as memory/cpu usage) as well as application specific data 

(e.g. from Nginx) or even container based platforms (Docker, Kubernetes), 

2. Logstash - responsible for acquiring and preprocessing data from multiple 

sources (including logs, NetFlow, collecting engines such as Collectd etc.) 

2. Search and analytics engine called Elasticsearch 

3. Presentation / graphing platform called Kibana which allows showing the results in 

modern Web Based UI 

Grafana 

Grafana is another visualization toool capable of agregation of data from multiple sources 

(such as InfluxDB, but also already mentioned Elasticsearch). In this aspects is similar to 

Kibana but focuses more on metrics (time series) then log analytics. 

NFDUMP with NfSen 

This set of tools is specific to analysis of network traffic from NetFlow compatible sources (such 

as routers). NFDUMP is used to collect data form the source and NfSen act as a frontend 

capable of graphing and providing GUI for users. NetFlow based analysis allows to track 

connections based parameters such as protocol or source/destination port. 

ntopng 

The ntopng is based on a legacy Open Source tool called ntop. It allows processing and 

graphing of NetFlow data similar to the previously mentioned NfSen, but it comes with a 

modern UI. The basic version of ntopng (Community) is free and open source, however the 

vendor offer also non-free commercial versions (Professional, Enterprise) as well as other 

commercial parts of the system such as: 

1. nProbe - for collecting data from NetFlow sources or directly from the network 

2. n2disk - for traffic recording 

3. PF_RING - for high-speed packet capture (PF_RING standard is distributed under 

GPL/LGPL mixed license, and high-speed PF_RING ZC driver is proprietary) 

5.8.2 Conclusions and the chosen solution 
Based on the above SotA analysis we have initially chosen 3 best candidates for this task - 

Zabbix, Nagios and Icinga, as they are ale mature complete solutions well suited for the task. 

The rest of the solutions are also fine, but would address only a subset of the tasks. In result, 

usage of other mentioned solutions would require integration of multiple distinct components 

which may not provide in our opinion sufficient stability for the PROCESS project. Upon further 

analysis we have finally chosen Zabbix as the best solution. We made this decision as Icinga 

2 (current version of Icinga) is not so mature and well established as Zabbix and Nagios. On 

the other hand Nagios Core offer great alerting capabilities, however it is not offering the same 

level of support for online resources monitoring, as well as its configuration is based on text 

files might require more complex integration. Zabbix's configuration is based on a RDBMS (like 

MariaDB/MySQL) and could be modified via the API. With over 19 years of history and constant 

development/testing, as well as wide range of users including big corporations from wide are 

of domains such as Banking/Finances, Health, IT and Telecommunication Zabbix is a fully 

mature solution and in our opinion may be rated as TRL 9. Its performance analysis is 

described separately with more details in Section 6.1.6. 

Main features of the service in the PROCESS project 

Zabbix in the PROCESS project would be responsible for collecting monitoring data required 

to allow: 
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• Alerting when the infrastructure is inaccessible 

• Prevent inaccessibility by alerting when infrastructure factors (such as available 

resource) are out of specified range, 

• Allow browsing and visualization (as charts) of the collected measurements. 

Architecture 

 

Figure 36: Monitoring architecture. 

PROCESS platform components 

The Zabbix platform would be able to gather (both actively as well as passively) data from the 

PROCESS infrastructure. Collected data may be exposed via the Web UI and may be used to 

trigger notification mechanism through media such as E-Mails or Jabber. 

Plans for integration with other systems (from PROCESS) 

The monitoring system is planned to be integrated with all services deployed in PROCESS as 

its main role is to check whether those services are up and running within the specified 

parameters. This integration would be done by installation of Zabbix Agents on each host 

running the services. Additionally the front-end might be integrated with the security platform, 

as well as may be configured from other components via the REST API (e.g. to register new 

cloud instance). 
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Exascale application viewpoint 

Monitoring system in itself does not require exascale however our goal is to provide a solution 

capable of monitoring of such systems. The usage of the Zabbix platform would allow sharing 

the load of this task among agents dispersed on the whole infrastructure, aggregated by the 

proxies. If the use of a single Zabbix server would not be sufficient for such a scale we are 

planning to deploy a cluster of multiple monitoring servers to process required amount of 

monitoring data. 

5.9 Programming of multi-core architecture 

5.9.1 State of the art 
Many-core devices offer enormous potential in compute- power and can increase the 

performance of supercomputer and data-center applications significantly. However, many-core 

devices are difficult to program. There are a variety of problems that needs to be solved to 

obtain high-performance from multi-core devices. Because of the variety of type of many-core 

devices execution times in heterogeneous many-core clusters requires, some form of load 

balancing. Load balancing is particularly challenging in heterogeneous many-core clusters, 

because it involves communication between nodes over relatively slow networks which results 

in a skewed computation/communication ratio. Often to obtain high-performance from multi-

core devices, the identified computational kernels have to be optimized each type of hardware 

and the run-time system should know the type and number of available many-core devices in 

each node and map the right kernels to the devices.  Often many-core devices expose a 

complicated interface to the programmer with many levels of parallelism and a complicated 

memory hierarchy, all meant to reach high performance. They do not have a standardized 

instruction set, there are many different kinds of many-core processors, and the hardware 

evolves quickly. Because of the many levels of parallelism that closely interact with the memory 

subsystem, the performance of a program can improve drastically if it accounts for the 

limitations of the processor and makes proper use of the available hardware. 

Many-cores expose all kinds of architectural intricacies to achieve high performance and the 

performance differences can be quite large when a program is well-balanced in how the 

hardware is used. Existing approaches often focus on achieving high performance from 

homogeneous many-core clusters. Often, the overall solution is a directly derived from an MPI 

program with a programming language for many-core devices, such as OpenCL [Gohara 2010] 

or CUDA [Nickolls 2008]. In a heterogeneous environment the execution times vary across 

types of many-core hardware a solution based on only on Message passing with rigid 

communication patterns is not the ideal solution. 

Several frameworks targeting many-core clusters are analysed in [Hijma 2015], some of these 

frameworks targeted aimed to enable the MapReduce programming model to take of the many-

core devices like the  GPMR a Map-Reduce framework for GPU clusters [Stuart 2011], the 

HadoopCL  which extends Hadoop with OpenCL to make the computational power of many-

cores available to Hadoop jobs, or the Glasswing [El-Helw 2014] is a MapReduce framework 

fully written in OpenCL and C++ and has a significant performance benefit over the previous 

two frameworks.  Other frameworks tried to optimize the use of many-core architecture in 

general, we briefly list here the systems covered in [Hijma 2015]: 

1. The OmpSs [Bueno 2012] combines OpenMP pragmas with StarSs pragmas to 

program clusters of GPUs. It offers a sequential programming model in which 

programmers can annotate parallel regions with directives to indicate the data-

dependencies with in, out, and inout statements between tasks and on what kind of 

device a task should run. 

2. Planas et al. [Planas 2013] provides an adaptive scheduler that can choose multiple 

versions of compute- kernels and learns to choose the better performing version. 
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3. StarPU [Augonnet 2011] and PaRSEC [Bosilca 2013] provide an execution model 

based on tasks. Programmers have to manually annotate data-flow dependencies 

between the tasks. The run-time system handles data-dependencies, scheduling of 

tasks, and load balancing. 

4. SkePU [Majeed 2013] is built on top of StarPU and provides a skeleton framework that 

allows programmers to express a program in terms of frequently used patterns encoded 

in the program construct. The program remains sequential while the implementation of 

the patterns is parallel. 

Exascale application viewpoint 

The question that is asked when considering exascale computing is whether or not the current 

programming models are able to achieve exascale? Can the evolution/extension of current 

approaches provide adequate support for exascale systems? William Gropp discussed in 

[Gropp 2013] the potential possible extension of existing programing models to achieve 

exascale computing. Because an exascale system is likely to have distributed memory 

hardware, Gropp considers the solution based on one well-established model, hybrid models 

and recent programming models. He starts with the most natural programming model MPI, 

having MPI everywhere faces several challenges which may require significant effort both in 

building a scalable MPI implementation and a different approach from the programmer point 

of view to achieve exascale using MPI model. Gropp discards the option that extension of 

OpenMP can lead to exascale computing, according to Gropp evidence is lacking that OpenMP 

will scale to hundreds of cores. The scaling of OpenMP to hundreds of cores will require 

changes both in programming style and in the language itself. Certain constructs in OpenMP 

like locks, atomic sections, sequential sections encourage fine-grained synchronization and 

thus limit scaling.  It is not easy to achieve an exascale program by extending a single 

programming model, the obvious option that can be considered for exascale are hybrid models. 

The biggest problem when mixing programming systems is that they will compete for 

resources, and memory bandwidth. In the past Hybrid systems did not show good scalability, 

but it is hard to separate the intrinsic problems of such systems from performance problems 

due to the use of inappropriate programming patterns [capello 2000], [Drosinos, 2004], or 

inefficient implementations. More promising in Gropp’s analysis are the one-sided 

communication programing models because they make use of modern communication 

hardware features such as Remote DMA or RDMA which can reduce the amount of copying 

that may occur during communication and reduce communication software overheads. 

The report of the 2011 workshop on “exascale programming challenges” defines four criteria 

to assess the suitability of a programming model for exascale computing [exascale, 2011]. 

Among these criteria is ability of “the programming model to permit users with different skill 

sets to guide the lowering of abstraction levels from the algorithm level all the way down to the 

executable level. This suggest an approach that support multi-level of abstractions such as the 

Cashmire programing model which has been proposed  for programming high-performance 

applications for clusters with many-core accelerators and forms a tight integration of two 

existing programming systems: Satin [Nieuwpoort , 2010] and MCL [Hijma, 2015-1]. The 

programming system is designed such that programmers can choose their own abstraction-

level for their program to trade-off performance, portability and ease of programming [Hijma 

2015]. MCL offers abstraction levels by providing a library of hardware descriptions that are 

organized in a hierarchy. At the highest level the targeted programming model is likely to be a 

domain-specific language, this can help to exploit domain properties that can be used to 

optimize programs. The programming notation used by the application programmer should 

provide constructs that can help exploiting these domain specific properties. 

Even if exascale computing clearly requires disruptive changes at all levels of the computing 

stack, driven by needs for massive concurrency, the appearance of completely new paradigm 
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for exascle computing is not likely to happen in the coming years, a more realistic approach is 

to adapt existing programing model, languages and environment [Heroux 2016]. 

5.9.2 PUMPKIN 
Distributed computing paradigms vary considerably and target specific application scenarios; 

process oriented such as Actor model [Haller2009] and KPNs (Kahn Process Networks) 

[Kahn1974], large scale data oriented such as MapReduce and dataflows. MapReduce 

[Ghemawat2008] is based on a map(), reduce() functions. These functions are common 

procedures in many data analyses problems. Many frameworks have evolved around this 

central concept which aims at ameliorating certain aspects such as programmability and 

communication.  

Another bread of post-Hadoop distributed frameworks addresses different application 

scenarios where the batch oriented. 

