
Rocket: Efficient and Scalable All-Pairs Computations on Heterogeneous Platforms

Stijn Heldens∗†, Pieter Hijma†‡, Ben van Werkhoven∗, Jason Maassen∗, Henri Bal‡, Rob van Nieuwpoort∗†
∗Netherlands eScience Center, †University of Amsterdam, ‡Vrije Universiteit Amsterdam

{s.heldens, b.vanwerkhoven, j.maassen, r.vannieuwpoort}@esciencecenter.nl, {pieter, bal}@cs.vu.nl

Abstract—All-pairs compute problems apply a user-defined
function to each combination of two items of a given data set.
Although these problems present an abundance of parallelism,
data reuse must be exploited to achieve good performance.
Several researchers considered this problem, either resorting
to partial replication with static work distribution or dynamic
scheduling with full replication. In contrast, we present a
solution that relies on hierarchical multi-level software-based
caches to maximize data reuse at each level in the distributed
memory hierarchy, combined with a divide-and-conquer ap-
proach to exploit data locality, hierarchical work-stealing to dy-
namically balance the workload, and asynchronous processing
to maximize resource utilization. We evaluate our solution us-
ing three real-world applications (from digital forensics, local-
ization microscopy, and bioinformatics) on different platforms
(from a desktop machine to a supercomputer). Results shows
excellent efficiency and scalability when scaling to 96 GPUs,
even obtaining super-linear speedups due to a distributed
cache.

Index Terms—all-pairs computation; heterogeneous computing;
GPU; work-stealing; data reuse; distributed cache

1. Introduction

All-pairs compute problems, which evaluate a function for
each pair of items of a data set, are prevalent in many scien-
tific domains including radio astronomy [1], microscopy [2],
bioinformatics [3], digital forensics [4], computer vision [5],
data mining [6], information retrieval [7], and biometrics [8].
These problems typically involve calculating some measure,
such as the distance or similarity, between pairs of data items,
such as images or objects. In general, all-pairs compute
problems are computationally demanding because of the
quadratic nature of the problem. Additionally, maximizing
data reuse is necessary to achieve optimal performance,
which in turn requires careful consideration of the workload
and data distribution.

The coarse-grained parallelism in all-pairs compute
problems scales quadratically with the size of the data
set. However, many all-pairs applications [1], [2], [4] also
exhibit a large amount of fine-grained parallelism, within the
pair-wise function, that can be exploited using GPUs. This
makes distributed clusters equipped with GPUs a suitable
platform for these applications: pairs can be processed in
parallel across the different nodes while the computations for

each individual pair are parallelized using the GPU. Since
GPUs evolve rapidly, these clusters often upgrade in stages
throughout their lifetime, leading to highly heterogeneous
platforms containing different GPUs.

For all-pairs compute problems it is important that we
maximize data reuse on all levels in the system since loading
an item is expensive as it requires accessing remote files,
unpacking, pre-processing, filtering, and transferring data.
After an item has been loaded, the resulting data should
ideally be used for as many pair-wise comparisons as
possible.

We see a clear gap in related work when considering
workload distribution and data reuse in existing distributed
all-pairs compute frameworks. Some work applies static
scheduling assuming the opportunities for data reuse are
known in advance [9], [10], [11], [12], but this approach
is not suitable if the pair computations are irregular or if
the platform is highly heterogeneous. Others use dynamic
workload distribution combined with full replication to
overcome load-imbalance [13], [14], [15], but replicating
all data across all nodes is expensive and only feasible for
small data sets that fit in local storage.

In this paper, we present a framework called Rocket
for efficiently executing all-pairs compute problems on
heterogeneous platforms. Our solution avoids full replication
while exploiting dynamic load balancing and works for
data sets that do not fit into memory. We achieve excellent
performance by:
• offering a dedicated system for all-pairs computations

that provides a clear separation of concerns between the
user’s application code and the Rocket runtime system;

• using a software-based multi-level (distributed) cache
to maximize data reuse at all levels;

• using a divide-and-conquer approach to efficiently ex-
ploit data locality, combined with hierarchical random
work-stealing to dynamically distribute the workload;
and

• exploiting asynchronous processing to overlap all data
movement with useful computation.

We implemented three scientific applications (from digital
forensics, localization microscopy, and bioinformatics) using
our framework and evaluate their performance on different
types of platforms (from a desktop machine to a super-
computer having ∼100 GPUs). We propose a performance
model to analyze the results and show that Rocket achieves
88.5−99.2% efficiency compared to the modeled lower-
bound on the run time. Efficiency increases further when

ar
X

iv
:2

00
9.

04
75

5v
1 

 [
cs

.D
C

] 
 1

0 
Se

p 
20

20



0.98 0.72 0.32 0.21 0.62

0.97 0.34 0.56 0.81

0.99 0.78 0.71

0.95 0.89

0.97

Input
files

Pair-wise comparisons Output 
matrix

Load inputs

Figure 1. Example of an all-pairs compute problem: calculating the pairwise
similarity between images. Photos from the Dresden image database [16].

scaling the number of nodes due to a communication scheme
that exploits the larger distributed memory capacity, leading
to super-linear speedups.

This paper is structured as follows: Section 2 presents
related work, Section 3 and 4 explain the design and
implementation of our solution, Section 5 describes the three
applications, Section 6 evaluates the performance of our
framework, and Sections 7 and 8 present future work and
conclusions.

2. Motivation and Related Work

Several researchers have considered the problem of all-
pairs compute problems on distributed systems. Some have
focused on static work distribution where each node is
assigned some subset of the pairs to be computed. This
means that the opportunities for data reuse are known in
advance. For instance, processing pairs (a, b) and (a, c)
requires loading items a, b, and c in memory, where item a
can be used twice.

Static distribution implies that the n items can be partially
replicated since each node can predetermine the subset of
items it requires. The question now becomes how to equally
divide the

(
n
2

)
possible pairs over p nodes such that the

number of times each item is to be replicated is minimal.
For example, Zhang et al. [11] consider all-pairs applications
on Hadoop, and they use a heuristic to divide the pairs such
that the total computation and data per node is balanced.
In later work, Zhang et al. [15] reformulate the problem
and find a data/work distribution using simulated annealing.
Plimpton [9] considered distributed N-body simulations, and
they propose a distribution scheme in which each node stores
2n√
p items. Kleinheksel and Somani [10] use cyclic quorums

to lower this to n√
p , which appears to be the best-known

lower bound.
Yeleswarapu et al. [12] propose a slightly different static

approach having a memory footprint of just 3n
p . Each node

initially loads n
p inputs in memory and the pair computations

are performed in p rounds. Every round involves exchanging
items between nodes and processing the pairs that result
from combining the local and the received items.

Unfortunately, the above methods all utilize a static
workload distribution, which suffers from load-imbalance if
the computation is irregular or the platform is heterogeneous.
There is also a limit to the size of the problems that can
be solved since each node must have sufficient memory to
store the assigned items. Additionally, none of these authors
consider systems containing both CPUs and GPUs.

Other researchers have looked into dynamic scheduling
of the workload. For instance, Zhang et al. [15] extended
their static data distribution scheme to support a limited
form of dynamic scheduling. Their solution is based on the
observation that, since data is partially replicated, one pair
can sometimes be processed by more than one node in the
cluster. However, while this solution allows some flexibility
in scheduling of the work, load imbalance is still a possibility.

