
Validating data integrity with blockchain
Rosco Kalis

University of Amsterdam
Amsterdam, The Netherlands

rosco@kalis.me

Adam Belloum
University of Amsterdam

Amsterdam, The Netherlands
A.S.Z.Belloum@uva.nl

Abstract—Data manipulation is often named as a serious threat
to data integrity. Data can be tampered with, and malicious
actors could use this to their advantage. Data users in various
application domains want to be ensured that the data they are
consuming are accurate and have not been tampered with. To
validate the integrity of these data, we describe a blockchain-
based hash validation method. The method assumes that the
actual data is stored separately from the blockchain, and then
allows a data identifier and a hash of these data to be submitted to
the blockchain. The actual data can be validated against the hash
on the blockchain at any time. Several use cases are described
for blockchain-based hash validation, and to validate the method
it is implemented inside an application audit trail to validate
the audit trail data. This implementation shows that blockchain-
based hash validation is able to detect malicious and accidental
changes that were made to the data.

Index Terms—Blockchain, Ethereum, Data integrity, Data
validation, Audit trail

I. INTRODUCTION

US Director of National Intelligence James Clapper stated
that the next big cyber threat is data manipulation [1] and
technology magazine Wired listed it as one of the biggest
security threats in 2016 [2].

Data integrity is paramount in many scientific and societal
applications. Many data can be tampered with, and malicious
actors could use this to their advantage by making others act on
these compromised data, by distributing these data to spread
misinformation, or by taking credit of work that isn’t theirs.

Consumers of scientific, business, and other data want to be
ensured that they can use data without having to worry about
the integrity of these data. Likewise, producers of these data
want to guarantee data integrity for their consumers, and they
want to be ensured themselves that there is no one who can
tamper with their data. In this paper, we are interested in the
use case where companies want to guarantee data integrity
within their organisation, and they want to be sure that all
data that are handled through applications can not be changed
outside the functionality of these applications.

We use the employment of audit trails to illustrate this use
case. Companies employ audit trails to log all state changes
made within their applications. This is already a way to enjoy
more certainty about the data inside applications, and it offers
a way to validate the current state of the application against
all past state changes. However, if this audit trail is stored in
the same way as the application data, it is equally vulnerable
to tampering.

To make hard assertions about data integrity, a method needs
to be developed to validate the integrity of any arbitrary data.
For this, we look at blockchain [3], which is a promising tech-
nology that can improve data integrity. The last few years have
really accelerated the progress in blockchain development, and
especially smart contracts [4] have opened up new potential
use cases for blockchain technology.

A. Blockchain

Blockchain is a data structure that distributes all its data over
a network of nodes, so that there is no single point of failure,
and no central control that might be compromised [3]. It uses
a consensus algorithm that allows these independent nodes to
approve correct transactions and reject malicious ones [4].

On the blockchain, data are stored in a chain of so-called
blocks [4]. Every block header includes the root of a Merkle
tree, which contains the actual data in the block [4]. Besides
this, every block also includes a timestamp and a hash of
the previous block in order to make it further resistant to
manipulation [4]. This structure can be seen in Fig. 1.

If an attacker would change the data inside a past block,
the hash of this block would change with it, and since the
changed hash is never referenced by another block, it would
not be accepted by the rest of the network [4], and it would
effectively create a fork of the blockchain. The rule with forks
is that the longest chain is always the leading one, so in
order to have the modified block accepted by the network,
the attacker would need to grow their chain faster than the
rest of the network combined to pass the longest chain [4].
Because the resources of the entire network are extensive in
major blockchains, this sufficiently guarantees the integrity of
the data in the blockchain [4].

Fig. 1. This image shows the contents of blocks and how they are linked
together. Image by Matthäus Wander (Wikimedia), downloaded from https:
//en.wikipedia.org/wiki/Blockchain in August 2018.

https://en.wikipedia.org/wiki/Blockchain
https://en.wikipedia.org/wiki/Blockchain


B. Smart contracts

Starting with Ethereum, blockchain technology has been
extended with smart contract functionality. Smart contracts are
a way to digitally enforce a contract or an agreement between
parties through code. This concept predates blockchain more
than a decade [5], but only when blockchain was implemented
did it finally become possible to implement these smart
contracts without the need for a trusted third party.