Hadoop [White2009] is not ideal. Frameworks such as Storm [storm] and Spark [Zaharia2010] 

aim at streaming data while others such as Pregel [Malewicz2010] are for large scale graph 

processing. The aim of such systems is to achieve high-processing throughput on dedicated 

clusters whereby the software stack is tuned for the specific resources. A lower level of 

distributed computing paradigm deals with fine grained control and communication of 

concurrent functions. Such a paradigm is the actor model whereby functions known as actors 

communicate asynchronously using messages [Haller2009]. Actors perform a certain task in 

response to a message, actors are autonomous and are able to create new actors creating a 

hierarchy of actors. Scientific Workflow Management Systems (SWMS) come in many shapes 

and sizes and vary in the computational model, types of processes used, and types of 

resources used. Many base their model on process flow [Missier2010] and also include a form 

of control flow [Altintas2004], others implement data flow models [Cushing2013] or 

communication models as used in coordination languages [Arbab2006, Cortes2000] and some 

propose eccentric models such as based on chemical reactions [Fernandez2011]. 

A common denominator in most workflow systems is that the unit of reason is the process i.e. 

the abstract workflow describes a topology of tasks configured in a certain way. Coordination 

languages are another form of coordinating multiple tasks 

Automata are widely used in filtering-based processing such as event stream processing 

whereby automata are used to model queries in a distributed environment that queries streams 

of events such as stock events. The model used is an extension of the traditional NFA where 

instead of a finite input alphabet they read relational streams whereby state transitions are 

controlled by predicates. Automata are also extensively used in high performance XML-filtering 

for modeling queries. The bases of queries are that searching can be done using regular 

expressions and FSMs are suited to recognize such languages. Our application of automata 

is to describe data transformations whereby the input symbols are functions/tasks which are 

modifying the state and the content of the data. 

Main features of the service in the PROCESS project 

Provides application as a set of networked functions ideal for edge-to-cloud computing with in-

network data processing/filtering/transcoding.  

Technology Readiness Level  

The tool has been demonstrated in several demos including SC13, SC14 and COMMIT-

DEMO.  To reach TRL 7 we will partner with at least one use case (SKA) in PROCESS and 

develop a streamlined version taking into account scaling to the exascale. Building on this 

version, we reach TRL 8 by developing a production ready version for the use case.     
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Architecture 

Pumpkin is a framework that helps to process data by simply describing which process(es) 

should be applied to transform the data from one state to another. For example a HelloWorld 

application in Pumpkin would typically include 3 tasks a task that inputs or injects the data in 

this case the string "Hello world", a second task that processes the data, it greets world with a 

hello and the final task for extracting or output the data helloworld. 

Proposed multi-core architecture will be based on Exploratory Data Processing (PUMPKIN) 

technology [PUMPKIN1], [PUMPKIN2] which is a decentralized data centric tool to 

coordinating the execution of complex applications over federated distributed systems. It is a 

framework for distributed Data Transformation Network (DTN) builded on an automata-based 

data processing model where a data packet is a self contained processing unit which 

incorporates data, state, code and routing information. Automata is used to model the packet 

state transformation from one node to the next. A decentralized distributed system takes care 

of routing data packets too [PUMPKIN1].  

Automata data model describes the abstract data processing model. The same model is used 

to build a distributed processing infrastructure around the data processing schema. The 

schema represents the knowledge of how data can be processed which at a network and 

resource level this represents a data routing table [PUMPKIN1]. 

Globally distributed resources are combined together in the PUMPKIN framework through a 

data processing protocol. Data is partitioned into packets. A packet is an atomic unit of data 

processing. Each data packet can encapsulate the automata as part of the header. The 

automaton header makes the packet self aware of where it has to go for processing. The data 

packet can also contain the code for processing the packet [PUMPKIN1]. 

The processing granularity is at the data packet level. This allows for various controllability 

such as scaling at packet level. A packet source will load balance data packets to multiple 

replicated, identical data processing functions. Replication is also at the packet level. Data 

packets can be replicated to multiple functions requesting the same data state [PUMPKIN1]. 

Data processing functions are hosted in nodes. Functions can be statically deployed or 

deployed through the data packet since the packet can also carry code. The task for each node 

is two fold: nodes process data and also route data [PUMPKIN1]. 

 

Figure 37: Anatomy of a Pumpkin node [PUMPKIN1]. 
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Each node in PUMPKIN discovers routes to other nodes. A routing table allows nodes to send 

data packets to the next node in a P2P fashion. In SDNs the routing table can be used to 

reconfigure the network [PUMPKIN1]. Its performance analysis is described separately with 

more details in Section 6.1.7. 

PROCESS platform components 

Pumpkin provides a runtime to be deployed on PROCESS VMs or containers. The runtime 

enables functional parallelism across VMs. User or program interaction is through SSH and 

VM configuration scripts such as Ansible or Docker 

Plans for integration with other systems (from PROCESS) 

Pumpkin runtime needs to be running on every node. Starting the runtime can be done through 

SSH or through booting scripts of the VM/container. Each node can be assigned different 

Pumpkin functions which are just python class files in a specified directory. User access to 

Pumpkin is done through one of the nodes using SSH where the user copies a Pumpkin start 

function which kicks off execution of the workflow. Retrieving output is also done through a 

stop function which receives input at the end of the workflow.  Users can also start execution 

by copying a data packet to one of the nodes through SCP or otherwise. This scenario is 

intended for stream-like processing where data files initiate processing without user interaction.  

Communication between nodes is with TCP (UDT under investigation) and communication on 

single node is through IPC. Pumpkin can integrate with LOBCDER for data management 

especially input/output data. One way we envision is to initiate computation directly through 

the data store by dropping input files in monitored folders.  

 PUMPKIN has been already tested on Atmosphere cloud platform. A potential integration 

within PROCESS will be with EurValve Model execution environment or any similar client 

application that is that can help capture the application workflow requirements build an abstract 

automaton that formally describe data processing independent from underlying processes 

while also providing routing information to route data based on its current state in a P2P fashion 

around networks of distributed processing nodes. 

5.10 Services for Big Data processing and manipulation 

5.10.1 State of the art of Big Data processing frameworks 

• Apache Spark™ ecosystem [SSE] (Figure 38) is a fast and general engine for large-

scale data processing; it is originally developed at the University of California, 

Berkeley's AMPLab. The Spark codebase was later donated to the Apache Software 

Foundation. Apache Spark provides an interface for programming entire clusters with 

implicit data parallelism and fault tolerance. It runs on Hadoop, Mesos, standalone, or 

in the cloud. It can access diverse data sources including HDFS, Cassandra, HBase, 

and S3. Apache Spark™ (and its extensions) can be used for hyper-parameter turning 

where applicable.  

• H2O, Sparkling Water and Deep Water combines the fast, scalable machine learning 

algorithms of H2O with the capabilities of Apache Spark. Drive computation from 

Scala/R/Python and utilize the H2O Flow UI. Deep learning, ensembles, GBM, GLM 

and DRF for accuracy. In memory processing and distributed for speed. R, Python, 

Flow, Tableau and Excel interfaces. 



D4.1 State of the art of services  

This version is a draft of D4.1 and is under review. 113 
 

 

Figure 38: Spark Streaming ecosystem [SSE]. 

5.10.2 State of the art of Big Data manipulations based on software requirements of 

use cases 
Machine Learning and Deep Learning frameworks: 

• Apache Spark MLlib and ML - open source ML libraries built on top of Spark, which 

contain ML algorithms such as classification, regression, clustering or collaborative 

filtering; featurization tools for feature extraction, transformation, dimensionality 

reduction and selection; pipeline tools for constructing, evaluating and tuning ML 

pipelines; and persistence utilities for saving and loading algorithms, models and 

pipelines. They also contain tools for linear algebra, statistics and data handling. Except 

the distributed data parallel model, MLlib can be easily used together with stream data 

as well. For this purpose, MLlib offers few basic ML algorithms for stream data such as 

streaming linear regression or streaming k-means. For a larger class of ML algorithms, 

one have to let model to learn offline and then apply the model on streaming data online 

[MLlib]. 

• H2O.ai - a set of Hadoop compatible frameworks for DL over Big Data as well as for 

Big Data predictive analytics; i.e., H2O, Sparkling Water and Deep Water. H2O's 

algorithms are implemented on top of distributed Map/Reduce framework and utilize 

the Java Fork/Join framework for multi-threading. DL in H2O is based on FFNNs trained 

with stochastic gradient descent (SGD) using back-propagation. Sparkling Water 

contains the same features and functionality as H2O but provides a way to use H2O 

with Spark. Deep Water is H2O DL with native implementation of DL models for GPU-

optimised backends such as TensorFlow, MXNet, and Caffe. These backends are 

accessible from Deep Water through connectors.  

• Scikit-Learn - widely known as a well-maintained, open source and popular Python ML 

tool, which contains comprehensive algorithm library for incremental learning [Scikit]. It 

extends the functionality of NumPy and SciPy packages with numerous DM algorithms. 

It also uses the Matplotlib package for plotting charts. Scikit-Learn does not support 

scalability out of the box, but there are few packages, which integrates the library with 

Big Data processing tools such as Spark or Hadoop; e.g., DataBricks' spark-sklearn. 
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• Weka - is a collection of a general-purpose and very popular wide set of ML algorithms 

implemented in Java and engineered specifically for DM [Weka]. Weka has a package 

system to extend its functionality, with both official and unofficial packages available, 

which increases the number of implemented DM methods. Weka does not support 

scalability out of the box. There is already a package of generic configuration classes 

and distributed map/reduce type tasks for Weka (distributedWekaBase) used as a base 

for wrapper implementation for Apache Hadoop (distributedWekaHadoop, 

distributedWekaHadoop2, distributedWekaHadoop2Libs) and Apache Spark  

(distributedWekaBase). These wrappers provide Weka to run within a distributed 

environment with some known limitations; e.g., only CSV files are supported on input, 

one Spark context per one JVM. 

• Caffe - a Deep Learning framework suitable for neural networks and excellent 

implementation of Convolutional Neural Networks for image processing. It is the fastest 

out-of-the-box DL library on CPU, GPU training. 

• TensorFlow - an open source software library for numerical computation using data 

flow graphs [TensorFlow]. It is designed for large-scale distributed training and 

inference. It can run on single CPU systems, GPUs, mobile devices and large scale 

distributed systems of hundreds of nodes. 

• Theano - an open source pioneering DL tool (development started in 2007) supporting 

GPU computation. At its heart, Theano is a compiler for mathematical expressions in 

Python to transform structures into very efficient code using NumPy and efficient native 

libraries like BLAS and native code to run as fast as possible on CPUs or GPUs. 

Theano supports extensions for multi-GPU data parallelism and has a distributed 

framework for training models.  

• MXNet - an open source DL framework designed for both efficiency and flexibility 

[MXNet]. It allows automatic parallel mixing of symbolic and imperative programming 

to maximize efficiency and productivity. MXNet is portable and lightweight, scaling 

effectively to multiple GPUs and multiple machines. 