Moretti et al. [13] investigate full dynamic scheduling,
and they propose All-pairs: a framework for all-pairs com-
putation on grids consisting of loosely coupled computers.
Their framework replicates all inputs across all nodes and
uses a centralized master to dynamically dispatch batches of
jobs. Li et al. [14] present a similar framework intended for
performing pairwise Needleman-Wunsch computations on
distributed heterogeneous platforms. Again, data is replicated
across all devices, but they use a two-level scheduling
solution: a centralized dispatcher distributes batches of jobs
to nodes, and a node-level dispatcher distributes these jobs
across the CPUs/GPUs. However, both solutions require full
replication, which is expensive and infeasible if the input
data exceeds memory capacity.

Overall, we observe that all-pairs computation problems
show friction between two aspects: workload distribution and
data distribution. Dynamically scheduling the work avoids
the problem of workload imbalance, but requires all data
to be available at all nodes. Statically scheduling the work
avoids full replication, but could lead to workload imbalance.

In the next sections, we discuss our approach that allows
dynamic work distribution while avoiding full replication.
The main differences with related work are that our solution
(1) uses dynamic work scheduling by means of work-stealing
without the need for a centralized master, (2) supports partial
replication by means of caches on multiple levels of the
memory hierarchy, and (3) fully supports heterogeneous
GPU platforms and irregular workloads.

3. Design

In this section, we explain the design of our framework.
The essence of an all-pairs compute problem is straight-
forward: calculate the result of f(`(i), `(j)) for each pair
(i, j) where 1≤i<j≤n. Given are a deterministic function `
that loads the required data for the i-th item into memory
and a binary function f applied to the two items. For this
work, we assume the inputs are coarse-grained static files
(e.g., images, sensor data, serialized objects) and `(i) reads
the i-th file and, if needed, parses its content and performs
some pre-processing (e.g., filters, transformations, or feature
extraction). The results of x = `(i) and y = `(j) are passed
to f(x, y) which computes an application-specific answer,



parse
function

(user-defined)

pre-processing
function

(user-defined)

comparison
function

(user-defined)

post-processing
function

(user-defined)

Transfer file Data transfer

Data transfer

GPU

GPU

CPU

CPU

parse
function

(user-defined)

pre-processing
function

(user-defined)
Transfer file Data transfer

GPUCPU

X

Y

Remote IO

Remote IO

CPU→GPU

CPU→GPU

GPU→CPU

Load ℓ(x)

Comparison f(x, y)

Load ℓ(y)

Figure 2. Rocket’s pipeline for performing one pair-wise comparison.

interface Application<Key, Result> {
Path getFilePathForKey(Key key);
void parseFile(Key key,

HostBuffer fileContents, HostBuffer result);
void preprocessGPU(Key key,

DeviceBuffer input, DeviceBuffer result);
void compareGPU(

Key leftKey, DeviceBuffer leftItem,
Key rightKey, DeviceBuffer rightItem,
DeviceBuffer result);

Result postprocess(HostBuffer result);
}

Figure 3. The interface that must be implemented by the user for the
application.

such as a correlation score or distance metric. Although `
and f are presented here as simple functions, they could be
processing pipelines that consist of multiple stages executed
on CPUs and GPUs.

For Rocket, we assume the user’s processing pipelines
for ` and f follow the pattern shown in Fig. 2. This design
is simple and elegant, making it easy to understand and
offering a clear separation of concerns between what the
user needs to implement and what is handled by Rocket.
Nevertheless, the model is sufficiently flexible to implement
several real-world applications, as we shall demonstrate in
Section 5.

The `(i) pipeline is performed in four stages: (1) load
the required file from (possibly remote) storage into local
memory; (2) parse the file’s raw content into the appropriate
format on the CPU; (3) transfer the data from CPU memory
to GPU memory; and, (4) pre-process the data on the GPU.

Furthermore, f(x, y) is performed in three stages: (1)
perform the comparison on the GPU; (2) transfer the result
from GPU memory to CPU memory; and, (3) post-process
the result on the CPU.

As an example, consider an algorithm that calculates the
pair-wise similarity between photos such as shown in Fig. 1.
Such an application consists of the following tasks: decoding
of the image format on the CPU (parsing), applying filters
to the image on the GPU (pre-processing), calculating a
correlation score on the GPU (comparison), and applying a
threshold to the score on the CPU (post-processing).

With this design the user defines four application-specific
functions: parsing (CPU), pre-processing (GPU), comparison

(GPU), and post-processing (CPU) adhering to the interface
defined in Fig. 3. Launching an all-pairs application on the
cluster can then be achieved by simply calling Rocket’s
main class with an input array of Key elements. Rocket
will automatically take care of network communication, data
transfers, memory management, scheduling, exploiting data
reuse, load balancing, and overlapping computation with I/O.

4. Implementation

This section dives into the implementation of our frame-
work. Three aspects lay the foundation for Rocket. First,
a naive approach to processing would be to ignore any
form of data reuse and execute both `(i) and `(j) when
processing one pair (i, j). However, this is expensive since
the cost of loading the items, often considerably outweighs
the cost of actually comparing the two items. Fortunately, the
functions `(i) and `(j) are deterministic meaning that, after
they have been executed once, their results can reused for
future jobs that require item i or j. Exploiting this data reuse
will significantly improve performance. We use a software-
based cache to store these results at different levels of the
distributed memory hierarchy. This design is described in
Section 4.1.

Second, as discussed in Section 1, dynamically schedul-
ing the workload is necessary to avoid the problem of load
imbalance, either due to irregular completion time of ` or f ,
or because of heterogeneity of the platform. A straightforward
solution would be to have a single master dynamically
distributing the pairs (i, j) to worker nodes. However, this
would not take data locality into account which is crucial to
maximize cache effectiveness. Moreover, scalability would
be limited due to having a central point. Instead, we have
chosen to perform load-balancing by a divide-and-conquer
approach with hierarchical work-stealing, since it shows
excellent scalability and data locality in practice. This allows
for dynamic load balancing while also exploiting data reuse.
This solution is described further in Section 4.2.

Third, to maximize resource utilization, Rocket keeps a
large number of comparison jobs in progress at all times and
relies on asynchronous processing to make progress. This
approach maximizes throughput (i.e., number of comparisons
performed per second) and thus minimizes the runtime of
the all-pairs application. Section 4.3 describes this design.



Request item x 
on GPU y

Check device-
level cache

Check host-
level cache

Check cluster-
level cache

Transfer data remote
slot to local host slot

Copy data host slot
to device slot

execute ℓ(i) on 
CPU and GPU y

Copy result to 
device cache slot

Copy device slot to
host slot

Miss Miss Miss

Hit Hit

Lock device cache
slot for reading

Hit

Figure 4. Flow diagram describing the cache policy.

We have implemented Rocket using Ibis [17] as communi-
cation library, Constellation [18] for distributed work-stealing,
CUDA for GPU programming, and the Xenon library [19]
to access remote storage resources.

4.1. Multi-Level Caching

As explained before, exploiting data reuse is essential
since re-executing the entire pipelines of `(i) and `(j) for
each pair (i, j) is expensive. For instance, our evaluation
presents an application from digital forensics (Section 6)
where the average GPU compute time is 1 ms for one
comparison, but parsing one input file takes 130 ms. By
storing the results of each execution of ` in a cache, the
number of times items need to be loaded is reduced and the
system can be fully dedicated to performing comparisons.

Rocket uses a three-level software-based cache to max-
imize the available memory capacity by storing results at
different levels of the memory hierarchy. At the first level is a
per-device cache that stores the results in GPU memory since
both the last stage of ` and first stage of f are performed
on the GPU. At the second level is a per-node host memory
cache that extends the first-level device cache with the usually
much larger memory capacity (∼10-100 GB) of the host
compared to that of an average GPU (∼5-10 GB). At the
third level is a cluster-wide communication scheme that
allows nodes to query remote caches, essentially establishing
one large distributed memory cache. Note that these caches
are managed in software and should not be mistaken with
hardware caches such as disk caches, L1/L2/L3 cache on
CPUs, or shared memory on GPUs.

