

Requirements Workshop

PROviding Computing solutions for ExaScale challengeS

Use Case #1:

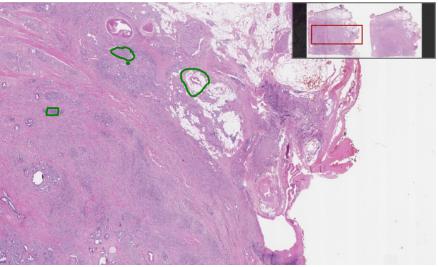
EXASCALE LEARNING ON MEDICAL IMAGE DATA

Use Case Motivation:

- Everyday 3 women die in Israel for breast cancer
- 10 million women in Kenya go to mammography, 2 physicians are available on average to inspect them
- The disagreement between pathologist is generally really high, with 85 % false positive rate

Use Case Goals:

- Develop high performance image analysis algorithms
- Increasing dataset sizes, models complexity
- Improve current performances and decrease the turnaround time of experiments

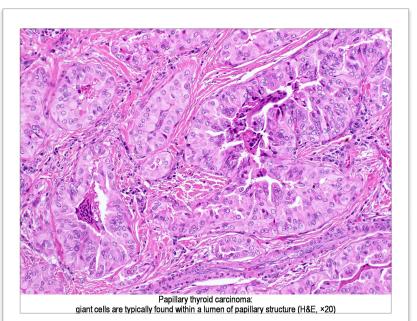

• Image types can be different

• Image types can be different

Whole Slide Images : Different Resolution Levels ~ 100K x100K (gigapixel)

Annotations: XMLs, CSVs, TXTs..

One WSI may occupy up to 5 GB Need for specific tools to process data, e.g. OpenSlide, ASAP


Storage requirements: Camelyon17: 1000 WSIs, > 3TB database

• Image types can be different

PubMed Central Images : Low Resolution

Annotations: Natural Language Processing of image captions with Deep Learning

Approx. 5 million images

DEMO

Creating a Tumor Mask from the annotations locations

In [12]: # libraries: opencv, xmltree, openslide ..

wsi = np.asarray(Image.open('data/wsi.png'))
image = np.asarray(Image.open('data/tum_loc.png'))
tumor_mask = np.asarray(Image.open('data/tum_mask.png'))
normal_mask = np.asarray(Image.open('data/nor_tissue.png'))

plt.figure()
plt.subplot(1,3,1)
plt.imshow(wsi)
plt.axis('off')

plt.subplot(1,3,2)
plt.imshow(normal_mask)
plt.axis('off')

plt.subplot(1,3,3)
plt.imshow(tumor_mask)

plt.axis('off')

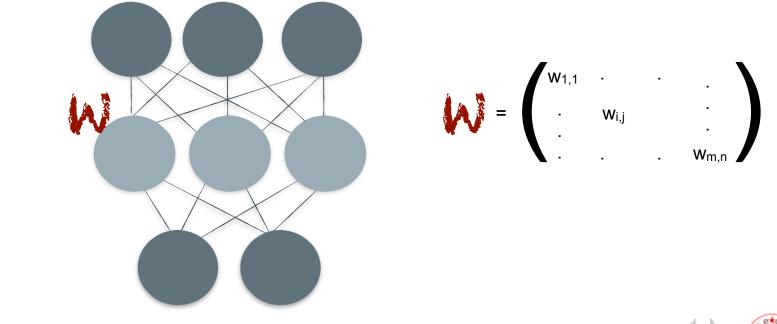
Out[12]: (-0.5, 350.5, 480.5, -0.5)

Average Statistics:

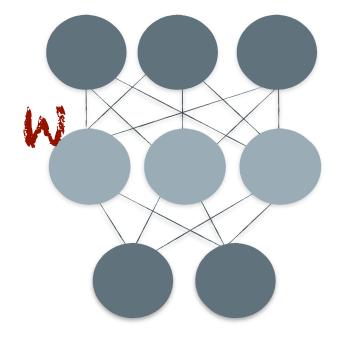
"Deep Multimodal Case-Based Retrieval for Large Histopathology Datasets" 2000 patches per WSI x 267 WSIs = 530 K patches

In principle, one could cover the whole WSI are with around 66K patches..
 66 K patches per WSI x 500 WSI* = 33 M patches

- When applying data augmentation more patches could be generated to scale the dataset of 10 times or even more...