• PyTorch - a Python library for GPU-accelerated DL [PyTorch]. The library is a Python 

interface of the same optimized C libraries that Torch uses. PyTorch is written in 

Python, C, and CUDA. The library integrates acceleration libraries such as Intel MKL 

and NVIDIA (CuDNN, NCCL). At the core, it uses CPU and GPU Tensor and NN 

backends (TH, THC, THNN, THCUNN) written as independent libraries on a C99 API. 

PyTorch supports tensor computation with strong GPU acceleration (it provides 

Tensors that can run either on the CPU or the GPU, highly accelerating compute), and 

DNNs built on a tape-based autograd system [PyTorch]. 

Deep Learning wrapper libraries: 

• Keras - the most famous wrapper (at the moment) for TensorFlow, Theano, Mircosoft 

CNTK, DeepLearning4J (DL4J), and MXNet [Keras] 

• Lasagne - a lightweight wrapper library to build and train neural networks in Theano. It 

is implemented in Python and still under heavy development. The documentation is 

limited at the moment [Lasagne]. 

• TFLearn - a modular and transparent deep learning wrapper library designed to provide 

a higher-level API to TensorFlow in order to facilitate and speed-up experimentations 

[TFLearn]. 

• NVIDIA Digits - a web application for training DNNs for image classification, 

segmentation and object detection tasks using DL backends such as Caffe, Torch and 

TensorFlow  with a wide variety of image formats and sources with DIGITS plugins. 

DIGITS simplifies common DL tasks such as managing data, designing and training 

NNs on multi-GPU systems, monitoring performance in real time with advanced 
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visualisations, and selecting the best performing model from the results browser for 

deployment. DIGITS is mainly interactive (GUI) [NVIDIA Digits]. 

Accelerated libraries for intensive computing: 

• NVIDIA CUDA - The NVIDIA CUDA (Compute Unified Device Architecture) [Cuda] is a 

parallel computing platform and programming model developed by NVIDIA for general 

computing on GPUs. GPU-accelerated CUDA libraries enable drop-in acceleration 

across multiple domains such as linear algebra, image and video processing, DL and 

graph analytics. The NVIDIA CUDA Toolkit [CudaToolkit] provides a development 

environment for creating high performance GPU-accelerated applications. 

• NVIDIA cuDNN - The NVIDIA CUDA Deep Neural Network library (cuDNN) [cuDNN], 

which is a GPU-accelerated library of DNN's primitives. The cuDNN provides highly 

tuned implementations for standard routines such as forward and backward 

convolution, pooling, normalization, and activation layers. It allows DL users to focus 

on training NNs and developing software applications rather than spending time on low-

level GPU performance tuning. 

• OpenCL - OpenCL (Open Computing Language) developed by Khronos provides 

compatibility across heterogeneous hardware from any vendor [OpenCL]. 

• OpenBLAS - an open-source optimized BLAS (Basic Linear Algebra Subprograms) 

library providing standard interfaces for linear algebra, vector-vector operations, matrix-

vector operations, and matrix-matrix operations [OpenBLAS]. 

Data analytic and data processing: 

• R is a free software environment for statistical computing and graphics including linear 

and nonlinear modeling, classical statistical tests, time-series analysis, classification, 

clustering. It compiles and runs on a wide variety of UNIX platforms, Windows and 

MacOS. R is ease of use and extensible via more than 10 thousands packages. 

• Python is general purpose programming language for research, development and 

production, at small and large scales. Python features a dynamic type system and 

automatic memory management, with large and comprehensive libraries for scientific 

computation and data analysis. It contains many scientific packages such as NumPy, 

SciPy, and Pandas. 

• Hadoop and Spark for large-scale data processing is Apache open source projects and 

a wide range of commercial tools and solutions that fundamentally change the way of 

Big Data storage, processing and analysis. 

• Other libraries and frameworks belong in this category are for image processing 

libraries (e.g. FFmpeg, OpenCV, Openslide, Skimage), text processing libraries (e.g. 

Gensim, NLTK), visualisation libraries (e.g. Matplotlib, Seaborn). 
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* scalability supported by additional wrapper or package 

Hardware requirements (storage, CPU, GPU, network etc.) 

• Big Data processing frameworks: multi-core computing architecture, low-latency 

interconnection networks, Big Data storage 

• Accelerated libraries for intensive computing: GPU, low-latency interconnection 

networks 

• Machine Learning and Deep Learning frameworks and libraries: GPU, low-latency 

interconnection networks, underlying accelerated libraries/drivers 

• Data analytic tools: in general, without special requirements, but they may depend on 

the underlying computing infrastructure 

PROCESS platform components 

• Big Data processing frameworks: Hadoop Distributed File system, virtual images with 

preinstalled frameworks (Apache Spark, Apache Hadoop, H20) 

• Accelerated libraries for intensive computing (see for Deep Learning frameworks and 

libraries 

• Machine Learning and Deep Learning frameworks and libraries: virtual 

images/container/VM with preinstalled frameworks 

• Data analytic tools: virtual images/container/VM with preinstalled frameworks 

Plans for integration with other systems (from PROCESS) 

• Big Data processing frameworks: Hadoop Distributed system integrated with DISPEL 

(creating a connector in DISPEL to the HDFS), virtual images with preinstalled 

frameworks will be deployed as Docker images and can be deployed on any underlying 

architecture 

• Accelerated libraries for intensive computing: virtual images/container/VM with 

preinstalled frameworks 

• Machine Learning and Deep Learning frameworks and libraries: virtual 

images/container/VM with preinstalled frameworks 

• Data analytic tools: virtual images/container/VM with preinstalled frameworks 

5.11 State of the art of orchestration services 

5.11.1 Challenges facing exascale orchestartion 
As mentioned in the sections above, applications and services in exascale are very complex. 

The most important challenges from the view of orchestrations are as follows: 

1. Extreme hardware requirements, access to special hardware like GPU 

2. Very complex software components and dependencies among components of services 

and applications 

3. Heterogeneity and multi-tenancy of infrastructure 

4. Complex infrastructure services for managing data and computation resources 

5.11.2 Exascale orchestration projects 
SeaClouds (Seamless Adaptive Multi-cloud Management of Service-based applications) 

http://www.seaclouds-project.eu/  EU FP7 funded project whose mission is to provide 

seamless adaptive multi-cloud management of service-based applications. It actively 

participated in the standardization of TOSCA and CAMP. 

DICE (DevOps for Big Data)  http://www.dice-h2020.eu/ EU H2020  funded project intended 

to develop a model-driven DevOps toolchain to develop Big data applications. It offers an 

Eclipse-based IDE implementing the DICE DevOps methodology, UML for application design 

and supports OASIS TOSCA-compliant deployment and orchestration. 

http://www.seaclouds-project.eu/
http://www.dice-h2020.eu/
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COLA (Cloud Orchestration at the Level of Application) EU H2020  funded project which have 

objectives to provide a reference implementation of a generic and pluggable framework that 

supports the optimal and secure deployment and run-time orchestration of cloud applications. 

The project use Occopus, a cloud orchestrator framework developed at MTA SZTAKI 

(Hungary) with its own language for software and hardware descriptions. 

5.12 Service deployment and orchestration 

5.12.1 State of the art 
Orchestration is often understood as automating the process of deployment, workflow 

execution, dynamic scaling, service healing and other management activities of services and 

applications in cloud. As cloud applications became more and more complex with different 

software and hardware components, the importance of orchestration become more and more 

important. Generally, the service orchestration can be described as following: 

• Composition of different tools, services and processes, defining relationships among 

these building blocks, linking them together as an integrated system 

• Description of hardware requirements for deployment and execution of the system, 

connecting the hardware and software components properly for delivering services 

• Automating the execution of different workflows of the services including deployment, 

initialization, start/stop, scaling, healing of the services 

There are efforts for standardization and interoperability. One of the most important 

standardization body in the area of service orchestration and cloud computing is the 

Organization for the Advancement of Structured Information Standards (OASIS), which is a 

global nonprofit consortium that works on the development, convergence, and adoption of 

standards for security, Internet of Things, energy, content technologies, emergency 

management, and other areas. Many standards related to services orchestration have been 

created under OASIS technical committees, e.g. UDDI (Universal Description Discovery and 

Integration), WSDM (Web Services Distributed Management), WS-BPEL (Web Services 

Business Process Execution Language), SPML (Service Provisioning Markup Language). 

From the view of cloud applications, the following standards are relevant. For service 

orchestration, OASIS defines TOSCA — Topology and Orchestration Specification for Cloud 

Applications, as standard for describing cloud services, the relationships between parts of the 

service, and the operational behavior of the services. More details of TOSCA standard is 

provided in the Section 5.12.2. 

As the moment, there are several orchestration frameworks based on TOSCA. The most 

important frameworks are described in follows: 

• Cloudify is open source TOSCA-based orchestration framework based on YAML. As 

Cloudify is the orchestrator that will be used in the PROCESS project, it will be 

described separately with more details in Section 5.12.3. 

• Alien4Cloud: Alien4cloud is open source TOSCA based designer and Cloud 

Application Lifecycle Management Platform. The focus of Alien4Cloud is in design and 

description of the topology, not in execution/deployment. It relies on other orchestration 

platforms like Kubernetes, Mesos or Cloudify for realization of the deployment and 

workflow execution. Alien4Cloud is written in Java with web-based GUI for editing 

TOSCA templates 

• Openstack Heat is orchestration tool specific for Openstack cloud middleware. 

Although it has its own description language, it can provide support for TOSCA via 

TOSCA Parser and Heat-Translator 

• INDIGO-DataCloud Orchestrator is an orchestration framework developed in INDIGO-

DataCloud project. It depends on several other services developed in the project like 
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IAM (Identity and Access Management Service), SLAM (SLA Manager) for its full 

functionalities.  

5.12.2 TOSCA 

Main features of the service in the PROCESS project 

In the PROCESS, new custom types will be defined for different services and applications 

developed in the project.  

Architecture 

TOSCA (Topology and Orchestration Specification for Cloud Applications, is an OASIS 

(Organization for the Advancement of Structured Information Standards) standard language 

to describe a topology of cloud based web services, their components, relationships, and the 

processes that manage them [Tosca]. Its performance analysis is described separately with 

more details in Section 6.1.8. 

The TOSCA metamodel uses the concept of service templates to describe cloud workloads as 

a topology template, which is a graph of node templates modeling the components a workload 

is made up of and as relationship templates modeling the relations between those components. 

TOSCA further provides a type system of node types to describe the possible building blocks 

for constructing a service template, as well as relationship type to describe possible kinds of 

relations. Both node and relationship types may define lifecycle operations to implement the 

behavior an orchestration engine can invoke when instantiating a service template. For 

example, a node type for some software product might provide a ‘create’ operation to handle 

the creation of an instance of a component at runtime, or a ‘start’ or ‘stop’ operation to handle 

a start or stop event triggered by an orchestration engine. Those lifecycle operations are 

backed by implementation artifacts such as scripts or Chef recipes that implement the actual 

behavior. The structure of TOSCA topology template is shown in the Figure 39 bellows: 

 

Figure 39: TOSCA topology template structure [ToscaTemplate]. 

