

Towards Exascale-ready **Data Service Solutions**

Maximilian Höb

October 22, 2019

his project has received funding from the European Union's Horizon 2020 research and innovation rogramme under grant agreement No 777533

Ŵ

PROVIDING COMPUTING SOLUTIONS FOR EXASCALE CHALLENGES

Consortium

PRÖCESS Storage and Computing Centres

Workshop on Solutions supporting Scientific Analysis in the EOSC ecosystem - Helsinki, Oct 22, 2019

Partner's location

Storage Resources

Compute Resources

PRÖCESS Vision of PROCESS

PROCESS will deliver a comprehensive set of mature service prototypes and tools specially developed to enable extreme scale data processing in both scientific research and advanced industry settings.

PRÖCESS PROCESS Concept

A user-friendly modular exascale service platform to combine data and computational services on top of European research infrastructures

SuperMUC-NG Leibniz Supercomputing Centre Munich

PRÖCESS Enable

Mature, modular, generalizable Open Source solutions for user friendly exascale data.

PRÖCESS PROCESS Architecture 1/2

PRÖCESS PROCESS Architecture 2/2

PRÖCESS Deploy application infrastructure

PRÖCESS Data Service Middleware

- **Middleware** becomes a programmable distributed hyper-converged infrastructure.
- **Applications** define their own micro-infrastructure.
- Containers allow applications to be **portable** and **scalable** between different physical infrastructures.
- New generation of middleware exploits virtualized compute, storage and network.

PRÖCESS Microinfrastructure Architecture

Use Case 1

Machine Learning in Medical Imaging

Hesso

Haute école spécialisée de Suisse occidentale, Switzerland

Use Case 2

Analysis of Radioastronomy Observations LOFAR / SKA

Science center

Stichting Netherlands eScience Center, The Netherlands

PRÖCESS Analysis of Radioastronomy Observations

LOFAR: Low Frequency Array radio telescope – is a "distributed software telescope" consisting of ~88.000 antennas in ~51 stations scattered over Europe. It produces up to **35 TB/h of intermediate data** (visibilities) which is stored for further analysis.

SKA: Square Kilometer Array (Operational in 2022+)

130K ~ 1M (LOFAR-style) antenna in Australia + 200 ~ 2000 dishes in South Africa. Wider frequency range and higher sensitivity and survey speed than existing telescopes.

Zettabytes/year raw data: 130~300PB/year of correlated data

Huge data and processing problem

PRÖCESS PROCESS and EOSC

- Modules focusing on Data Service
 - Data Preprocessing
 - Data Transfer and Storage
 - Data Stage-In and –Out
- Workflow-Deployment
 - on heterogenous HPC and Cloud resources
- → Usable as Service Modules within EOSC
 → Requires a modular execution environment and workflow management

PRÖCESS Towards Exascale-ready Solutions

PRÖCESS Enabling Exascale

Maximilian Höb hoeb@mnm-team.org

his project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 777533

Ň

Hes.so 😔 Lufthansa Systems