Ethereum offers the ability to publish smart contracts on its
blockchain, which can be executed by the Ethereum Virtual
Machine (EVM) [4]. By publishing these contracts to the
Ethereum blockchain, all involved parties can easily inspect
the contract and they will be assured that the contract will
execute exactly as specified.

II. RELATED WORK

The need to ensure the data integrity of electronic audit
trails and other data already existed decades ago. The different
ways an audit trail could be corrupted were described by
Weber in 1982, along with methods to overcome some of
these corruptions [6]. Then, at the end of the century, Schneier
& Kelsey described a method of securing audit log data on
untrusted machines [7], which has since been cited in many
other works on the subject of data integrity and auditing. US
Patent 6968456 uses a similar approach to make the storage
of audit trail data inside regular databases more secure [8].

Since the introduction of blockchain, multiple works have
been published on the use of blockchain in the validation of
data integrity and in other auditing processes. Deloitte has
published their research into the use of blockchain in the field
of accounting and auditing, in which they envision a hashing
based approach similar to our own that allows third party
auditors to easily verify the integrity of all data records [9].

Sutton & Samavi also describe a blockchain-based way
of audit trail validation. They specifically focus on the non-
repudiation of privacy audit logs in the light of privacy policy
compliance [10]. US Patent application 20180025181 [11] and
Zikratov et al. [12] also present hashing-based methods for
data integrity validation. In contrast to our approach, these
works specifically use their methods to validate the integrity
of data files, while we focus on validating the integrity of any
data.

III. METHOD

Smart Contracts on the Ethereum blockchain allow data to
be stored directly inside these contracts as variables. Because
of the nature of the blockchain, it is guaranteed that these data
can only be changed using the smart contract’s functionality,
and every interaction with this contract gets recorded as a
transaction on the blockchain.

Looking at these properties of blockchain and smart con-
tracts, the easiest way to achieve data integrity for any data
is to store all data directly on the blockchain inside these
smart contracts. That way the data are easily verifiable, and
both producers and consumers of the data are ensured that the
data can be trusted. However, there are several issues with

directly storing arbitrary data on the Ethereum blockchain.
Most importantly these issues present themselves in trans-
action size limits, high transaction costs, and the potential
need for (partial) data confidentiality. Taking these issues into
account, a method is described for validating any arbitrary data
using the Ethereum blockchain.

A. Transaction limits

Every operation that is executed on the Ethereum blockchain
costs an amount of so-called gas, and the amount of gas that
can be used within a single transaction is limited by the block
gas limit. This gas limit is currently around 8 million gas for
the Ethereum Main Net, but it can scale depending on demand
[13].

The Ethereum Yellow paper specifies that every byte of
passed data in a transaction costs 68 units of gas, and every
transaction costs 21 000 gas to start with [13]. From this
follows that the maximum amount of data passed in a single
transaction is approximately 115 kB, as can be seen in (1).

(8000000− 21000)/68 ≈ 117300B ≈ 115kB (1)

However, this only includes transaction data that are not
stored. Data storage is one of the most expensive operations
in terms of gas cost, so this can easily become a bottleneck
when storing larger amounts of data. The Ethereum Yellow
paper specifies that every byte of stored data costs 625 units
of gas [13]. From this follows that the maximum amount of
stored data in a single transaction is approximately 11 kB, as
can be seen in (2).

(8000000− 21000)/(625 + 68) ≈ 11500B ≈ 11kB (2)

For some use cases this limit will not be relevant, like when
storing integer values. But when storing serialised application
data or arbitrary-size blobs, this limit can be reached rather
quickly. Realistically, this means that larger pieces of data
would need to be split up over multiple transactions.