An orchestration engine processing a TOSCA service template uses the mentioned lifecycle 

operations to instantiate single components at runtime, and it uses the relationship between 

components to derive the order of component instantiation. For example, during the 

instantiation of a two-tier application that includes a web application that depends on a 
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database, an orchestration engine would first invoke the ‘create’ operation on the database 

component to install and configure the database, and it would then invoke the ‘create’ operation 

of the web application to install and configure the application (which includes configuration of 

the database connection). 

Topology templates can be specified in YAML, a human friendly data serialisation standard for 

all programming languages. Like XML, YAML is designed to be portable between programming 

languages, however, it is much easier to read and edit than XML. A simple example for 

deploying MySQL server would look in TOSCA YAML as follows: 

tosca_definitions_version: tosca_simple_yaml_1_0 

description: Template for deploying a single server 

with MySQL software on top. 

topology_template: 

  inputs: 

    ..... 

  node_templates: 

    mysql: 

      type: tosca.nodes.DBMS.MySQL 

      properties: 

        root_password: { get_input: my_mysql_rootpw 

} 

        port: { get_input: my_mysql_port } 

      requirements: 

        - host: db_server 

    db_server: 

      type: tosca.nodes.Compute 

      capabilities: 

        ...... 

The relationships between components in the template above can be described as an example 

(Figure 40) in the following scheme: 
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Figure 40: Example of relationships between components in the Tosca template [ToscaTemplate]. 

PROCESS platform components 

In PROCESS a new set of customized types and standardized templates for cloud applications 

will be defined. The templates will reflect the topology of applications, their hardware and 

software components required for application executions. Additional artifacts defined with the 

templates will manage the lifecycle of applications from deployment, execution, termination 

and so on. 

Plans for integration with other systems (from PROCESS) 

The TOSCA templates are used by orchestration engine, in this case Cloudify for managing 

application lifecycle 

5.12.3 Cloudify 

Main features of the service in the PROCESS project 

Architecture 

Cloudify is an open source cloud orchestration platform, designed to automate the deployment, 

configuration and remediation of application and network services across hybrid cloud and 

stack environments [Cloudify]. It uses OASIS TOSCA templates written in YAML (called 

blueprints in Cloudify) for defining applications, services and dependencies among them. 

These blueprint files describe also the execution plans for the lifecycle of the application for 

installing, starting, terminating, orchestrating and monitoring the application stack. Cloudify 

uses the blueprint as input that describes the deployment plan and is responsible for executing 

it on the cloud environments. 

Cloudify also supports configuration management tools like Chef, Puppet, Ansible for the 

application deployment phase, as a method of deploying and configuring application services. 

It also has a wide set of plugins for deploying services for deploying services on different 

infrastructures including clouds (Amazon AWS, Google GCP, Openstack, ...), Kubernetes, 
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Fabric (via SSH), Docker and customized scripts. Its performance analysis is described 

separately with more details in Section 6.1.9. 

The architecture of Cloudify manager, the core part of the orchestration is described at bellows 

in the Figure 41. 

 

Figure 41: Cloudify manager architecture [CloudifyMA]. 

PROCESS platform components 

In PROCESS, Cloudify composes from following components: 

1. TOSCA template repository 

2. Cloudify CLI 

3. Cloudify plugins for deployments on relevant infrastructures (RIMROCK, Atmosphere) 

Plans for integration with other systems (from PROCESS) 

Cloudify will integrate with RIMROCK and Atmosphere for deploying applications to the 

relevant computing platforms (HPC, Cloud). It will use the API provided by the technologies 

for manipulating with computing resources and applications. 

Actual  Technology Readiness Level and future implementation 

Cloudify has been used in industry by, AT&T, VMware, Deutsche Telekom, Orange, and other 

(TRL9). At the moment of writing (10.4.2018), the community version has version number 

18.2.28. In the PROCESS project, new TOSCA custom types and plugins will be developed 

for integration with technologies developed in WP5 and WP6 and use cases in WP2. 
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5.13 Services for data access and integration 

5.13.1 State of the art 
Service-oriented architectures (SOA) represent a fundamental shift from centrist, silo-based 

paradigm of application development towards a more open, decentralized and distributed 

paradigm. This shift has largely been caused by the gradual adoption of internet technologies 

into the IT facilities of enterprises and the continuing globalization of all levels of economic 

activities. 

The shift towards the distributed SOA paradigm brings new challenges also in the area of data 

access and data integration. By removing the central data silos from IT infrastructure and 

distributing the data sources and/or storage over several network-connected systems, data 

access and data integration become much more demanding. Indeed, we now see data as a 

service [DAAS1]. In the recent 8 years, significant research into the challenges of data access 

and data integration in SOA-based environments has been conducted 

[SOADI1],[SOADI2],[SOADI3], but the actual idea of using web services for data integration 

came much earlier [HANSEN2003]. Currently, SOA and the relevant data access and data 

integration technologies are well established in the enterprise sphere as well 

[ORACLEDI][INFORM]. 

Exascale application viewpoint 

In the context of PROCESS, we define an Exascale Application as one where: 

1. the amount of data processed is measured in hundreds of terabytes to petabytes to 

exabytes 

2. the application components are distributed and connected via the internet 

3. the data processing consists of data access/acquisition (from permanent storage or 

from streams produced by sensors), filtering, repair, preprocessing and finally the 

processing which produces the application’s results. 

 

Figure 42:  Centralized approach to data - large data sets are moved to a central place and there they are processed. 

In this context, a centralized approach (Figure 42) is untenable. It would require a concentration 

of data storage and computation resources on a scale that only specialized data processing 

centers can provide. In PROCESS, our goal is to provide tools, services and methodology for 

a distributed and scalable approach to exascale data processing. Therefore, the main 

principles of data access and data integration in PROCESS are (illustrated in Figure 43): 

1. data processing goes to data instead of data going to data processing 

2. data processing, being often a complicated process involving multiple data access 

points and potentially many data filtering and data integration points, is defined in a 

formal, persistent and reusable way 
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3. data access and data integration processes, being as complicated as they are in a 

distributed exascale environment, should be abstract enough so that a division of 

responsibilities among data experts, domain experts and users is possible. 

 

Figure 43: A decentralized approach to data processing - processing elements are deployed near data sources, 
process the data and send only the results over the network. 

These requirements are fulfilled best by the Admire (FP7 project: Advanced Data Mining and 

Integration Research for Europe) [Admire] technological stack. It contains a network of 

interlinked DISPEL gates which control data processes consisting of REST-enabled web 

services and a dedicated, high level and abstract data process definition language called 

DISPEL [DISPEL]. In connection with the dynamic deployment of services into containers to 

be done in task JRA4.1 (Service deployment and orchestration), the Admire stack can also 

ensure the ability to deploy computation to data, instead of it being necessary to transfer large 

data sets to the place of computation. A performance analysis of DISPEL is described 

separately with more details in Section 6.1.10. 

Main features of the service in the PROCESS project 

In the context of PROCESS, the data access and data integration services provided by Admire 

technology will: 

1. provide access to large data sets by deploying data accesss/filtering/integration 

services near the data storage, on demand 

2. provide data integration services, including integrating data from streams (i.e. from 

sensors) 

3. allow to define data access and data integration processes in a persistent manner and 

with a sufficient level of abstraction for them to be reusable 

4. allow for separation of data access/data integration concerns between data experts, 

application domain experts and data process users 

5. integrate with the higher-level data access service – LOBCDER – via a custom-made 

VFS driver 
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Architecture 

 

Figure 44: The distributed architecture of the Admire system. 

Figure 44 shows the basic concept of Admire and also a general application of the architecture 

to our scenarios. We have connected several local data providers, provided a Data Mining and 

Integration (DMI) process description which streams data from them, cleans it, filters and 

repairs it, and performs data mining on the resulting stream. The results are then provided in 

an accessible manner to the domain experts who have defined the scenario's goals. Project 

Admire's framework delivers an integrated approach to enable fluent exploration and 

exploitation of data. That integration encompasses the full path of actions from accessing the 

source data to delivering derived results. That path includes gaining permission to access data, 

extracting selected subsets of data, cleaning and transforming data, performing analyses and 

preparing results in the form required by their destination. As the multiple sources of data 

encode and organize information in different ways a significant element is data integration, 

which includes conversions at both syntactic and semantic levels in order to enable data 

composition. Admire uses the DMI term to refer to all aspects of this full path of exploration 

and exploitation. 

The computational steps in a DMI process are accomplished by PE. Each PE corresponds to 

code that the enactment may activate via some mechanism, such as a web-service invocation 

or an object's method invocation. A single enactment may contain multiple instances of a 

particular PE. Apart from the DISPEL Gate, the toolkit contains also a comfortable GUI-based 

tool for DISPEL document construction, using UML as the graphical modelling language. The 

model can be exported to DISPEL and subsequently used for data processing process 

instantiation. The whole Admire framework is intended to operate on large data sets, streaming 

them through PEs acting as filters. The PEs instantiated in a process are called activities. 

Some of the PEs are generic (e.g. an SQL reader), and some must be developed specifically 

for the application process where they figure, or the data resource which they expose. 

The DISPEL language provides a notation of all DMI requests to a DISPEL Gate. The 

description of a DMI process is a composition of existing PEs that actually perform task like 
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querying a data source, transforming tuples in a sequence, merging streams, classifying data 

and so on.  Example of a section of  DISPEL DISPEL is below: 

//import components 

use uk.org.ogsadai.SQLQuery; 

use uk.org.ogsadai.TupleToWebRowSetCharArrays; 

use eu.Admire.Results; 

use eu.Admire.LinearTrendFilter; 

 

//create an instance of PE SQLQuery 

SQLQuery query = new SQLQuery; 

 

//define inputs of instance 

String expression = "SELECT ....."; 

|- expression -| => query.expression; 

|- "DbSvpResource" -| => query.resource; 

 

//create an instance of another PE 

LinearTrendFilter filter = new LinearTrendFilter(); 

 

//connect output from query to input of filter 

query.data => filter.data; 

 

//transforming data 

TupleToWebRowSetCharArrays toWRS = new TupleToWebRowSetCharArrays; 

filter.result => toWRS.data; 

 

//delivery result 

Results result = new Results; 

|- "results" -| => result.name; 

toWRS.result => result.input; 

 

The inputs of each processing element may be literal (strings, numbers, variables or 

expressions of the previous types), or stream outputs from other processing elements. In the 

example above, we have a SQLQuery activity with two input parameters: SQL command 

stored in expression variable and a constant string DbSvpResource for data resource. The 

output from SQL query will be streamed to a filter LinearTrendFilter which replaces missing 

values. The data then are transformed to a human-readable form and delivered to the result. 

It is important to know that data integration and mining is iterative process, the users can try 

to use some data sets and mining methods, examine the results, and then change the data 

sets and/or mining methods to get better results. With DISPEL language, the users can change 

the data integration and mining process easily, since the logic of the process is separated from 

the physical resources. During execution, the DISPEL Gate can try and do several optimization 

techniques to improve performance, e.g. placing processing elements close to data sources. 

All data are transported between processing elements as streams, i.e. the second processing 

element can start immediately when the first one produces first data item. 