^{*} Camelyon17 training WSIs

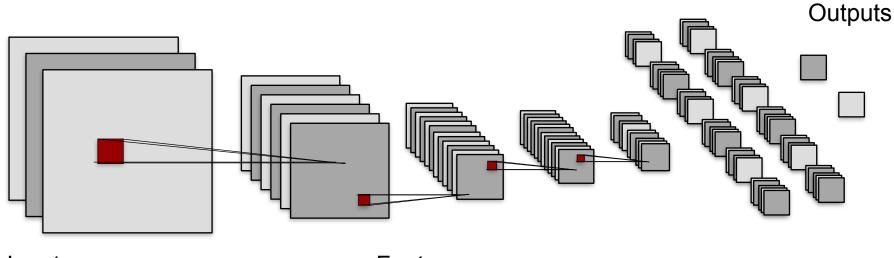
Deep Learning requires access to GPUs



Deep Learning requires access to GPUs

$$= \begin{pmatrix} w_{1,1} & \cdots & \ddots & \ddots \\ & & w_{i,j} & & \ddots \\ & & & & \ddots \\ & & & & \ddots & & w_{m,n} \end{pmatrix}$$

2.7 Million of parameters

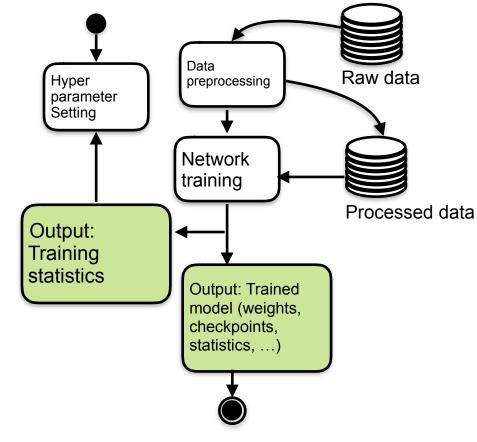

300 seconds per epoch

CNN training is highly parallelisable in GPUs

Inputs (224,224,3) Feature maps

Hidden units

Training requires mainly one CPU thread, high RAM occupancy, high communication bandwidth between CPU and GPU memory



Network training workflow

med GIFT

 $\Sigma \pi \approx \&$

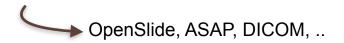
System Requirements:

• Openness to programming languages, tools, frameworks

Virtual Machines, Docker Containers

• Flexibility in the building, deployment and management of running applications

Need for a **PROCESS Environments Manager**



Software Requirements:

• Deep Learning software and GPU drives

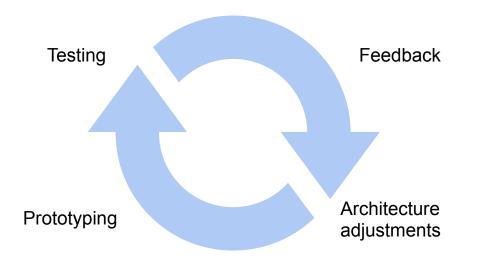
CUDA, NVIDIA, CuDNN Tensorflow, Keras, Theano, PyTorch, ...

Support of Medical Imaging tools

• Environment for Python development

Hardware Requirements:

- Access to GPUs for network training
- Access to CPU clusters for data preprocessing, data postprocessing, network testing
- Large RAM consumption
- High Caching to reduce the number of I/O operations
- Need for a **PROCESS Data manager**, imitating an extension of the local datacenter, although distributing the data sources.



Data should be accessible from both CPUs and GPUs

Development should be *iterative*

Flexibility is key in Amazon Cloud, Google Cloud, Microsoft Azure

Future-Proof Infrastructure

Secure, global, high-performance, cost-effective and constantly improving. We've built our cloud for the long haul.

Seriously Powerful Data & Analytics

Tap into big data to find answers faster and build better products.

_			_	-	
	_				
-		_	_		

Serverless, Just Code

Grow from prototype to production to planet-scale, without having to think about capacity, reliability or performance.

Questions?

Thanks!