B. Transaction costs

Every unit of gas on the Ethereum blockchain needs to be
paid for using the Ether cryptocurrency [13], so the monetary
costs of storing data on the blockchain could increase rapidly.
At the time of writing the price of one unit of gas is around
10 GWei, or 0.000 000 010 Ether, and the price of one Ether
is around e300. This means the price per kB of data is around
e2.1, as can be seen in (3). These increased costs make storing
larger amounts of data impractical for realistic usage.

(625 + 68) · 1024 · 0.000000010 · e300 ≈ e2.1 (3)

C. Data confidentiality

All data published on the Ethereum blockchain are publicly
accessible. For certain data, this is acceptable or even required,
but there are many use cases in which data should only be
shared with certain parties. Data that are meant for internal



use in corporations need additional confidentiality measures in
order to leverage the strength of blockchain for data integrity.

Two different methods can be used to achieve data confi-
dentiality on the blockchain: encryption and hashing [14]. It
is visible from the earlier two points about transaction limits
and costs that encrypted data would still realistically reach
transaction limits quite often, and the costs of storage would
skyrocket [14]. Therefore, only a method using data hashing
is viable, as it easily stays under the transaction limits, has
constant and relatively low transaction costs, and is able to
shield confidential data from the public. In this paper we
propose a method using data hashing to validate data integrity.

D. Data validation using data hashing

US Patent application 20180025181 [11] presents a method
to reliably store data files and verify their integrity with
blockchain technology. The method describes storing data
files on a data storage module, and transmitting hashes of
these data files to a public blockchain [11]. With this hash
they store metadata, such as a timestamp and file size. The
method suggests to monitors these files, and whenever a
change occurs, this process is re-initiated, storing the new hash
on the blockchain, with a link to the previous one [11].

While this method is specifically created for the validation
of data files, a modified version of this method can be used
for any type of data. The methods for hashing are the same for
different types of data, while the metadata and the identifying
data can be changed to fit the specific use case.

The method we propose hashes any arbitrary data and
stores their hash on the Ethereum blockchain. This hash is
identified by a unique identifier representing the specific data.
The method for creating this unique identifier is left to the
specific implementation of the method. The data can then be
verified at any moment by validating that the hash stored for
the data identifier matches the actual hash of the data. If the
hashes don’t match, we know that the data have been changed
since they were stored on the Ethereum blockchain. We call
the method blockchain-based hash validation.

In contrast to the method described in US Patent application
20180025181 [11], blockchain-based hash validation does not
use monitoring to automatically update the hash of specific
data, since this method is focused on validating the integrity
of a specific version of the data. New versions of data can be
added to the smart contract under a new unique identifier. This
allows multiple versions of data to be validated simultaneously.

Since the data themselves are not stored on the blockchain,
blockchain-based hash validation needs the data to be available
in some way to validate them. This means that blockchain-
based hash validation can not retrieve the original data when
they have been lost or their integrity has been compromised.
Use of this method should therefore always be coupled with
a way to retrieve lost data, such as a sufficiently strong
backup protocol and regular validations of the data. This
allows changes in this data to be detected early, and the correct
data to be restored.

IV. PROOF OF CONCEPT

Blockchain-based hash validation can be used in several
different use cases, including the validation of published
scientific results, the validation of audit trail data, and the
validation of other shared data between different parties.

To show the possibilities of blockchain-based hash vali-
dation we implemented a proof-of-concept audit trail 1 that
is validated against an Ethereum smart contract. This audit
trail automatically logs all interactions that take place inside
the application, and write identifier-hash mappings to the
Ethereum blockchain for each of these log entries.

A. Smart contract functionality

The smart contract we created contains a mapping of the
unique data identifiers to their corresponding data hash, as well
as an array of all identifiers, so it can be iterated over.

Next, the smart contract includes an audit function that
allows new data to be added to this mapping. This works by
passing an identifier and a hash to this function; this identifier-
hash pair is then stored in the mapping and the identifier is
stored in the identifier array.