PROCESS platform components 

1. DISPEL Gate – a component able to process DISPEL data process descriptions and 

instantiate, orchestrate and control the described data processes; multiple gates may 

cooperate in one data process 

2. LOBCDER virtual file system driver – an integration component which will enable 

LOBCDER to provide access to data processed by the Admire stack 

http://uk.org/
http://uk.org/
http://result.name/
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3. Data access and data integration services – a set of services custom-built to provide 

the data access, data integration and data processing (mainly filtering/pre-processing) 

capabilities required by the pilot applications of the project. 

Plans for integration with other systems (from PROCESS) and interfaces 

The Admire stack is a subsystem of the data access and data integration stack of PROCESS. 

The main entry point for data access is the LOBCDER service, this the Admire stack will be 

integrated with LOBCDER via a custom virtual file system driver (an integration point supported 

by LOBCDER). 

The Admire stack's DISPEL Gate will interface with LOBCDER via a VFS driver, which will 

connect to other LOBCDER's subsystems via their API. The DISPEL Gate itself, as well as the 

services it utilises, are accessible via their REST interfaces over the HTTP protocol - see 

Figure 45. Input to DISPEL Gate is always a DISPEL document describing a data process, 

output are arbitrary data streamed back to LOBCDER and via it to the WebDAV client asking 

for the data. 

 

Figure 45: Integration of the DISPEL Gate into the data processing system of PROCESS. 

Technology Readiness Level 

The Admire system has been deployed as a prototype and tested in a relevant environment 

(not necessarily an actual operational environment). Thus it conforms to TRL 6 [EUTRL]. In 

order to bring it to TRL 8, the components relevant to PROCESS will be deployed and tested 

in the context of PROCESS pilot applications' operation environments. Then they will be 
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packaged and documented to create a product. Currently expected changes to DISPEL Gate 

are: 

1. addition of currently not implemented processing elements 

2. complete removal of OGSA-DAI iterfaces and move to REST/HTTP (partially done in 

Admire) 

3. desing, development and deployment of custom, application-specific processing 

elements 

5.14 Application-oriented scientific gateway 

5.14.1 State of the art 
The most common way the user could access the HPC resources is by establishing a secure 

SSH connection and running the jobs manually, polling the state of the jobs and waiting for the 

results of the execution. This traditional way is safe, however, not very comfortable for non-IT 

scientists who want to concentrate mainly on their research fields. In many cases, this fact is 

the reason for the fluctuation from IT complicated situations and resignation to run experiments 

in super powerful environments. A number of gateway approaches were done with the purpose 

to enable easier access to high performance computational resources. They vary in 

implementation levels, most of them are very complex, which requires hard developer work to 

customize for fit user application needs. 

• gUSE [gUse] (Grid and cloud user support environment) is very popular open source 

science workflow system developed by Laboratory of Parallel and Distributed Systems 

(SZ- TAKI, Hungary). It provides a generic purpose, workflow-oriented graphical user 

interface to create and run workflows on various distributed computing infrastructures. 

The framework may help small user communities who cannot afford to develop their 

own customized science gateway. The core of the framework is the Directed Acyclic 

Graphs design, which can define also complicated simulations. gUSE is quite 

sophisticated for every high-performance application types. 

• Gilda [Gilda] (Grid INFN Laboratory for Dissemination Activities) is a virtual laboratory 

to demonstrate and disseminate the strong capabilities of Grid computing. It includes 

the Grid demonstrator i.e. a customized version of the full Genius web portal, from 

which everybody can submit a pre-defined set of applications to the Gilda testbed. 

Currently, Gilda has been re-engineered to improve its services for training and 

dissemination. 

• Ganga [Ganga] is a tool that allows easy interaction with heterogeneous computational 

environments, configuration of the applications and coherent organization of jobs. 

Ganga functionality may be accessed by a user through any of several interfaces: a 

text-based command line in Python reference, a file-based scripting interface and a 

graphical user interface (GUI). This reflects the different working styles in different user 

communities, and addresses various usage scenarios such as GUI for training new 

users, the command line to exploit advanced use-cases, and scripting for automation 

of repetitive tasks. For Ganga sessions, the usage fractions are 55%, 40% and 5% 

respectively for interactive prompt, scripts and GUI. 

• Web4grid [web4grid] interface is intended to be a user-friendly web where Grid users 

can submit their jobs and recover the results on an automatic way. Besides the 

interface it provides the capability to monitor the existing jobs and to check the Grid 

state. It does not intent to make the unique access to both HPC and Grid. 

• Cloudify Manager [CM] is a dedicated environment comprising an open-source stack, 

that provides a secure environment for managing production-level applications. It 

enable viewing application’s topology and perform different tasks such as utilize 

plugins, keep and deployment of blueprints, run multi workflows using the Cloudify Web 
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UI. It limitations are slowness, not fully compatible with Cloudify CLI and restricted 

underlying OS (CentOS 7).  

In the cloud computing and recent cloud compute-intensive application era, the application-

oriented scientific gateway is a widget management system that will be built on the top of 

underlying service orchestration and data resource specification in cooperation with monitoring 

systems to get application instance states. It represents a upper-layer [Hluchy2016effective] 

that incorporate application instances, data and services to utilize high-performance and/or 

compute-intensive power (Figure 46). The integration with designed interactive approaches 

from large-scale computing services in the project e.g. Rimrock and Astmosphere, and MME 

(EurValve) as well as other mature interactive execution environments are considered. The 

solution is oriented to services through service orchestration platform, designed to automate 

the deployment, configuration and remediation of compute-intensive applications across hybrid 

cloud and stack environments. In high-performance computing world, users interact with the 

system by means of submitting application instances (by other words: jobs, simulations or 

modeling), monitor the progress and receive output reports if desired. Users provide data 

locations when input data are large-scale as well as auxiliary information e.g. input hyper 

parameters (to be optimized) through scientific gateway(s).   

 

Figure 46: Slice-view of application-oriented scientific gateway. 

The compute-intensive application instance execution through gateways begins by sending a 

request with input data locations together with requirements and specifications. The user has 

the possibility to keep track of the execution process through underlying system monitoring 

services, which report e.g. node instance states and/or runtime properties. Monitoring states 

are, in general, Waiting (W), Submitted (S), Running (R), Finished (F), Cancelled (C), Failed 

(E) with the transitions among states as the following Figure 47. 

 

Figure 47: Transitions among monitoring states visualised in the gateway 

Exascale application viewpoint 

Application-oriented scientific gateway is a system upper-layer that hides the system 

complexity to end-users. It provides a comfortable access points to underlying high-

performance infrastructure power. Its aims to enabling user interactions with underlying cloud 

system in the mean of data- and compute-intensive cloud applications. From the exascale 
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viewpoint, here is an assumption that large-scale data resource (input, output) are from 

distributed large-scale data repositories (e.g. extracted portions of data in data repositories) to 

be processed within application instances. However, scientific gateways can provide certain 

upload/download function for small datasets i.e. for the functionality testing or verification 

purpose according to user needs. 

Conclusion 
The deliverable provides the initial state of the art and requirement analysis together with the 

initial PROCESS architecture. According to the description of the deliverable, it should contain 

(with a corresponding section from the document): 

• initial per-use case requirements analysis (Section 0) 

• initial per-use case innovation potential analysis (Section 0) 

• common conceptual model (Section 3) 

• initial PROCESS architecture (Section 4) 

• state of the art for systems, platforms and services for extreme data 

applications (Section 5) 

• state of the art for systems, platforms and services for extreme computing 

applications (Section 5) 

• state of the art for service orchestration and user interfaces (Section 5) 

The analysis of the use cases is divided into three parts: (1) detailed description, (2) 

requirements analysis, and (3) analysis of innovation potential. The PROCESS project has five 

use cases with the following main requirements: 

• UC#1: exascale computational processing methods that are able to exploit accelerated 

computing 

• UC#2: scalable workflows that are able to cooperate with exascale datastets 

• UC#3: support for the exascale community 

• UC#4: responding to a large number of requests within miliseconds per request 

• UC#5: methods suitable for exascale data extraction 

The challenges identified by the analysis are addressed within the common conceptual model 

and initial PROCESS architecture. Both of these translate the challenges into technical 

terms/requirements that drive the design of the initial PROCESS architecture. According to the 

requirements, the architecture is based on containerization and virtual machines supported by 

an exascale capable distributed virtual file system, and computing manager. This approach 

will utilize the available infrastructure with minimal overhead, and provide a platform capable 

of satisfying the requirements of the use case communities. 

According to the technological state of the art, we have proposed a preliminary technology-

based architecture depicting the main technological components16. However, we expect that 

this architecture will evolve and change over time. Thus the design of the platform will be 

updated according to new requirements coming from other work packages (WP2, WP3, WP5, 

WP6, and WP7). 

List of Abbreviations 
ACID   Atomicity, Consistency, Isolation, Durability 

                                                 
16 The names of the technology currently listing in this document are subject to change according to the need of the project 
realization as well as dynamic developments of use cases. The list of technologies will be revised along the lifetime of 
PROCESS project taking into account the technologies that will be developed for both resource and data management 
deployed and used  across existing European Research Infrastructures (RI). 
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AIK   Attestation Identity Key  

API   Application Programming Interface 

BASE   Basically Available, Soft state, Eventually consistent 

CAP   Consistency (C), Availability (A) and Partition tolerance (P) 

CDMI   Cloud Data Management Interface 

CIMA   Centro Internazionale in Monitoraggio Ambientale (International Centre 

on Environmental Monitoring in the fields of Civil Protection, Disaster Risk Reduction and 

Biodiversity) 

CPU Central Processing Unit 

CVMFS  CernVM File System 

CWL   Common Workflow Language 

DACI   Dynamic Access Control Infrastructure  

DAS   Direct-Attached Storage 

DFAS   Distributed File Access Services 

DFS   Distributed File Systems 

DNN   Deep Neural Networks 

DD   Direction Dependent 

DDP   Direction Dependent Pipeline 

DI   Direction Independent 

DIP   Direction Independent Pipeline 

DITBP   Dynamic Infrastructure Trusted Bootstrapping Protocol  

DL   Deep Learning 

DNS   Domain Name System 

EMD   Electronic Miscellaneous Document 

EMS   Earth System Models  

FAIR   Findable, Accessible, Interoperable and Reusable 

FS   File System 

GDPR   General Data Protection Regulation 

GFS   Google File System 

GAR   Global Assessment Reports 

GDS   Global Distribution Systems  

HDFS   Hadoop Distributed File System 

HPC   High Performance Computing 
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HTTP   Hypertext Transfer Protocol 

HTTPS  HTTP Secure 

iFlatLFS  Flat Lightweight File System 

IPFS   InterPlanetary File System 

LTA   Long Term Archive 

NAS   Network-Attached Storage  

NDB   Network Database 

NFS   Network File System 

NoSQL  not only SQL 

ML   Machine Learning 

MMS   Multi-Model Simulations 

OASIS   Organization for the Advancement of Structured Information Standards 

OData   Open Data Protocol 

ORCA   Open Resource Control Architecture 

RDA   Research Data Alliance 

ROI   Region of Interest  

RI   Research Infrastructure 

PNR   Passenger Name Record 

PROMET  Processes of Mass and Energy Transfer 

PPFS   Post-Petascale File System  

SAML   Security Assertions Markup Language  

SAN   Storage Area Networks 

SCZ   Science Collaboration Zone  

SDCI   Secure Data Centric Infrastructure  

SDN   Software Defined Networks 

SSO   Single Sign On  

TCPA   Trusted Computing Platform Architecture 

TFS   Taobao File System 

TOSCA  Topology and Orchestration Specification for Cloud Applications 

TPM   Trusted Platform Module  

UNISDR  United Nations Office for Disaster Risk Reduction 

VM   Virtual Machine 

VO   Virtual Organization 
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6 Appendix 

6.1 Performance analysis of the main technological tools 

6.1.1 LOBCDER 

Software requirements 

Java 7 or higher git, maven 2, root access on MySQL 5.5 or higher, Tomcat 6 or 7 (will not 

work with 8). 