Below we describe each level in detail. Figure 4 visualizes
how these different levels interact.

4.1.1. First-level (Device). At the first level is a per-device
cache that manages a fixed number of fixed-sized slots. This
cache resides in GPU device memory. Each slot contains
a memory buffer and a status flag which can be WRITE (a
writer is active) or READ (n readers are active).

When a job (i, j) is submitted, this cache is checked
for items i and j. On cache miss for item i (or j), the
least-recently-used slot is evicted (discarding its content) and
assigned to item i after which the slot is set to WRITE. Now
the result of `(i) needs to be copied into the slot from the
next level cache after which the flag is set to READ.

On cache hit, the status flag is checked. For READ, the
comparison f can be performed immediately (assuming j is

also available) while the number of readers is temporarily
incremented. For WRITE, another job is busy writing to the
slot so the current job is put on hold until the data becomes
available. Note that the cache thus introduces synchronization
between jobs: while one job is writing item i, other jobs that
depend on item i are stalled until the slot becomes available.
In practice, this does not lead to performance issues, because
Rocket ensures that a sufficient number of concurrent jobs
are in progress at all times (see Section 4.3).

4.1.2. Second-level (Host). At the second level is a per-node
cache that stores the results in page-locked main memory.
The implementation is similar to that of the device cache,
only buffers reside in main memory instead of device memory.
This cache is thus shared by all GPUs in one node.

On a first-level device cache miss, the second-level host
cache is checked for the item. On a hit, the contents of the
host slot is transferred to the device slot. As we show later
(see Section 4.3), the overhead of copying data between host
and device caches is negligible since Rocket overlaps data
transfers and computation. On a miss, an item is evicted and
the empty slot is assigned to item i for which the data needs
to be obtained from the next level cache. Note that data is
thus always written to both the device and host cache. We
chose this solution since it is important for the third-level
cache that allows nodes to query remote host caches.

4.1.3. Third-level (Distributed). At the third level we use a
communication scheme that, after a local cache miss, allows
nodes to query the host cache of remote peers. While the
previous two levels reduce the number of loads per node,
the third level reduces the loads for the cluster as a whole.

An important consideration is how to locate a node that
has the required data in its local cache, which is non-trivial
since we use dynamic scheduling. A centralized registry that
keeps track of the data on nodes would be a poor solution
since it introduces a central bottleneck and requires excessive
coordination and bookkeeping. Alternatives we considered
were broadcasting the request to all peers (not a scalable
solution) or to one (or several) randomly chosen peers (but
the probability that a random node has one specific item is
slim).

Instead, we use a simple communication scheme that
allows the system to form a distributed hash table. Our
scheme is based on the observation that a node that requested
an item in the past, will eventually find the data and keep
it for some time into the future. Each node is assigned the
responsibility to serve as point-of-contact for some subset of
the items, where item i is assigned to node i mod p and p
is the number of nodes. These nodes do not necessarily
store these items themselves. Instead, each node keeps
track of a local bookkeeping array candidates where
candidates[i] stores the list of the h nodes that most
recently requested item i in the past and are considered the
most likely candidates for future requests.

For node A to request an item, the following steps are
taken:
• Node A sends a request for item i to node B = i mod p.



...

...

Figure 5. Hierarchical splitting an all-pairs workload of 8×8 items.

• Node B retrieves from candidates[i] the nodes
C1, ..., Ch and prepends A to candidates[i]. The
request and the list C2, ..., Ch are forwarded to node
C1.

• Each node Cx checks its local host cache for item i:
– On a hit, it sends the data directly to node A.
– Otherwise, if x < h, it forwards the request to Cx+1.
– Otherwise, it sends a failure directly to node A.

If this best-effort mechanism does not provide the item,
node A is forced to execute `(i) locally. In essence, node B
acts as a mediator helping node A (searching the data) to
find node C (offering the data). The parameter h determines
the maximal number of hops to check, and we evaluate this
parameter in Section 6. This scheme is scalable, contains no
central component, requires a small amount of bookkeeping
(only the candidates array) and communication (just
h+ 2 messages per request). Note that in some scenarios,
node B or node Cx could be node A itself, but this does not
affect the correctness of the scheme.

4.2. Locality-Aware Work Scheduling

To dynamically schedule the pairs (i, j), Rocket uses
a divide-and-conquer approach together with work-stealing
inspired by frameworks such as Cilk [20] and Satin [21].
Divide-and-conquer is a common technique in which a larger
problem is recursively divided into smaller sub-problems
until they become small enough to compute directly. It is
known that this approach naturally offers excellent data
locality while allowing for dynamic workload balancing [22].

Recall that the total workload consists of processing each
pair (i, j) where 1≤i<j ≤ n. This workload can be seen as
an upper triangular matrix. This larger matrix can be split
into four sub-matrices, one for each quadrant, and each sub-
matrix can recursively be split into smaller quadrants until
eventually reaching individual entries (i, j). Figure 5 shows
this process for a small 8× 8 matrix. Note that quadrants
may sometimes contain no work; these can be ignored.

Rocket performs distributed work-stealing using Constel-
lation [18]: a software platform for distributed, heteroge-
neous, hierarchical environments. During initialization, each
node launches one Constellation worker thread per GPU.
The master node then spawns a single root task representing
the entire matrix to be computed. This task spawns four
new tasks (one for each quadrant of the matrix) and each

sub-task recursively spawns four new tasks, one for each
sub-quadrant. The tasks at the lowest level represent a single
(i, j) entry and these leaf tasks submit the actual job (i, j) to
the Rocket runtime system. Worker threads always prioritize
local tasks at the lowest level in the tree since these provide
the best data locality.

Load balancing is performed by random work-stealing:
Workers that become idle will repeatedly attempt to steal
a task from a randomly selected peer. This technique has
been shown to be a suitable solution to balance workload in
distributed environments [21]. The task stolen is always at the
‘highest’ level (i.e., the largest task available) since it results
in the most work per steal request. Stealing is performed
hierarchically: workers first attempt to steal from a worker on
the same node before selecting a remote node. The advantage
of work-stealing over master-worker is that it exhibits good
data locality while also balancing the workload: if there are
no idle nodes, work is not stolen and thus executed locally
on the node that generated it. It is well-known that divide-
and-conquer leads to excellent exploitation of locality, both
for hierarchical memory architectures [20] and in distributed
systems [21].

Rocket’s runtime system operates asynchronously and
submitting a job does not block the caller. Without any form
of back-pressure, one node could rapidly claim all available
work meaning others become idle. To prevent this, Rocket
has a concurrent job limit parameter that limits the number
of concurrent jobs that can be simultaneously submitted to
Rocket. Once this limit is reached, worker threads will stop
submitting new jobs until an older job completes.

4.3. Asynchronous Processing

A naive implementation to process submitted pairs is
to have one thread (or a small pool of threads) processing
the submitted pairs synchronously one-by-one. However,
this would lead to inefficient resource usage since it can
result in moments of resource contention (e.g., all threads
could perform I/O simultaneously) while under-utilizing other
resources (e.g., the GPU is idle in the meantime).

To maximize resource utilization, Rocket keeps many
jobs in progress (concurrent job limit as described in Sec-
tion 4.2) and relies heavily on asynchronous processing to
make progress on these jobs. Different threads are launched
during initialization with each thread responsible for one
type of resource, meaning that tasks executed by different
threads do not interfere with each other. For our current
implementation, Rocket launches the following types of
threads:

CPU A thread pool performs CPU computations.
GPU One thread per GPU to launch device kernels.