Finally, the smart contract contains a validation function that
allows stored data to be validated by passing an identifier and
a hash to this function and comparing them with the stored
values.
contract AuditTrail {
bytes32[] public identifiers;
mapping(bytes32 => bytes32) public hashes;

function audit(bytes32 identifier, bytes32 hash)
external ownerOnly {
require(hashes[identifier] == 0,

"Identifier can only be audited once");
hashes[identifier] = hash;
identifiers.push(identifier);

}

function validate(bytes32 identifier, bytes32 hash)
external view returns(uint8) {
return hashes[identifier] == hash ? 0 : 1;

}
}

B. Apache Isis

For the automatic audit trail we used Apache Isis 2, which
is a Java software development framework based on Domain
Driven Development and the Naked Objects pattern. It can be
used to rapidly develop complex business applications because
a UI and REST API are dynamically generated from the
domain model of the application at runtime. This leads to a
faster development cycle and higher agility, since the focus
can remain on the domain model, and no extra time needs
to be spent on the presentation layer of the application. More
information on Apache Isis’ design can be found in [14].

Apache Isis offers several services in the form of Appli-
cation Programmer Interfaces (APIs) and Service Provider
Interfaces (SPIs). The APIs are implemented by the framework

1Code can be found at https://github.com/rkalis/blockchain-audit-trail
2https://isis.apache.org/ (accessed 2018-04-10)

https://github.com/rkalis/blockchain-audit-trail
https://isis.apache.org/


Fig. 2. This image shows the different domain services used for auditing
within Apache Isis. Image downloaded from https://isis.apache.org/guides/
rgsvc/rgsvc.html in April 2018.

and can be called by the application, while the SPIs are
implemented by the developer, and will automatically be
picked up and called by the framework [15]. Among these
services are several SPIs for auditing or similar purposes, as
illustrated in Fig. 2.

Most important of these services are the AuditerService and
the PublisherService. The AuditerService captures the actual
changes caused by an interaction [15], and the PublisherSer-
vice captures a memento of the interaction, as well as a
summary of the changed properties [15]. Important to note is
that the AuditerService gets called every time a change in the
database occurs, while the PublisherService gets called at the
end of every interaction, which can contain multiple changes.

C. Audit trail implementation

For the automatic audit trail we wanted to log all changes,
but at the same time keep the number of blockchain transac-
tions to a minimum. This is why we implemented a combina-
tion of the AuditerService and PublisherService.

Every time the AuditerService’ audit method gets called, its
parameters get stored inside a single ThreadLocal audit entry
object. At the end of the interaction, the PublisherService’
publish method gets called, which is used to submit the audit
entry’s identifier and hash to the Ethereum smart contract,
after which the ThreadLocal audit entry object is reset. The
blockchain transaction is sent asynchronously, so that the rest
of the application can continue running while the transaction
is executed on the blockchain.

D. Audit trail validation

The audit entries inside the audit trail can be validated
against the smart contract on the blockchain. Individual audit
entries can be validated with a specific validation action, which
calls the validation function on the smart contract to verify that
the identifier-hash pair of the audit entry still matches the pair
that is stored on the blockchain.

There is also the option to validate the entire audit trail.
This is done by calling the smart contract’s validation function

for every single audit entry in the audit trail. In order to fully
validate the audit trail, it is also checked for missing entries by
traversing the array of identifiers inside the smart contract, and
verifying that the audit entry with the corresponding identifier
can be found inside the audit trail. The results of this validation
are presented in three lists – of validated, invalidated, and
missing audit entries.

V. EVALUATION

To evaluate the implementation, three different scenarios
have been created, in which the data inside the audit trail
would be invalidated [14]. After executing these scenarios the
audit trail is validated with the audit trail validation method.

For these scenarios, the blockchain audit trail implemen-
tation is added to two demo applications, which are based
on actual applications that are being used. The first is based
on Incode’s Contact App 3, and is used for internal contact
management within companies. The second is a larger scale
application based on Estatio 4, which is a full-fledged estate
management system.

Due to space limitation, we briefly describe the three
scenarios used for the evaluations, and show the results of the
first validation. More information on the scenarios, as well as
more result images can be found in [14].