Hardware requirements 

Commodity hardware. 

Performance characteristics 

LOBCDER is designed to scale out with the number of requests. One LOBCDER master is 

able to serve more than 38,000 requests per second. In case of increase of the load, multiple 

R masters can be instantiated allowing to load-balance the incoming traffic across all the 

masters. To evaluate the scalability of LOBCDER in terms of file availability for concurrent 

requests, a set of benchmark tests were conducted. The Benchmark was conducted on the 

DAS-3 supercomputer17, One LOBCDER master was deployed on a computer at the University 

of Amsterdam with an Intel Xeon E5450 CPU at 3.00GHz and 8 GB of memory and 16 

LOBCDER workers on 16 nodes of the DAS-3 supercomputer18. Each node has a 2.4 GHz 

AMD Opteron CPU and 4 GB of memory. The storage is located on three nodes hosted on the 

DAS-4 supercomputer2 and accessible through secure file transfer protocol (SFTP). All files 

were replicated on all available storage and to reduce the load on the storage backend, caches 

were used on each LOBCDER worker. For producing concurrent requests, we used the Tsung 

benchmark tool19 which is able to simulate a large amount of users. Tests are composed of 

four separate experiments using 128, 256, 512 and 1024 users requesting the same file 

simultaneously. On each test 1, 2, 4, 8 and 16 workers were used respectively. 

                                                 

17 http://www.cs.vu.nl/das3/ 

18 http://www.cs.vu.nl/das4/ 

19 http://tsung.erlang-projects.org 

https://yahooeng.tumblr.com/post/116391291701/yahoocloud-object-store-object-storage-at
http://dl.acm.org/citation.cfm?id=1863103.1863113
https://zeppelin.apache.org/
http://www.cs.vu.nl/das3/
http://www.cs.vu.nl/das4/
http://tsung.erlang-projects.org/
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Figure 48: Average Session time for various concurrent users requests (128 to 1024) on different configurations of 
LOBCDER (number of workers varies from 1 to 16). [Koulouzis1 2016]. 

The Figure 48 shows the average session time of all users. One session is the time between 

a user sends a request to download a file and the time it takes LOBCDER to complete the 

transfer. As the number of users increases their average wait time also increases for a fixed 

number of workers. As LOBCDER creates more threads to serve incoming requests it uses 

CPU and IO resources slowing down the response. When adding more workers the average 

waiting time of each user is drastically decreased. Adding more workers increases the rate at 

which users finish their download. We have measured that with 1 worker, LOBCDER serves 

approximately 55 users/sec and with 16 workers it serves 90 users/sec. 

System configuration 

Deploying LOBCDER is simple because it is implemented as a web application, allowing 

deployment on a variety of application servers. For an intuitive data access for users and 

applications LOBCDER uses a WebDAV interface. This way LOBCDER is able to provide a 

file system abstraction with strict consistency and, with the use of workers, offer improved 

availability. Both the master and workers can access any type of data source, whether this is 

grid or cloud storage, due to the use of a virtual file system (VFS) API. The VFS API offers 

unified access to a large number of storage resources such as Local File System, SFTP, 

WebDAV, GridFTP, SRM, LFC, iRODS, OpenStack- Swift, vCloud, AWS S3. LOBCDER 

workers are simple stateless servlets, which allows them to be deployed on grid, cloud, or 

cluster servers. The number of LOBCDER workers can be increased or decreased following 

the number of incoming data transfer requests and therefore they elastically scale depending 

on the load. 

LOBCDER has extensions which enable to interface with Software defined networks (SDN) to 

further optimize the data transfers. LOBCDER support an SDN-aware file transfer mode to 

improving the performance and reliability of large data transfers on research infrastructure 

equipped with programmable network switches. In case of multiple data sources, LOBCDER 

SDN extensions, enable to identify the data sources, to react to a sudden drop a transfer rate 

either because of third party transfer on the data source or a network congestion. To assess 

the performance of the architecture we used a controlled test environment. This environment 

allows evaluation of the performance and functionality of the architecture against several 
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scenarios. Using real live networks these scenarios might be particularly difficult to test. We 

may control characteristics of the links specifying bandwidth and latency as well as introduce 

traffic in any part of the network. To conduct our experiments we used ExoGeni a multi-domain 

infrastructure-as-a-service (NIaaS) federated testbed that provides a virtual laboratory for 

networking and distributed systems. ORCA (Open Resource Control Architecture), the 

ExoGENI control framework software, allows easy deployment of virtual topologies, composed 

by virtual machines, networking connections, and other elements 

 

Figure 49: LOBCDER reacts to drop of performance due to third party data transfer on the worker host worker. 
LOCDER switch to another worker to  avoid slow connection [Koulouzis1 2016]. 

Results for the second scenario. We measured speed from the consumer’s perspective while 

downloading a 5 GB file. After approximately 200 s the performance drops dramatically 

because the node hosting the LOBCDER worker is performing some other I/O operation. In 

the static case the LOBCDER worker is not reacting while in the dynamic it drops the 

connection at approximately 220 s and the consumer resumes the transfer at approximately 

250 s from an alternative LOBCDER worker. 
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Figure 50: Simulating network congestion, the worker request from NEWQoSPlanner a different route to establish 
provious performance .[Koulouzis1 2016]. 

Results for the third scenario. Measuring speed from the consumer’s perspective while 

downloading a 1 GB file. After 55 s the performance of the transfer is reduced due to injected 

traffic on the chosen link. In the static routing case the transfer continues on the problematic 

link completing the transfer after 940 s. In the dynamic case, the LOBCDER worker sends an 

optimization request to the NEWQoSPlanner which reroutes the traffic from an alternative link 

complementing the transfer after 545 s. 

6.1.2 DataNet 

Software requirements 

Software requirements vary in regard to components: 

1. Web-based portal 

a. Ruby on Rails execution environment 

b. MySQL database  

2. Metadata repository  

a. Docker CE (Swarm mode enabled)  

 

Hardware requirements 

Hardware requirements vary in regard to components: 

1. Web-based portal 

a. Small VM is required - 1 CPU core and 2 GB of RAM should be enough for 

standard installation. HDD space is a non-factor - 10 GB should be more than 

enough providing logs are handled / rotated properly. 

2. Metadata repository  

a. For a single metadata repository (not federated) use case a cluster of VMs is 

required - minimum 3 for sharding metadata, minimum 9 for sharding with 

replication.  

b. Network: VMs must be mutually accessible via IPv4 communication protocol 

c. Storage: depending of the use case. Minimum 25 GB disk per VM node is 

required for initial deployment 



D4.1 Appendix 
 

This version is a draft of D4.1 and is under review.  148 
 

Performance characteristics  

Initial estimates of DataNet performance are based on the characteristics of a single repository 

installation being MongoDB database covered with raw RESTheart service instance 

representing API of DataNet single repository. The results presented below show the 

relationship between REST interface performance and native MongoDB interface 

performance. Multi-node instance of DataNet repository will be subject of further benchmarks.  

All the tests were run on an machine with MongoDB and RESTHeart running on Sunfire X2200 

M2 with 2 CPU (2,2GHz AMD Opteron) with 16 Gbyte of RAM. Test cases run by MacBook 

Pro client with 2,66 GHz Intel Core i7 and 8 GB 1067 MHz DDR3. The client and the server on 

the same local network linked by a 10/100 Ethernet switch.  

Test case 1 

Measure the execution time to create 1 million documents with random data, using 200 test 

threads. 

 

Figure 51: Results of the test case 1 (execution time). 

In this scenario, RESTHeart introduces just a 2,41% overhead over the total execution time: 

Table 8: Overview of test case 1. 

 Execution Time TPS 

RESTHeart 250s 3990 tps 

Direct 244s 4086 tps 

Test case 2 

Measure the execution time to query a collection 100.000 times, getting 5 documents each 

time (limit 5) and skipping just 25 documents, under different concurrency levels. 
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Figure 52: Results of the test case 2 (execution time). 

 

Figure 53: Results of the test case 2 (TPS). 

RESTHeart delivers better performances under any concurrency level over direct access via 

MongoDB driver: 

Table 9: Overview of test case 2. 

Threads 50 100 200 250 400 500 
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RESTHeart 78s 82s 78s 76s 76s 76s 

Direct 97s 95s 96s 96s 109s 112s 

 

Test case 3 

Measure the execution time to query a collection 2.000 times, getting 5 documents each time 

(limit 5) and skipping just 250.000 documents, under different concurrency levels. 

 

Figure 54: Results of the test case 3 (execution time). 



D4.1 Appendix  

This version is a draft of D4.1 and is under review. 151 
 

 

Figure 55: Results of the test case 3 (TPS). 

Thanks to the eager pre-allocation DBCursor engine, queries with significant skip parameter 

executes much faster (50 times in this case) with RESTHeart: 

Table 10: Overview of test case 3. 

Threads 1 2 4 5 8 10 20 40 50 80 100 200 400 500 

RESTH

eart 

16,2

8s 

6,2

2s 

5,0

5s 

2,5

3s 

3,7

6s 

3,6

s 

2,9

8s 

5,6

5s 

9,0

4s 

10,7

4s 

6,7

6s 

9,2

4s 

6,7

6s 

12,7

1s 

Direct 
1091

s 

627

s 

324

s 

328

s 

329

s 

32

5s 

324

s 

321

s 

321

s 
304s 

302

s 

305

s 

327

s 
327s 

 

Test case 4 

Measure the execution time to query a collection 500 times, getting 5 documents each time 

(limit 5) skipping more and more documents each time, with a concurrency level of 4. 
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Figure 56: Results of the test case 4 (execution time). 

 

Figure 57: Results of the test case 4 (TPS). 

Thanks to the eager pre-allocation DBCursor engine, queries with significant skip parameter 

executes much faster (up to 470 times in this scenario) with RESTHeart. 

(Kskips = 1000 skip) 
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Table 11: Overview of test case 4. 