CPU→GPU One thread per GPU for performing data
transfers from host to device memory.

GPU→CPU One thread per GPU for performing data
transfers from device to host memory.

I/O One thread for I/O on the (remote) file system.
With this scheme, CPU processing, GPU processing, data

transfers, and I/O operations are all overlapped. For example,



Figure 6. Small section of a trace from the forensics application (Section 5) visualized on a timeline. Rows represents threads and boxes represent executed
tasks.

multiple parsing tasks can be executed simultaneously on
CPUs together with a comparison task running on the
GPU, while also transferring data to and from GPUs and
performing I/O operations in parallel. An optional profiling
flag can be enabled to trace the tasks executed by different
threads, which can be useful for debugging purposes and
performance analysis. Figure 6 shows an example of such a
trace visualized on a timeline.

Asynchronous processing is essential for Rocket to
achieve good performance since it means that resources are
fully utilized. For instance, for each job (i, j), a first-level
cache hit on items i and j is cheap (since the comparison
pipeline can be executed immediately), but a cache miss is
expensive since it involves many steps (e.g., data transfers,
I/O, parsing, pre-processing, etc.). It is thus important to
keep a larger number of jobs active so that the system can
‘anticipate’ first-level cache misses and acquire the necessary
data before running out of work. Figure 6 demonstrates this
well: the GPU remains fully utilized since sufficient work is
available, even though slow I/O and CPU tasks are performed
in the background.

5. Applications

To demonstrate the generality of our framework, we use
three scientific applications that are used by researchers in
digital forensics, localization microscopy and evolutionary
biology. These are realistic applications, not simplified
benchmarks, and include all required pre-processing, I/O,
and application logic. The computational kernels are taken
as black boxes and are not analyzed in this work. The
applications have different compute and data characteristics,
thus demonstrating the generality of our approach.

5.1. Common-Source Identification (Forensics)

Common-source identification is a digital forensics appli-
cation that takes a set of images and identifies which images
were made by the same camera based on sensor noise patterns.
These noise patterns, called Photo Response Non-Uniformity
(PRNU) patterns [23], originate from small deficiencies in
the imaging sensor, resulting in small differences in the
responsivity. In the resulting images, this leads to pixels being
brighter or darker while having received equal saturation. To
find the images that have been acquired by the same sensor,
the noise patterns of all images have to be extracted and
compared with each other.

Our Rocket-based implementation is based on the ap-
plication by Van Werkhoven et al. [4] developed for the
Netherlands Forensics Institute. We reuse their GPU kernels
for extracting the PRNU patterns from images and for
computing the similarity between the PRNU patterns of
different images. The metric that is used to measure the
similarity of two PRNU patterns is the Normalized Cross
Correlation. The decoding of the JPEG format is done on
the CPU using libjpeg. The application compares images
that have equal dimensions and as such, computations are
highly regular.

Our data set consists of images having dimensions
3648× 2736 from the Dresden image database [16], which
is developed specifically for the goal of researching PRNU-
based algorithms.

5.2. Phylogeny Tree Construction (Bioinformatics)

Phylogenetic tree reconstruction is the problem of recon-
structing how species descend from common ancestors given
their genetic material. The popular alignment-free method by
Qi et al. [3] is a fast algorithm to achieve this by hierarchical
clustering of the distance matrix between all species. The
distance between two species is calculated based on the
distance of their composition vectors (CVs). The CV of a
species is derived from the frequency of substrings, of a
chosen length k, in their protein sequences. These CVs are
represented as sparse vectors and have between 100.000 and
1.800.000 entries. Extracting these CVs is expensive since
it requires scanning the entire genome, but comparing two
CVs is cheap, essentially being the dot product between two
sparse vectors. Computation is irregular since the vectors
are sparse.

We have implemented this algorithm in CUDA based
on the description and formulas by Qi et al. [3]. The input
data set consists of 2500 randomly chosen reference bacteria
proteomes from Uniprot Proteomes database [24] and files
are stored in compressed FASTA format. Pre-processing
consist of decompressing the file (on CPU) and constructing
the CV (on GPU), while comparing two CVs is done entirely
on the GPU.

5.3. Localization Microscopy Particle Fusion (Mi-
croscopy)

Localization microscopy is an optical super-resolution
microscopy method that operates on the localization of indi-
vidual fluorophores, rather than pixelated images, obtained



by a fluorescence microscope. To achieve a resolution well
beyond the diffraction limit, multiple images of the same
structure are fused to improve the signal-to-noise ratio and
the resolution. The method by Heydarian et al. [2] uses all-
to-all registration of particles to achieve robustness against
individual misregistrations and under labeling.

Our Rocket-based implementation reuses the GPU ker-
nels from the application by Heydarian et al. [2]. These
kernels implement two different methods to score the simi-
larity of two particles, which in turn consist of thousands
of localizations. The first method is a quadratic L2-distance
metric between two Gaussian Mixture Models [25] and
the second method is known as the Bhattacharya distance
function [2]. An optimizer calls these two methods many
times and therefore the registration process is very compute-
intensive, even on a small number of localizations, and
heavily data-dependent, making the execution time highly
irregular.

Our benchmark data set was generated using the simulator
by Heydarian et al. and contains 256 particles stored in JSON
format. Each particle consists of between 1000 and 2000
localizations. Since the application works directly on the
localizations, there is no pre-processing required other than
reading and parsing the particle files.

6. Experimental Evaluation

In this section, we evaluate our framework’s perfor-
mance. After discussing a basic performance model and
our experimental setup, we analyze results for one node, a
homogeneous cluster, a heterogeneous cluster, and Cartesius
(the Dutch National supercomputer).

6.1. Performance Model

To establish a baseline for the performance of Rocket, we
present a performance model which determines a lower bound
on the run time using a hypothetical computing system.

Given n items, the comparison pipeline (Fig. 2) must
be executed

(
n
2

)
= n2−n

2 times (once for each pair). The
load pipeline must be executed at least n times (once for
each item), but it may be executed more than n times (i.e.,
items were evicted from cache). We assume Rn loads are
performed in total, where R indicates the number of loads
relative to the data set size. For instance, R = 4.3 indicates
that each item was, on average, loaded 4.3 times.

R serves as a basic metric for data reuse since a lower
value indicates fewer loads and thus better reuse of previously
loaded items. With perfect data reuse, each item is loaded
once (thus R = 1). In practice R > 1 due to two reasons:
(1) insufficient local cache capacity means that items are
evicted that are later loaded again and (2) different nodes in
a distributed environment load the same item independently
of each other.

For simplicity, we assume our system contains one
CPU and one GPU. The total GPU processing time (TGPU)
is determined by executing pre-processing Rn times and

TABLE 1. CHARACTERISTICS OF APPLICATIONS FOR NVIDIA TITANX
MAXWELL. TIME IS REPORTED AS AVERAGE ± STANDARD DEVIATION.

Application Forensics Bioinformatics Microscopy
No. of input files (n) 4980 2500 256
Size of raw data on disk 19.4 GB 1.8 GB 150 MB
Size of preprocessed data in memory 189.7 GB 110.0 GB 0.7 MB
No. of pairs 12,397,710 3,123,750 130,816
Total data pair-wise processed 944.7 TB 275.0 TB 179.2 MB
Cache Slot Size 38.1 MB 145.8 MB 6.0 KB
No. Device Cache Slots 291 81 256
No. Host Cache Slots 1050 280 256
Time Parse (CPU) 130.8±14.11 ms 36.9±14.79 ms 27.4±1.56 ms
Time Pre-process (GPU) 20.5±0.02 ms 27.0±4.90 ms N/A
Time Comparison (GPU) 1.1±0.01 ms 2.1±0.79 ms 564.3±348 ms
Time Post-process (CPU) 0 ms 0 ms 0 ms

comparison
(
n
2

)
times (where tx is the average execution

time of stage x):

TGPU = Rn tpre-process +

(
n

2

)
tcomparison (1)

The total CPU processing time (TCPU) is determined by
executing parsing Rn times and post-processing

(
n
2

)
times.