A. Scenario 1 - Inexperienced admin

A new system administrator in training gets a request
from their coworker to restore some files from a backup.
Lacking enough knowledge, they perform a full server backup,
accidentally overwriting the application database. At the end
of the day, the audit trail is validated, and the administrator’s
mistakes are discovered. Luckily, the company can reconstruct
most of the correct data with the correct backups, but the
changes that had been made the same day could not be
recovered. This highlights a part of the weakness of the
implementation, but it also displays the way these kinds of
mistakes can be detected quite early on.

To simulate this scenario we take a backup of the appli-
cation database, and restore it after making some changes
in the database, effectively overwriting these changes. After
following these steps, we run the audit trail validation. Figure
3 shows that the last two audit entries are reported as missing,
as these are the ones that were deleted while restoring the
database backup. A demo video of this scenario is available
on YouTube 5.

B. Scenario 2 - Cover your tracks

An employee of Acme Corporation has decided they want
to quit their job and retire. To fill the gap in their finances,
they changed the recipient on one of the company’s larger
invoices to a private bank account, and changed it back to the
original after the invoice had been paid. Because the company
employs an audit trail, they wish to cover their tracks. They

3https://github.com/incodehq/contactapp (accessed 2018-05-29)
4https://github.com/estatio/estatio (accessed 2018-05-30
5https://youtu.be/nfekoK6pUqU

https://isis.apache.org/guides/rgsvc/rgsvc.html
https://isis.apache.org/guides/rgsvc/rgsvc.html
https://github.com/incodehq/contactapp
https://github.com/estatio/estatio
https://youtu.be/nfekoK6pUqU


Fig. 3. The final two audit entries are missing as they have been removed in the restoring of the backup.

still have their old company credentials, so they log into the
database and remove all audit entries that log their changes.

Because Acme has the policy to routinely validate their
audit trail against the Ethereum blockchain they notice the
missing audit entries at the end of the day. Since these audit
entries had already been included in the company’s backups,
the correct data can easily be restored, and the employee’s
malicious actions come to light. Our implementation shows
this by reporting the missing audit entries in the validation
result.

C. Scenario 3 - Shift the blame

An employee of Acme Corporation maliciously changes the
email address of a contact in the application. They then edit the
corresponding audit entry directly in the database. In this audit
entry he changes the logged user to his coworker to shift the
blame. Afterwards, he reports his coworker to their superior.
Because Acme corporation uses an audit trail that is validated
against the Ethereum blockchain, it is quickly visible that the
corresponding audit entry has been tampered with. The audit
entry had not yet been included in the company’s backups, so
there is no hard proof of the employee’s intentions. This is
because our implementation shows the changed audit entries
as invalidated in the validation report, but it does not show
what the actual data inside the audit entry should have been.

VI. DISCUSSION

In this paper we proposed a blockchain-based hash valida-
tion method. This method is used to validate the integrity of

any data by storing a data identifier and a data hash in a smart
contract on the Ethereum blockchain. The data can then be
validated against the data stored inside the smart contract. We
described several potential use cases for this method and we
described one of these use cases in further detail in order to
test the method. For this use case, we created an automatic
audit trail for Apache Isis applications that uses blockchain-
based hash validation to validate its data. This audit trail was
evaluated using several scenarios.

A. Conclusions

The evaluation of our proof of concept implementation
showcased the strengths and weaknesses of blockchain-based
hash validation. This evaluation showed that blockchain-based
hash validation is able to detect tampering or loss of data.
However, this evaluation also shows that it is not able to
prevent this tampering or loss of data from happening, as it
relies on the data being stored externally.

Therefore, in order to optimally use blockchain-based hash
validation, it should be coupled with a way of restoring lost or
corrupted data, such as a regular backup protocol or distributed
data. Without these measures, the method will only function
as validation, which is still valuable on itself.

B. Limits of the proof of concept implementation

In the proof of concept audit trail, multiple changes are
aggregated before sending the corresponding blockchain trans-
action. This means that the application is potentially vulnerable
to crashes or outages during the auditing process. This could



lead to an incomplete audit entry being stored to the database,
while nothing gets sent to the blockchain, invalidating the audit
entry.