Kskips 250 500 750 1.000 1.250 1.500 1.750 2.000 2.250 

RESTHeart 2,6s 1,91s 1,9s 1,88s 1,58s 2,05s 1,51s 1,52s 1,51s 

Direct 79s 156s 242s 317s 375s 453s 558s 601s 713s 

 

6.1.3 EurValve Model Execution Environment 

Software requirements 

The Model Execution Environment is implemented as a Web application: it consists of a 

backend which should run on a dedicated host (preferably under Linux) and communicates 

with lower-tier services using public APIs while providing a UI for the end user. The 

environment is hosted on GitLab at https://gitlab.com/eurvalve/vapor. It comes with the 

following software dependencies (all of which are freely available under open-source licenses): 

1. MRI 2.3.x 

2. PostgreSQL 

3. PostgreSQL citext extension (sudo apt-get install postgresql-contrib) 

4. Redis (sudo apt-get install redis-server) 

5. PostgreSQL libpq-dev (sudo apt-get install libpq-dev) 

6. NodeJS (sudo apt-get install nodejs) 

Hardware requirements 

A dedicated host is required with an up-to-date version of Linux (the system has heretofore 

been deployed under the Ubuntu distribution). While the service itself does not consume a 

large quantity of resources, at least 4 GB RAM and 20 GB free HDD space is recommended. 

The host must also expose at least one public IP address. 

Performance characteristics 

As a service orchestrator/UI MEE is not regarded as a performance bottleneck in the context 

of exascale computing. Performance of the system has been tested in the EurValve project, 

and has been found to depend on the number of concurrent UI requests (i.e. the number of 

users accessing simulation runs). Given the nature of PROCESS application tasks, this is not 

viewed as a significant issue; however, if needed, MEE can be scaled by deploying additional 

instances of the service on separate hosts. 

System configuration 

While the configuration of the underlying host is briefly outlined above and meticulously 

described in the deployment section of the project documentation on Gitlab, the system itself 

requires no additional configuration after being launched in production mode - except for 

routine maintenance tasks, e.g. creation of user accounts. 

Response time 

Real-time usage characteristics are supported by the UI with request/response cycles on the 

order of 2-3 seconds, subject to network link quality and host load. Response time may 

degrade under heavy load conditions or when a large quantity of data needs to be presented 

(e.g. for simulations consisting of hundreds of steps - which, however, is not likely to occur in 

the context of PROCESS). 

https://gitlab.com/eurvalve/vapor
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Resource utilization 

MEE, by itself, is not a high-performance computing service and relies on the resources 

provided by a single host, where it expects to be the sole tenant. Please see above for a 

description of the required hardware resources. 

Scalability 

Since MEE is not expected to constitute a bottleneck in the operation of the PROCESS 

exascale computing platform, no additional considerations have been given to its scalability. 

In the case of a large number of users interacting with the GUI simultaneously (i.e. when the 

service host needs to process a large number of concurrent requests), the application may be 

scaled by being deployed to additional access hosts (e.g. one individual host per PROCESS 

use case). 

6.1.4 Rimrock execution environment 

Software requirements 

Rimrock is a web-based application developed in Java. It uses Spring Boot solution which 

provides mechanism which bundles all required classes and application server into single JAR. 

So only Java (8+), PostgreSQL and optionally Nginx as a reverse proxy is needed. The system 

has been tested on Ubuntu 14.04 upwards. The newest LTS version is strongly recommended.  

Hardware requirements 

Small VM is required - 1 CPU core and 2 GB of RAM should be enough for standard 

installation. HDD space is a non-factor - 10 GB should be more than enough providing logs 

are handled / rotated properly. 

Performance characteristics 

As RIMROCK only proxies HPC job related actions to the relevant queuing systems such as 

SLURM (responsible for queuing jobs) which is then run on the Cluster (performing the heavy 

workload) it's a lightweight component and should not induce any bottlenecks. The 

performance is not related to the size of the single job (as it's not running it) and might be 

degraded only if very large number of (even small) jobs would be submitted at the same time. 

However this risk may be easily mitigated by using more resources for the RIMROCK node 

(bigger VM or bare metal node) or by scaling as described latter in this document. 

System configuration 

RIMROCK require rather standard configuration as described in its documentation such as 

installation of Java, PostgreSQL, creation of the database and storing it's configuration. 

Response time 

In normal condition RIMROCK should respond in less then 3 second even for slowest 

operations (such as scheduling new JOB). This may degrade due to the network performence 

(anywhere on the path from the client, through RIMROCK to backend Cluster UI Node), 

extremly high load on RIMROCK or slow responding Cluster (e.g. queuing system). 

Throughput 

In normal condition due to small amount of data used to schedule the job (just script + headers, 

as real data is passed directly between the cluster and the data repository) throughhput of the 

service should not be a significant factor. 

Resource utilization 

In normal condition due to small amount of data used to schedule the job (just script + headers, 

as real data is passed directly between the cluster and the data repository) throughhput of the 

service should not be a significant factor. 
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Scalability 

As mentioned already running RIMROCK on a single node should be sufficient (performance 

wise) at normal conditions. If number of jobs (not its size) would be extreemly high RIMROCK 

may be scalled by deploying additional instances (e.g. one instance per site). In this case only 

extre requirement would be for Client (such as MEE) to record on which site job was deployed 

(and use it to query proper instance of the RIMROCK). 

6.1.5 Atmosphere cloud platform 

Software requirements 

The platform works as a standalone service running on a dedicated host and implemented in 

Ruby on Rails - a popular technology stack for client/server solutions. It comes with its own 

dependency management system (bundler) and all of its code is open-source, and can be 

downloaded from GitHub. See https://github.com/dice-cyfronet/atmosphere for details. 

The following software requirements need to be taken into account: 

1. Linux distribution (Ubuntu LTS preferred) 

2. Ruby v2.1+ and Ruby on Rails v4+. 

3. Any relational database compatible with Ruby on Rails (PostgreSQL suggested, 

although other DBMS' should work as well) 

Hardware requirements 

A host running the Linux operating system is required (we recommend Ubuntu, although other 

distributions should support Atmosphere as well). The host must be connected to the Internet 

and possess at least one public IP address. 100 GB of HDD storage space is required (chiefly 

for proper maintenance of system logs). 

Performance characteristics 

Atmosphere has been tested in the framework of several projects, including VPH-Share, PL-

Grid and ISMOP, managing several hundred concurrent VMs. The performance capabilities of 

Atmosphere are restricted by the actual availability of hardware resources in the underlying 

cloud platforms (i.e. by the number of physical hosts, CPUs, memory and disk storage 

available to PROCESS). 

System configuration 

The aforementioned GitHub repository contains the information necessary to set up and 

configure Atmosphere. Further details can be obtained by contacting its developers at ACC 

Cyfronet AGH (using the contact details provided). 

Scalability 

Multiple instances of Atmosphere can be set up, although each one will then need to be 

interacted with directly. 

6.1.6 Zabbix 

Software requirements 

As Zabbix is composed of multiple componentes - Frontend, Server and (optional) Proxy its 

software requirements varies based on which component(s) is/are deployed on the node. 

Basic requirement is the RDBMs system - usually MySQL (>= 5.0.3 for Zabbix 3.4)  or 

equivalent MariaDB version are considered best fit, however Zabbix also support other 

engines: Oracle (>= 10g), PostgreSQL (>= 8.1), IBM DB2 (>= 9.7). SQLite may also be used 

but only for the Proxy component. 

https://github.com/dice-cyfronet/atmosphere
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Front-end 

The front-end is required to configure the system and to visualize the gathered data. As a 

standard PHP based web application it basically requires Apache (>= 1.3.12) and PHP (>= 

5.4). Also the following set of PHP extensions is always required: gd, bcmath, ctype, libXML, 

xmlreader, xmlwriter, session, sockets, mbstring and gettext. Additionally a proper extension 

for the used RDBMS is required (like mysqli, oci8, pgsql, ibm_db2). Optionally an LDAP 

extension may also be required if LDAP authentication should be used. 

Server and Proxy 

The server is backend needed to coordinate the data collection from the Agents (and Proxies). 

Proxies are optional components that may aggregate data from many Agents and pass them 

to the Server to distribute the load (increase scalability of the system). Both components are 

written in the C language and may be compiled from source or installed as packages. Only two 

libraries are required - libpcre as well as libevent (which is required for Server, but optional for 

Proxy). 

Additionally some optional libraries may be used to extend monitoring capabilities - namly: 

OpenIPMI, libssh2, fping, libcurl (Web monitoring), libiksemel (Jabber), libxml2, net-snmp. 

Java Gateway 

This is an entirely optional component which may be used for monitoring of JMX enabled 

applications. As the name suggests this component is written in Java, and as such requires 

the Java Runtime Environment to be installed on the node. All libraries (JARs) are bundled 

with the package - including: logback-core-0.9.27, logback-classic-0.9.27,  slf4j-api-1.6.1 and 

android-json-4.3_r3.1. They may also be replaced with stand-alone installations if desired. 

Client side requirements 

To access the Zabbix Front-end user needs to have any modern Web Browser with JavaScript 

and Cookies enabled. 

Hardware requirements 

Basic installation of Zabbix have very low hardware requirements. In such case both server 

and front-end may be installed on a single VM with 1 vCPU and 1 GB of RAM. Even for quite 

big deployments (monitoring over 10 000 hosts) a relatively small system should be sufficient 

(8 CPU cores, 16 GB of RAM and fast I/O like SSD in RAID10). However, in case of a bigger 

deployment further dispersion of the infrastructure (like RDBMS cluster + separate machines 

for Front-end, Server and multiple Proxies) is advisable. In addition to above resources it’s 

required to deploy Zabbix Agents on monitored nodes which would also consume some 

hardware resources however due to lightweight nature of the Agent those usage should not 

be significant.  

Performance characteristics 

Due to the nature of the system it focuses on minimizing the load of monitored services, as 

such it uses very light agents written in C. This is critical as monitoring system should not have 

adverse effect on the system being monitored. Also due to the need to process large numbers 

of events the server is written in C to provide maximum performance. The load on the front-

end is usually much smaller (especially in system such as process where amount of monitored 

resources greatly exceeds number of potential operators watching the UI). Due to this fact 

even usage of PHP language would provide close to real-time performance required for 

smooth user experience.  
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System configuration 

Each components may be installed from OS packages or from the Source Code. Only the 

database needs to be configured and it’s schema loaded. All further configuration may be done 

via the Web UI. 

Response time 

Alerting functionality should usually respond below 1 second unless the system is under high 

load. Alert should be sent in a matter of minutes. UI needs to respond in real time (below 1 

second) to be usable. 

Throughput 

System is designed to handle ten of thousands of nodes each reporting hundreds of events.  

Resource utilization 

Resource utilization of the Agents should be minimal due to lightweight character of this 

component. Utilization of rest of the infrastructure would be highly dependant on the scale of 

the infrastructure but should be within the bound described earlier in Hardware Requirements. 

Scalability 

Due to the architecture of the system collection mechanism is naturally scalable using Agents 

deployed on each service and Proxies capable of data aggregation. Server and UI should work 

well for large deployments even on single node but if needed may be clustered and. Also 

RDBMS may be clustered for large deployments. 