TCPU = Rn tparse +

(
n

2

)
tpost-process (2)

The time spent on I/O can be estimated based on the file
sizes and the average I/O bandwidth. However, the actual
bandwidth depends heavily on the load on the storage system.

TIO ≈ Rn
average file size in MB

IO bandwidth in MB/sec
(3)

Overhead of CPU-GPU data transfers is negligible since
it is easily overlapped. Perfectly overlapping CPU time, GPU
time, and I/O means the total run time will be the maximum
of TCPU, TGPU, and TIO. This motivates why it is important
to maximize data reuse: R appears in all three equations and
thus minimizing R means maximizing performance.

To establish a baseline, we assume our system has infinite
memory and thus perfect data reuse (i.e., R = 1), I/O has
infinite bandwidth (i.e., TIO ≈ 0), and most processing is
performed on the GPU (TGPU > TCPU). In this scenario, the
lower bound on the runtime Tmin equals TGPU for R = 1.

Tmin = n tpre-process +

(
n

2

)
tcomparison (4)

Our system would show optimal performance on p nodes
if the measured run time is Tmin/p. We therefore define
system efficiency as the ratio between this modeled lower
bound on the runtime and the actual measured run time T
on p nodes.

system efficiency =
Tmin/p

T
. (5)



0 2 4

Run time (ms)

F
re

q
u
e
n
c
y

Forensics

0 2 4

Run time (ms)

F
re

q
u
e
n
c
y

Bioinformatics

0 1000 2000

Run time (ms)

F
re

q
u
e
n
c
y

Microscopy

Figure 7. Histogram of the run times for the comparison kernel (i.e.,
tcomparison) from the three applications. Note the different scales on the
horizontal axis.

6.2. Experimental Setup

Experiments were performed on DAS-5 [26], the dis-
tributed platform for experimental computer science research
in the Netherlands. We used the VU site; each node has two
Intel Xeon E5-2630 CPUs (16 cores total), offers 64 GB
of memory (40 GB allocated to host cache), runs CentOS
Linux 7, and nodes are connected by 56 Gb/s InfiniBand
FDR. The site offers a variety of GPUs across the different
nodes. We use MinIO over InfiniBand to serve as a central
file storage server.

The last section discusses experiments performed on the
Dutch national supercomputer (Cartesius1). Each node has
two E5-2450 v2 CPUs (16 cores total), two NVIDIA Tesla
K40m GPUs, offers 96 GB of main memory (80 GB allocated
to host cache), and two Mellanox ConnectX-3 InfiniBand
adapters (each providing 56 Gb/s inter-node bandwidth).

6.3. Single Node

Table 1 shows information on the data set size for the
three applications including the size on disk (i.e., the total
of the compressed input files) and the size in memory (i.e.,
the total after parsing and pre-processing each file). For the
forensics application and the bioinformatics application, the
data set increases considerably in size after pre-processing
and does not fit into memory of a single node. For the
microscopy application, the data set size is small and actually
decreases during pre-processing due to the conversion from
a text-based to a binary format. The table also shows the
total amount of data that needs to be combined to perform
all pair comparisons (i.e., each of the n items is retrieved n
times), highlighting the quadratic nature of all-pairs compute
problems. For instance, for the forensics application, this
total reaches almost 1 PB.

To establish a baseline, we ran the three applications
on one node equipped with one NVIDIA TitanX Maxwell.
Table 1 shows the timing results and cache configuration for
these runs. The table clearly shows that the three applica-
tions have different compute- and data-characteristics: The
microscopy application is compute-intensive (comparisons
are slow and a small amount of data is processed) while
the other two applications are data-intensive (comparisons
are fast and a large amount of data is processed). The
forensics application is slightly more data-intensive than
the bioinformatics application since more data is processed

1. https://www.surf.nl/en/dutch-national-supercomputer-cartesius

G
PU

C
PU

C
PU

→
G
PU

G
PU

→
C
PU IO

0

1

2

3

4

R
u
n
 t

im
e
 i
n
 h

o
u
rs

Measured Run time

Tmin

Forensics

G
PU

C
PU

C
PU

→
G
PU

G
PU

→
C
PU IO

0.0

0.5

1.0

1.5

2.0
Measured Run time

Tmin

Bioinformatics

G
PU

C
PU

C
PU

→
G
PU

G
PU

→
C
PU IO

0

2

4

6
Measured Run time

Tmin

Microscopy

Figure 8. Processing time per thread for each application using one node
(TitanX Maxwell). The GPU bar is divided into pre-processing (top) and
comparison (bottom). The dashed line indicates the start-to-end run time
of the framework while the dotted line indicates the value of Tmin.

and comparisons are faster. For all three applications, the
post-processing stage on the CPU is negligible since it only
interprets the GPU’s result.

Figure 7 shows the distribution of run times of one com-
parison and confirms that the forensics application is a regular
problem, while the other two are highly irregular. Dynamic
load balancing for those applications is thus necessary since
static scheduling could lead to load-imbalance.

Figure 8 shows, for each application, the overall run time
of Rocket together with the total active time of each thread.
The data per thread was extracted from a profile trace by
taking the total time of tasks executed by each thread. The
figure shows that all three applications are GPU-intensive
since the GPU processing time is dominant. Additionally, the
results show that the overall run time of the framework equals
the GPU processing time, indicating that the asynchronous
processing excellently overlaps GPU processing with other
activities in the system. For instance, the bioinformatics
application spent more than 30 minutes on I/O operations,
but this had no impact on the overall run time since it is
overlapped with GPU processing.

The system efficiencies are high: 94.6% (forensics),
88.5% (bioinformatics), and 99.2% (microscopy). They
would increase even further if more memory were available
which would allow better data reuse and would lower the
overhead of loading items multiple times. Table 1 indicates
that, for two applications, only a fraction of the inputs can
be cached in host memory slots (21.1% for forensics and
11.2% for bioinformatics).

To simulate a desktop computer with fewer available
resources, we artificially further limit the number of local
cache slots and study the effect on performance. Figure 9
shows performance when varying the number of cache slots
(thus the maximum cache size S) of host and device cache.
For S < 11 GB, the host cache was disabled and the device
cache was set to S. For S > 11 GB, the host cache was set
to S and the device cache to 11 GB (GPU memory capacity).