The blockchain transactions are sent asynchronously be-
cause it can take some time before a transaction is executed
and accepted on the Ethereum blockchain. We observed that
new transactions fail when five or more transactions are
already being processed at the same time. This is usually
not a problem for smaller applications, but can definitely
impact larger applications. When using this implementation
in a production environment, a method needs to be developed
to handle these failures.

C. Potential improvements to the method

Currently, the method stores an identifier-hash mapping in
a smart contract to validate the integrity of the corresponding
data. It is difficult to infer anything about the data by just
looking at these data inside the smart contract. In the future,
we might want to store additional metadata along with the hash
inside the smart contract. This could be achieved by adding
a MetaData struct to the smart contract, which could contain
additional information. This MetaData struct could then be
added to the mapping instead of just a data hash. An example
MetaData struct could look like this:
struct MetaData {

string user;
uint256 timestamp;
bytes32 hash;

}

D. Recommendations for further research

Because blockchain-based hash validation relies on the data
being stored separately from the blockchain, it is only able to
detect tampering, but it can not prevent tampering. It could be
interesting to research we can fully prevent data tampering by
storing the actual data on the blockchain.

The Ethereum gas limits put a limit of around 11 kB of
data stored on the blockchain per transaction. The price of gas
makes storing data on the blockchain very expensive. These
issues greatly discourage the storage of larger amounts of data
on the blockchain, but they do not make it impossible. While it
is probably not practical for real-world usage, it is interesting
to see if a proof of concept could be developed for storing any
data on the blockchain as a way to guarantee their integrity.

There could also be potential in InterPlanetary File System
(IPFS) for data storage. IPFS is a distributed file system that
offers deduplication and version history for all stored data.
IPFS could provide data storage that is resistant to tampering
or corruption because of its distributed nature and checksum
verification [16].

The IPFS website 6 also showcases the possibility to
integrate IPFS with blockchain technology by storing large
amounts of data with IPFS, and placing links to these IPFS

6https://ipfs.io/ (accessed 2018-05-31)

data on the blockchain linking to certain specific versions of
data in IPFS.

ACKNOWLEDGEMENT

We would like to thank the EU PROCESS project (grant no
777533) for supporting this work. We would also like to thank
Dan Haywood for his input throughout the implementation of
our proof of concept.

REFERENCES

[1] S. Ackerman, “Newest cyber threat will be data manip-
ulation, us intelligence chief says,” The Guardian, 2015.
[Online]. Available: https://www.theguardian.com/technology/2015/sep/
10/cyber-threat-data-manipulation-us-intelligence-chief

[2] K. Zetter, “The biggest security threats we’ll face in 2016,”
Wired, 2016. [Online]. Available: https://www.wired.com/2016/01/
the-biggest-security-threats-well-face-in-2016/

[3] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[Online]. Available: https://bitcoin.org/bitcoin.pdf

[4] V. Buterin, “Ethereum: A next-generation smart contract and
decentralized application platform,” 2013. [Online]. Available: https:
//github.com/ethereum/wiki/wiki/White-Paper

[5] N. Szabo. (1996) Smart contracts: Building blocks for digital
markets. [Online]. Available: http://www.fon.hum.uva.nl/rob/Courses/
InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.
best.vwh.net/smart contracts 2.html

[6] R. Weber, “Audit trail system support in advanced computer-based
accounting systems,” The Accounting Review, vol. 57, no. 2, pp.
311–325, Apr. 1982. [Online]. Available: https://search.proquest.com/
docview/1301314968

[7] B. Schneier and J. Kelsey, “Secure audit logs to support computer
forensics,” ACM Transactions on Information and System Security,
vol. 2, no. 2, pp. 159–176, May 1999. [Online]. Available:
https://www.schneier.com/academic/paperfiles/paper-auditlogs.pdf

[8] A. Tripathi and M. Murthy, “Method and system for providing a
tamper-proof storage of an audit trail in a database,” Patent 6 968 456,
2005. [Online]. Available: http://patft.uspto.gov/netacgi/nph-Parser?
patentnumber=6968456