6.1.7 PUMPKIN 

Hardware requirements 

Pumpkin is a Python framework and therefore runs on commodity hardware.  It has been 

written primarily for Linux  therefore we suggest Linux as a execution platform.  When run in a 

distributed fashion, Pumpkin nodes need to discover each other and communicate with each 

other thus participating nodes should be on a virtual IPv4 network with IP broadcast enabled. 

Depending on the application, memory usage can be quite high due to buffers; we suggest a 

minimum of 2GB of RAM and 20GB of free HDD space for each node. 

Software requirements 

Pumpkin depends on Python 2.7 and a list of Python packages: numpy, ujson, pyinotify, tftpy, 

networkx,zmq, pika, pystun, netaddr, pyftpdlib.  

Performance characteristics 

To test PUMPKIN we have selected two applications workflow with different characteristics to 

create different scenarios. The Twitter workflow has fine grained data atomicity thus creating 

scenarios for pronounced overhead while blood flow simulation workflow and sensitivity 

analyses workflow is a computational intensive workflow with intricate data transition stages. 

The Pumpkin testbed used for these applications scenario is intended to demonstrate the 

applicability to globally distributed resources on controlled and uncontrolled resources. The 

node network which included 3 nodes on EC21 (Ireland), 1 node on EC2 (Oregon), 1 node on 

VPH computing platform2, 2 nodes on private cloud (Amsterdam), Docker4 node 

(Amsterdam), 1 PC (Amsterdam). Although EC2 nodes have public facing IP addresses the 

other nodes are all behind NATs and thus direct communication was not possible. In this case 

the nodes automatically use the RabbitMQ callback. The controller-less, dispersed and diverse 

resources are set up as a state machine using the automaton. The code is deployed 

dynamically through the packet system described in [Cushing, 2016] using the laptop node as 

the bootstrapping node. Following 4 figures illustrates how the control flow is able to adapt to 

the traffic traversing the node network. As is expected, the faster and more stable connections, 

the higher packet efficiency can be achieved at lower coalescing factor. Figure 61 shows in-
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memory communication between Docker3 VM and host where high efficiency is achieved with 

low coalescing. The trade-off between parallel efficiency and coalesce efficiency produces a 

Pareto fronts. From Figure 58 between 60 and 100 data packets are enough to obtain 

adequate efficiency. On the other hand, Figure 59 shows that the range 60 to 100 provides an 

abysmal coalesce efficiency, which means a higher coalescing number is needed. 

 

Figure 58: Packet coalescing processing efficiency, ceff (), between EC2 (Ireland) and private cloud (Amsterdam) 
vs. parallel packet efficiency, peff (), assuming data window of 1000 data packets and 20 nodes. The numbers next 
to the data points are the actual number of packets in the grouping [PUMPKIN1 2016] 

 

Figure 59: Packet coalescing processing efficiency, ceff (), between EC2 (Ireland) and EC2 (Oregon) vs. parallel 
packet efficiency, peff (), assuming data window of 1000 data packets and 20 nodes. The numbers next to the data 
points are the actual number of packets in the grouping.[PUMPKIN1]. 
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Figure 60: Packet coalescing processing efficiency, ceff (), between VPH-Share cloud (Cracow) and private cloud 
(Amsterdam) over RabbitMQ vs. parallel packet efficiency [PUMPKIN1 2016]. 

 

Figure 61: Packet coalescing processing efficiency, ceff (), between Docker VM and Docker host vs. parallel packet 
efficiency, peff (), assuming data window of 1000 [PUMPKIN1 2016]. 

In following 2 figures we demonstrate how we manage to control backlogs in the network. 

Figure 62 shows both the aggregate predicted compute backlog over time, which never goes 

over 40 s, which without flow control, backlog would spiral out of control. The stark difference 

between the aggregate and mean boils down to the EC2 (Oregon) VM, which had a slow, low 

bandwidth connection, which resulted in more pronounced flow controller fluctuations. The 

Lyapunov drift in Figure 63 shows the effort of the flow controller maintaining a 0 drift 

progressively correcting spikes in predicted backlog. Twitter feed data7 is also injected from 

the same node. The PC node in the network acts as an interface to the network and also as 
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an optional compute node. The filters were given an additional synthetic load. This load aims 

at creating a backlog scenario where each successive processing node is slower than the 

previous. The loads for tweet inject(), filter english(), filterisa(), filterhasa() are 0, 0.1, 0.2, 0.3 

respectively where the load signifies sleep time on every packet. In this scenario every Tweet 

is packaged as a data packet and given the initial state of RAW. These packets are injected 

into the network and traverse the appropriate nodes to end in a final state. Each state transition 

acts as a filter thus tagging the data along the way with a state tag. The first filter filterenglish() 

will tag the tweets with state ENGLISH or state NON ENGLISH. The ENGLISH tagged data 

packets will move forward into the network while theother packets are dumped since a final  

state was reached. The last final state, is an extraction state to which relevant datatransitions 

too. The node network achieves 3 levels of parallelism; through pipelining processing and 

communication overlaps each other, d-op filterisa() and filterhasa() are intrinsically 

independent which means they run in parallel and the third level of parallelism is derived from 

data partitioning where multiple instances of d-opfilterenglish(), filterisa() and filterhasa() split 

the streams between themselves. 

 

Figure 62: Aggregate and mean of predicted compute backlog on network over time [PUMPKIN1 2016]. 
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Figure 63: Predicted compute backlog calculated using Lyapunov quadratic function, and the Lyapunov [PUMPKIN1 
2016]. 

System configuration 

Pumpkin is best configured through VM/container initialization scripts such as a Dockerfile. 

The initial deployment of functions can be done through the same scripts or deployed at a later 

stage through SSH/SCP. VMs/containers need to be configured on the same broadcast 

network using VPN tools such as Docker swarm.  Tasks in Pumpkin are Python classes that 

implement a Pumpkin interface thus for a workflow to be ported these class wrappers need to 

be implemented for every task.  

Response time 

Response time depends on the workflow being implemented in Pumpkin and how many 

workflows are in progress on the same resources since Pumpkin nodes can be part of multiple 

separate workflows.  This means the fundamental principles of shared resources come into 

play. 

Throughput 

Throughput depends on the workflow implementation.  Pumpkin can exploit pipeline 

concurrency, functional concurrency of independent tasks and concurrency through data 

parallelism but all these concepts need to handled by the workflow programmer. In reality, the 

programmer can write a purely sequential workflow which does not exploit any concurrency.  

Resource utilization 

Resource utilization depends on the workflow implementation. The user can decide to pass all 

the data through the Pumpkin channels or use and external data store and pass references 

around. Both scenarios have their pros and cons and would also have a great impact on 

resource utilization. 

Scalability (saturation) 

Current communication protocols using TCP + ZeroMQ requires substantial buffering both at 

application layer and network layers. Under heavy stream processing load these buffers will 

quickly saturate. Moving to different protocols such as UDT and tuning buffers at the 
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application layer will minimize buffer problems. Within Pumpkin data can be duplicated in 

memory which will increase memory usage especially under heavy load.  This can be 

minimized by limiting what can be copied in memory.    

6.1.8 TOSCA 

Software requirements 

TOSCA is a description language for application topology. Once the application is described, 

an orchestrator will be used for automation of application lifecycle according to the topology 

described in the TOSCA template. There are different implementations of orchestrators: 

Openstack Heat translator, Cloudify, Alien4Cloud, OpenTOSCA. 

Hardware requirements 

TOSCA is description language for application topology so it does not have hardware 

requirements. The orchestration of the TOSCA template is realized by the chosen orchestrator, 

in this project Cloudify. 

Performance characteristics 

Not applicable. TOSCA is description language, not software components 

System configuration 

TOSCA templates will be defined according to OASIS standards. Each template will include 

the basic types according to the standards and types supported by orchestration engines, then 

custom types if needed. All files, including templates, artifacts and data usually placed in a 

single directory with the template in the main directory and others in subdirectory. 

6.1.9 Cloudify 

Software requirements 

Cloudify use many different software technologies see [Cloudify-requirements]. However, it is 

distributed in a standard software package format (RPM, DEB) that can be installed on 

standard LInux machine with Ubuntu, Centos and compatible flavors via standard installation 

mechanisms (rpm, dpkg  commands). 

Hardware requirements 

Cloudify can be deployed on standard cloud m1.medium flavor (2 CPU cores, 4GB RAM, 40GB 

harddisk). The exact requirements of Cloudify are available at [Cloudify-requirements]. 

Performance characteristics 

Cloudify itself does not have high demand on hardware resources. At mentioned above, it can 

run on m1.medium flavor. The response time (and performance) depend on the services via 

which Cloudify deploy and manage applications (e.g. Openstack, Amazon EC2).  

System configuration 

Cloudify can be installed in standard Linux installation methods (rpm, dpkg). Once installed, 

Cloudify run as command-line client that receives input from users (or user interface) and 

perform relevant actions on the specified TOSCA templates.  

Response time 

The response time depend on the response time of underlying services via which Cloudify will 

deploy and manage application (e.g. Openstack, Amazon EC2) and the time needed for 

application software installation. Cloudify itself does not have high demand on hardware 

resources, typical response times, excluded time needed for hardware acquisition and 

application software installation, are in seconds. 
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Throughput 

The throughtput (and performance) depend on the services via which Cloudify deploy and 

manage applications (e.g. Openstack, Amazon EC2) 

Resource utilization 

The resource utilization (and performance) depend on the services via which Cloudify deploy 

and manage applications (e.g. Openstack, Amazon EC2) 

Scalability (saturation) 

Scalability of Cloudify depens on the services via which Cloudify deploy and manage 

applications (e.g. Openstack, Amazon EC2). Single Cloudify execution can deploy as many 

application instances as the the underlying service allows. 

6.1.10 DISPEL 

Software requirements 

The Admire stack requires Java 7 or newer. 

Hardware requirements 

The Admire stack hardware requirements are: 

1. internet connection 

2. a system capable of effectively executing Java 7 code 

Specialized services may have additional hardware requirements, for example a deep learning 

service may require GPGPU access, but these are not required for the basic Admire data 

integration stack. 

Performance characteristics 

Not applicable – performance of data access and data integration is specific to the services 

which will perform it. 

System configuration 

The configuration consists of several steps: 

1. Deployment and configuration of the DISPEL Gate (at multiple points if necessary) 

2. Configuration of available service endpoints in the DISPEL Gate 

3. Configuration of LOBCDER so it is able to use the VFS access to the data provided by 

the Admire stack 

Response time 

Response time depends on the capabilities of the data storage which is accessed and of the 

data integration/access services engaged in the particular data process. 

Throughput 

Throughput is defined by the capabilities of the data access/data integration services engaged 

in the data process. 

Resource utilization 

The functional component of the Admire stack, the DISPEL Gate, is a Java process which 

typically requires 256MB – 2GB of memory, depending on its utilization. Permanent storage 

requirements are negligible, consisting only of the need to store the program and its 

configuration. 

Scalability (saturation) 

A single Gate may be saturated by multiple data processes executed at the same time. This 

bottleneck can be overcome by utilizing several distributed Gate instances. The number of 

deployed Gates is not limited. 
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