The microscopy application is not affected by the local
cache size since its input easily fits into memory. For the
other two applications, the number of loads is inversely
proportional to the local cache size and system efficiency
gradually degrades when shrinking the cache. For example,
for the bioinformatics application, at 6 GB only 1.7% of

https://www.surf.nl/en/dutch-national-supercomputer-cartesius


0 500 1000

No. of cache slots

0 10 20 30 40

Total cache size (GB)

0

50

100

S
y
s
te

m
 E

ff
ic

ie
n
c
y
 (

%
)

d
e
v
ic

e
 l
im

it

h
o
s
t 

li
m

it

Forensics

0 100 200

No. of cache slots

0 10 20 30 40

Total cache size (GB)

0

50

100

d
e
v
ic

e
 l
im

it

h
o
s
t 

li
m

it

Bioinformatics

0 3×106 6×106

No. of cache slots

0 10 20 30 40

Total cache size (GB)

0

50

100

d
e
v
ic

e
 l
im

it

h
o
s
t 

li
m

it

Microscopy

0 500 1000

No. of cache slots

0 10 20 30 40

Total cache size (GB)

0

50

100

150

R
e
la

ti
v
e
 n

o
. 

o
f 

lo
a
d

s
 (

R
)

d
e
v
ic

e
 l
im

it

h
o
s
t 

li
m

it

0 100 200

No. of cache slots

0 10 20 30 40

Total cache size (GB)

0

50

100

150
d
e
v
ic

e
 l
im

it

h
o
s
t 

li
m

it

0 3×106 6×106

No. of cache slots

0 10 20 30 40

Total cache size (GB)

0

50

100

150

d
e
v
ic

e
 l
im

it

h
o
s
t 

li
m

it

Figure 9. System efficiency and factor R versus cache size on one node
(NVIDIA TitanX Maxwell).

G
PU

C
PU

C
PU

→
G
PU

G
PU

→
C
PU IO

0.0

2.5

5.0

7.5

10.0

R
u
n
 t

im
e
 i
n
 h

o
u
rs

Overall Run time

Forensics
Cache Size 20 GB

G
PU

C
PU

C
PU

→
G
PU

G
PU

→
C
PU IO

0.0

2.5

5.0

7.5

10.0

Overall Run time

Forensics
Cache Size 10 GB

G
PU

C
PU

C
PU

→
G
PU

G
PU

→
C
PU IO

0.0

2.5

5.0

7.5

10.0
Overall Run time

Forensics
Cache Size 5 GB

Figure 10. Processing time per thread on one node (NVIDIA TitanX
Maxwell) for different host cache sizes. Results shown are for the forensics
application.

the inputs can be cached at any moment in time, but system
efficiency is still 52.5% compared to a hypothetical system
having infinite memory. Overall, Rockets continues to deliver
decent performance even when limited to a tiny memory
footprint. This is due to the hierarchical processing approach
which provides excellent data locality, even for a single node.

Figure 10 shows the processing time per thread when
varying the local cache size for the forensics application.
The figure shows that decreasing the cache size results in
increasing values TCPU, TGPU, and TIO since items are re-
loaded more frequently. On the other hand, increasing total
cache capacity will thus lead to better performance and would
be be possible by using more that one node.

6.4. Scalability

In this section, we evaluate performance on 16 nodes,
each having one NVIDIA TitanX Maxwell GPU. First,
we investigate parameter h which specifies the maximum
number of hops to check for each distributed cache request
(see Section 4.1.3). Figure 11 shows the percentage of
cache hits and misses for h = 3. The figure indicates that
the vast majority of requests either results in a hit at the
first hop (between 75−88%) or a miss (between 11−19%).
Subsequent hops after the first one thus contribute little to
the number of cache hits. The remaining experiments in this

Hit at
1st
hop

Hit at
2nd
hop

Hit at
3rd
hop

Miss

0

20

40

60

80

100

P
e
rc

e
n
ta

g
e
 o

f 
d

is
tr

ib
u
te

d
c
a
c
h
e
 r

e
q

u
e
s
ts

 (
%

)

Forensics

Hit at
1st
hop

Hit at
2nd
hop

Hit at
3rd
hop

Miss

Bioinformatics

Hit at
1st
hop

Hit at
2nd
hop

Hit at
3rd
hop

Miss

Microscopy

Figure 11. Percentage of cache hits/misses of the distributed cache (h = 3)
for each of the three applications on 16 nodes (NVIDIA TitanX Maxwell).

0 4 8 12 16

4

8

12

16

S
p

e
e
d

u
p

Forensics

0 4 8 12 16

4

8

12

16

Bioinformatics

0 4 8 12 16

4

8

12

16

Microscopy

0 4 8 12 16

80

85

90

95

100

S
y
s
te

m
 E

ff
ic

ie
n
c
y
 (

%
)

0 4 8 12 16

80

85

90

95

100

0 4 8 12 16

80

85

90

95

100

0 4 8 12 16

0

5

10

15

20

R
e
la

ti
v
e
 n

o
. 

o
f 

lo
a
d

s
 (

R
)

0 4 8 12 16

0

5

10

15

20

0 4 8 12 16

0

5

10

15

20

0 4 8 12 16

no. of nodes

0

100

200

300

A
v
e
ra

g
e
 I
/O

 u
s
a
g

e
 (

M
B

/s
)

0 4 8 12 16

no. of nodes

0

25

50

75

100

0 4 8 12 16

no. of nodes

0

1

2

3

Distributed cache enabled Distributed cache disabled

Figure 12. Speedup, system efficiency, factor R, and average I/O usage
when scaling cluster size from 1 to 16 nodes (NVIDIA TitanX Maxwell).

paper are performed for h = 1 since this already provides an
excellent cache hit ratio while generating the least amount
of network traffic.

We now consider scaling to 16 nodes for two scenarios:
one with the distributed cache and one without. Figure 12
shows speedup, system efficiency, data reuse, and average I/O
usage versus the number of nodes for these two scenarios. For
the microscopy application, we see an excellent speedup of
15.8× on 16 nodes; this application is expected to scale well
since it is compute-intensive. For the other two applications,
we even see super-linear speedup on 16 nodes when enabling
the distributed cache (16.9× for bioinformatics and 16.1×
for forensics), but sub-linear speedup when disabling the
distributed cache (14.6× for bioinformatics and 14.7× for
forensics). The applications show much better scalability
when the distributed cache is enabled.



The super-linear speedup can be understood when con-
sidering the total number of loads. The distributed cache
exploits the larger combined memory capacity which results
in better data reuse and thus higher efficiency. For instance,
for the forensics application, going from 1 to 16 nodes with
the distributed cache means factor R lowers from 6.7 to
1.7 and system efficiency increases from 95.8% to 97.6%.
Without, R raises to 14.3 and system efficiency decreases
to 87.5%.

Besides run time, it is also important to consider the
impact on I/O when scaling to large platforms: shorter
run times combined with more nodes result in increased
pressure on the storage system. Most production platforms
run more than one application simultaneously. Therefore,
it is important to reduce the I/O pressure on the storage
system, even if it does not directly improve the performance
of our application. Less I/O pressure will improve the overall
system performance.

Figure 12 shows that the average I/O usage (i.e., total
bytes transferred by all nodes divided by total run time) is
negligible for the microscopy application. For the other two
applications, I/O usage scales linearly with the number of
nodes, but at a much slower rate when the distributed cache
is enabled. For instance, for the forensics application, the
average I/O usage is 9.6 MB/s when using one node (137 GB
over ∼4 hours). Using 16 nodes with the distributed cache
leads in I/O usage of only 39.9 MB/s, an increase of just
4.1×. Disabling the distributed cache results in I/O usage
of 294.7 MB/s (289 GB over 16.3 minutes), an increase of
almost 31× over one node.

6.5. Heterogeneity

Dynamic load-balancing means that Rocket can exploit
heterogeneous systems efficiently, even if the applications are
irregular or the system is shared with multiple users. Nodes
might also contain different GPUs from different generations,
which is common in production environments since these
platforms often replace GPUs in several phases throughout
the lifetime of the system due to the fast evolution of GPUs.

To demonstrate how our framework handles such a
scenario, we execute the applications on four nodes equipped
with different (combinations of) NVIDIA GPUs from differ-
ent generations: node I (Kepler K20m), node II (Maxwell
GTX980 + Pascal TitanX), node III (2×Turing RTX2080Ti),
and node IV (Kepler Titan + Pascal TitanX). Figure 13 shows
the performance for each node individually and when using
all four nodes together. Performance is measured in average
throughput (i.e, total pairs divided by total run time) to ease
comparison of the performance.