[9] N. Andersen, “Blockchain technology: A game-
changer in accounting?” Mar. 2016. [Online]. Avail-
able: https://www2.deloitte.com/content/dam/Deloitte/de/Documents/
Innovation/Blockchain A%20game-changer%20in%20accounting.pdf

[10] A. Sutton and R. Samavi, “Blockchain enabled privacy audit
logs,” in The Semantic Web – ISWC 2017. Cham: Springer
International Publishing, 2017, pp. 645–660. [Online]. Available:
https://doi.org/10.1007/978-3-319-68288-4 38

[11] I. Barinov, V. Lysenko, S. Beloussov, M. Shmulevich, and S. Protasov,
“System and method for verifying data integrity using a blockchain
network,” Patent 2 018 025 181, 2018. [Online]. Available: http:
//www.freepatentsonline.com/y2018/0025181.html

[12] I. Zikratov, A. Kuzmin, V. Akimenko, V. Niculichev, and L. Yalansky,
“Ensuring data integrity using blockchain technology,” in 2017 20th
Conference of Open Innovations Association (FRUCT), Apr. 2017,
pp. 534–539. [Online]. Available: https://ieeexplore.ieee.org/document/
8071359/

[13] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger — byzantium version f72032b – 2018-05-04,” 2018. [Online].
Available: https://ethereum.github.io/yellowpaper/paper.pdf

[14] R. Kalis, “Using blockchain to validate audit trail data in private
business applications,” 6 2018. [Online]. Available: https://esc.fnwi.uva.
nl/thesis/centraal/files/f1051832702.pdf

[15] D. Haywood. (2018) Apache isis domain services. [Online]. Available:
https://isis.apache.org/guides/rgsvc/rgsvc.html

[16] J. Benet, “Ipfs - content addressed, versioned, p2p file system (draft
3),” Unknown. [Online]. Available: https://github.com/ipfs/papers/raw/
master/ipfs-cap2pfs/ipfs-p2p-file-system.pdf

https://ipfs.io/
https://www.theguardian.com/technology/2015/sep/10/cyber-threat-data-manipulation-us-intelligence-chief
https://www.theguardian.com/technology/2015/sep/10/cyber-threat-data-manipulation-us-intelligence-chief
https://www.wired.com/2016/01/the-biggest-security-threats-well-face-in-2016/
https://www.wired.com/2016/01/the-biggest-security-threats-well-face-in-2016/
https://bitcoin.org/bitcoin.pdf
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
https://search.proquest.com/docview/1301314968
https://search.proquest.com/docview/1301314968
https://www.schneier.com/academic/paperfiles/paper-auditlogs.pdf
http://patft.uspto.gov/netacgi/nph-Parser?patentnumber=6968456
http://patft.uspto.gov/netacgi/nph-Parser?patentnumber=6968456
https://www2.deloitte.com/content/dam/Deloitte/de/Documents/Innovation/Blockchain_A%20game-changer%20in%20accounting.pdf
https://www2.deloitte.com/content/dam/Deloitte/de/Documents/Innovation/Blockchain_A%20game-changer%20in%20accounting.pdf
https://doi.org/10.1007/978-3-319-68288-4_38
http://www.freepatentsonline.com/y2018/0025181.html
http://www.freepatentsonline.com/y2018/0025181.html
https://ieeexplore.ieee.org/document/8071359/
https://ieeexplore.ieee.org/document/8071359/
https://ethereum.github.io/yellowpaper/paper.pdf
https://esc.fnwi.uva.nl/thesis/centraal/files/f1051832702.pdf
https://esc.fnwi.uva.nl/thesis/centraal/files/f1051832702.pdf
https://isis.apache.org/guides/rgsvc/rgsvc.html
https://github.com/ipfs/papers/raw/master/ipfs-cap2pfs/ipfs-p2p-file-system.pdf
https://github.com/ipfs/papers/raw/master/ipfs-cap2pfs/ipfs-p2p-file-system.pdf