The results show good performance for each application
on each of the four nodes individually, where some nodes
inherently provide better performance (e.g., node III) than
other nodes (e.g., node I) due to the performance differences
of the GPUs. Combining the four nodes should ideally
provide performance equal to the sum of the individual nodes
and the figure shows that the actual performance often even
outperforms this sum due to the distributed cache. Overall,

n
o
d
e
 I

n
o
d
e
 I
I

n
o
d
e
 I
II

n
o
d
e
 I
V a
ll

0

2000

4000

6000

8000

A
v
e
ra

g
e
 t

h
ro

u
g

h
p

u
t

(t
o
ta

l 
p

a
ir

s
 /

 r
u
n
 t

im
e
 i
n
 s

e
c
o
n
d

s
)

Sum 

Forensics

n
o
d
e
 I

n
o
d
e
 I
I

n
o
d
e
 I
II

n
o
d
e
 I
V a
ll

0

1000

2000

3000

4000

Sum 

Bioinformatics

n
o
d
e
 I

n
o
d
e
 I
I

n
o
d
e
 I
II

n
o
d
e
 I
V a
ll

0

5

10

15

20
Sum 

Microscopy

Figure 13. Results for heterogeneous runs of applications, see Section 6.5.

0:00 5:00 10:00 15:00 20:00 25:00

Time

0

1

2

3

4

5

6

P
ro

c
e
s
s
in

g
 t

h
ro

u
g

h
p

u
t 

(p
a
ir

s
 /

 s
e
c
)

K20m (Node I)
GTX 980 (node II)
Pascal Titan X (node II)

RTX2080Ti (node III)
RTX2080TI (node III)

GTX Titan (node IV)
Pascal Titan X (node IV)

Figure 14. Heterogeneous run for the microscopy application, see Section 6.5.
Throughput is measured using a rolling average of one minute. Fluctuations
are due to the irregular run times of the pair computations, see Fig. 7.

Rocket delivers high performance even when on a diverse
platform consisting of 7 GPUs from 4 different generations
across 4 nodes.

Figure 14 shows the processing throughput over time
(i.e., pairs processed per second) of the combined run
for the microscopy application. We make the following
observations: First, all nodes finish at roughly the same
time, indicating that the workload is well-balanced. Second,
the processing rate is fairly consistent across the run for each
GPU, although fluctuations are present due to the irregularity
of this application (i.e., some pairs take longer to process
than others, see Fig. 7). Rocket is designed to always acquire
more jobs well before the GPUs become idle, meaning the
GPUs are always fully utilized. Third, the processing rate
differs for the different devices, with more powerful GPUs
(e.g., RTX2080Ti) delivering a higher processing rate than
others (e.g., GTX980).

6.6. Large-scale Experiment

Large-scale experiments were performed on Cartesius
for the bioinformatics application since it requires the largest
cache slot size, thus making it the most difficult application
to maximize data reuse. The input data set consists of all
available reference bacteria proteomes (6818 files) from the
Uniprot Proteomes database [24] as of March 2020.

Figure 15 shows the run time, speedup, R, and system
efficiency when scaling from 1 node (2 GPUs) to 48 nodes
(96 GPUs). Run times decrease from 16 hours on one
node to just under 20 minutes with 96 GPUs. Super-linear



1 16 32 48

no. of nodes
(2 GPUs per node)

0

5

10

15

20
R

u
n
 t

im
e
 i
n
 h

o
u
rs

8 16 24 32 40 48

no. of nodes
(2 GPUs per node)

8

16

24

32

40

48

56

S
p

e
e
d

u
p

8 16 24 32 40 48

no. nodes
(2 GPUs per node)

10

20

30

R
e
la

ti
v
e
 n

o
. 

o
f 

lo
a
d

s
 (

R
)

8 16 24 32 40 48

no. nodes
(2 GPUs per node)

85

90

95

100

S
y
s
te

m
 E

ff
ic

ie
n
c
y
 (

%
)

Figure 15. Results for the large-scale experiment on 96 GPUs (see
Section 6.6).

speedup is present even on 96 GPUs which, as explained
previously, is due to the distributed cache that exploits the
larger combined memory capacity of the nodes. The number
of loads decreases by a factor 11.8× from R = 31.9 for 1
node to just R = 2.7 for 48 nodes.

7. Future Work

In this section we discuss several directions for future
work. We are working on extending the generality of our
solution and cover more types of parallel applications that
involve data reuse. For example, applications with more
complex workloads, such as processing triples (or any n-
tuple) or using user-defined heuristics to reduce the number
of pairs. We are also considering applications that have more
complex pipelines consisting of many phases and using
different accelerators (e.g., FPGAs, APUs, co-processors).
An exciting direction is to extend the work-stealing algorithm
with some form of cache-awareness such that remote tasks
are chosen based on locally available data, thus enabling
more reuse.

Furthermore, extending the caching design would also
present many opportunities. For example the ability to cache
different items at different levels; persistent caches that reuse
data from previous runs for the next execution; or including
novel memory technologies (e.g., NVM, flash storage). We
are also working on solutions that enable variable-sized cache
slots instead of fixed-sized ones.

Finally, other interesting system aspects we did not
consider in this paper are fault-tolerance, energy consumption,
elasticity, cloud environments, or multi-cluster computing.

8. Conclusions

In this paper, we have studied the problem of all-
pairs compute problems. Our solution combines multi-level
caches to exploit data reuse; random work-stealing to allow
dynamic workload balancing; a divide-and-conquer approach
to exploit data locality; and asynchronous processing to
overlap computation and data movement at all levels. The

implementation of our framework, Rocket [27], is available
online.

We performed a detailed evaluation with three different
real-world scientific applications on different platforms: from
a single node, to a medium-scale heterogeneous cluster,
and finally to a large-scale supercomputer containing 96
GPUs. Results show that we achieve excellent scalability to
multiple nodes, often showing super-linear speedup thanks
to the distributed cache. Moreover, we demonstrate perfect
load balancing even on a highly heterogeneous platform.
Our results demonstrate, for example, that with Rocket
we can reconstruct the evolutionary tree of all reference
bacteria proteomes on Uniprot in under 20 minutes using
a supercomputer. We conclude that our Rocket framework
is easy to use, and enables extremely efficient execution of
all-pairs applications on large-scale systems, often achieving
super-linear speedups.

Acknowledgment

This project has received funding from the Netherlands
eScience Center under file number 027.016.G06 (A method-
ology and ecosystem for many-core programming) and the
European Unions Horizon 2020 research and innovation
programme under Grant Agreement 777533 (PROCESS).

References

[1] R. V. van Nieuwpoort and J. W. Romein, “Correlating Radio Astron-
omy Signals with Many-Core Hardware,” Int J Parallel Prog, vol. 39,
no. 1, pp. 88–114, Feb. 2011.

[2] H. Heydarian, F. Schueder, M. T. Strauss, B. van Werkhoven, M. Fazel,
K. A. Lidke, R. Jungmann, S. Stallinga, and B. Rieger, “Template-free
2D particle fusion in localization microscopy,” Nat Methods, vol. 15,
no. 10, pp. 781–784, Oct. 2018.

[3] J. Qi, B. Wang, and B.-I. Hao, “Whole Proteome Prokaryote Phylogeny
Without Sequence Alignment: A K -String Composition Approach,”
Journal of Molecular Evolution, vol. 58, no. 1, pp. 1–11, Jan. 2004.

[4] B. van Werkhoven, P. Hijma, C. J. H. Jacobs, J. Maassen, Z. J. M. H.
Geradts, and H. E. Bal, “A Jungle Computing approach to common
image source identification in large collections of images,” Digital
Investigation, vol. 27, pp. 3–16, Dec. 2018.

[5] P. Phillips, P. Flynn, T. Scruggs, K. Bowyer, J. Chang, K. Hoffman,
J. Marques, J. Min, and W. Worek, “Overview of the face recognition
grand challenge,” in 2005 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’05), vol. 1, Jun.
2005, pp. 947–954 vol. 1.

[6] O. Maimon and L. Rokach, Data mining and knowledge discovery
handbook. Springer, 2005.

[7] S. Zhu, A. Potapova, M. Alabduljalil, X. Liu, and T. Yang, “Clustering
and load balancing optimization for redundant content removal,” in
Proceedings of the 21st International Conference on World Wide Web,
2012, pp. 103–112.

[8] C. Liu, B. Petroski, G. Cordone, G. Torres, and S. Schuckers,
“Iris matching algorithm on many-core platforms,” in 2015 IEEE
International Symposium on Technologies for Homeland Security
(HST). IEEE, 2015, pp. 1–6.

[9] S. Plimpton, “Fast Parallel Algorithms for Short-Range Molecular
Dynamics,” Journal of Computational Physics, vol. 117, no. 1, pp.
1–19, Mar. 1995.



[10] C. J. Kleinheksel and A. K. Somani, “Efficient Distributed All-Pairs
Algorithms: Management Using Optimal Cyclic Quorums,” IEEE
Transactions on Parallel and Distributed Systems, vol. 29, no. 2, pp.
391–404, Feb. 2018, conference Name: IEEE Transactions on Parallel
and Distributed Systems.

[11] Y.-F. Zhang, Y.-C. Tian, W. Kelly, and C. Fidge, “Distributed com-
puting of all-to-all comparison problems in heterogeneous systems,”
in IECON 2015 - 41st Annual Conference of the IEEE Industrial
Electronics Society, Nov. 2015, pp. 002 053–002 058.

[12] V. K. V. Yeleswarapu and A. K. Somani, “A Memory Efficient Parallel
All-Pairs Computation Framework: Computation – Communication
Overlap,” in Parallel Processing and Applied Mathematics, ser. Lecture
Notes in Computer Science, R. Wyrzykowski, J. Dongarra, E. Deelman,
and K. Karczewski, Eds. Cham: Springer International Publishing,
2018, pp. 443–458.

[13] C. Moretti, H. Bui, K. Hollingsworth, B. Rich, P. Flynn, and D. Thain,
“All-Pairs: An Abstraction for Data-Intensive Computing on Campus
Grids,” IEEE Transactions on Parallel and Distributed Systems, vol. 21,
no. 1, pp. 33–46, Jan. 2010.

[14] D. Li, K. Sajjapongse, H. Truong, G. Conant, and M. Becchi, “A
distributed CPU-GPU framework for pairwise alignments on large-
scale sequence datasets,” in 2013 IEEE 24th International Conference
on Application-Specific Systems, Architectures and Processors, Jun.
2013, pp. 329–338.

[15] Y.-F. Zhang, Y.-C. Tian, C. Fidge, and W. Kelly, “Data-aware
task scheduling for all-to-all comparison problems in heterogeneous
distributed systems,” Journal of Parallel and Distributed Computing,
vol. 93-94, pp. 87–101, Jul. 2016.

[16] T. Gloe and R. Böhme, “The ‘Dresden Image Database’ for bench-
marking digital image forensics,” in Proceedings of the 2010 ACM
Symposium on Applied Computing, ser. SAC ’10. Sierre, Switzerland:
Association for Computing Machinery, Mar. 2010, pp. 1584–1590.

[17] R. V. van Nieuwpoort, J. Maassen, R. Hofman, T. Kielmann, and H. E.
Bal, “Ibis: An efficient Java-based grid programming environment,”
in Proceedings of the 2002 Joint ACM-ISCOPE Conference on Java
Grande, ser. JGI ’02. Seattle, Washington, USA: Association for
Computing Machinery, Nov. 2002, pp. 18–27.

[18] J. Maassen, N. Drost, H. E. Bal, and F. J. Seinstra, “Towards
jungle computing with Ibis/Constellation,” in Proceedings of the
2011 Workshop on Dynamic Distributed Data-Intensive Applications,
Programming Abstractions, and Systems - 3DAPAS ’11. San Jose,
California, USA: ACM Press, 2011, p. 7.

[19] J. Maassen, S. Verhoeven, J. Borgdorff, J. H. Spaaks, N. Drost,
C. Meijer, A. van der Ploeg, P. T. de Boer, R. van Nieuwpoort,
B. van Werkhoven, and A. Kuzniar, “Xenon,” Zenodo, Mar. 2020.

[20] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou, “Cilk: An Efficient Multithreaded Runtime
System,” Journal of Parallel and Distributed Computing, vol. 37,
no. 1, pp. 55–69, Aug. 1996.

[21] R. V. van Nieuwpoort, G. Wrzesinska, C. J. H. Jacobs, and H. E. Bal,
“Satin: A high-level and efficient grid programming model,” ACM
Trans Program Lang Syst, vol. 32, no. 3, pp. 1–39, 2010.

[22] G. Blelloch, R. Chowdhury, P. Gibbons, V. Ramachandran, S. Chen,
and M. Kozuch, “Provably good multicore cache performance for
divide-and-conquer algorithms,” Proceedings of the Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 501–510, 2008.

[23] J. Fridrich, “Sensor Defects in Digital Image Forensic,” in Digital
Image Forensics: There Is More to a Picture than Meets the Eye, H. T.
Sencar and N. Memon, Eds. New York, NY: Springer, 2013, pp.
179–218.

[24] U. Consortium, “UniProt: A worldwide hub of protein knowledge,”
Nucleic Acids Res, vol. 47, no. D1, pp. D506–D515, Jan. 2019.

[25] B. Jian and B. C. Vemuri, “Robust point set registration using gaussian
mixture models,” IEEE transactions on pattern analysis and machine
intelligence, vol. 33, no. 8, pp. 1633–1645, 2010.

[26] H. Bal, D. Epema, C. de Laat, R. van Nieuwpoort, J. Romein,
F. Seinstra, C. Snoek, and H. Wijshoff, “A Medium-Scale Distributed
System for Computer Science Research: Infrastructure for the Long
Term,” Computer, vol. 49, no. 5, pp. 54–63, May 2016.

[27] S. Heldens, P. Hijma, B. van Werkhoven, J. Maassen, and R. van
Nieuwpoort, “Rocket: Runtime system for all-pairs computations,” Jun.
2020. [Online]. Available: https://doi.org/10.5281/zenodo.3878159

https://doi.org/10.5281/zenodo.3878159

	1 Introduction
	2 Motivation and Related Work
	3 Design
	4 Implementation
	4.1 Multi-Level Caching
	4.1.1 First-level (Device)
	4.1.2 Second-level (Host)
	4.1.3 Third-level (Distributed)

	4.2 Locality-Aware Work Scheduling
	4.3 Asynchronous Processing

	5 Applications
	5.1 Common-Source Identification (Forensics)
	5.2 Phylogeny Tree Construction (Bioinformatics)
	5.3 Localization Microscopy Particle Fusion (Microscopy)

	6 Experimental Evaluation
	6.1 Performance Model
	6.2 Experimental Setup
	6.3 Single Node
	6.4 Scalability
	6.5 Heterogeneity
	6.6 Large-scale Experiment

	7 Future Work
	8 Conclusions
	References

