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The next generation of supercomputers will break the exascale barrier. Soon we will have systems capable
of at least one quintillion (billion billion) floating-point operations per second (1018 FLOPS). Tremendous
amounts of work have been invested into identifying and overcoming the challenges of the exascale era. In
this work, we present an overview of these efforts and provide insight into the important trends, develop-
ments, and exciting research opportunities in exascale computing. We use a three-stage approach in which we
(1) discuss various exascale landmark studies, (2) use data-driven techniques to analyze the large collection
of related literature, and (3) discuss eight research areas in depth based on influential articles. Overall, we
observe that great advancements have been made in tackling the two primary exascale challenges: energy
efficiency and fault tolerance. However, as we look forward, we still foresee two major concerns: the lack of
suitable programming tools and the growing gap between processor performance and data bandwidth (i.e.,
memory, storage, networks). Although we will certainly reach exascale soon, without additional research,
these issues could potentially limit the applicability of exascale computing.
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1 INTRODUCTION

The massive computational power of supercomputers plays a major role in the advancement of
many scientific disciplines. The performance of these systems, measured in floating-point opera-

tions per second (FLOPS), has increased substantially over the last decades. Since the early 1990s,
the TOP500 [4] has kept track of the fastest supercomputers in the world based on the LINPACK
benchmark [56]. The TOP500 reveals exponential growth from several gigaflops (109 FLOPS) in
1993 to hundreds of petaflops (1015 FLOPS) in 2018. The high-performance computing (HPC) com-
munity is working towards the next major milestone: a computer system capable of at least one
exaflop (1018 FLOPS). The race towards these exascale systems is reaching its conclusion: The
United States announced the exascale supercomputer Aurora to be operational by end of 2021 [9]
and the 1.5 exaflops supercomputer Frontier a year later [2], the European Union aims to build an
exascale system in 2022/2023 [7], and China is targeting 2020 for the Tianhe-3 [1].

However, over the past decade, it has frequently been acknowledged that building and pro-
gramming such systems would be highly challenging [54, 66, 75, 103, 115, 126, 151]. Tremendous
amounts of research have been invested into overcoming the challenges of exascale computing.

With this work, we aim to acquire a better understanding of these research efforts by analyzing
the major trends. The topic of exascale computing is broad and touches upon nearly all aspects
of HPC, each worth a literature survey of their own. Therefore, we do not aim for an exhaustive

review of all available literature, but instead, provide a high-level overview of the entire exascale
computing landscape. We devised a three-stage methodology that incorporates data-driven tech-
niques alongside manual analysis.

• In Section 2, we discuss various landmark studies on the challenges and opportunities of ex-
ascale computing. These studies originate from both academic (i.e., peer-reviewed journals)
as well as non-academic (e.g., white papers and industry roadmaps) sources. The studies
represent the view on exascale computing by different communities at different moments,
and allow us to sketch a timeline.

• In Section 3, based on these landmark studies, we formulate a search query and gather
exascale related literature. We use data-driven methods to analyze this large collection of
publications by considering aspects such as influential articles, authors, and publication
venues. Additionally, we use natural language processing techniques to identify important
research topics in a semi-automated way.

• In Section 4, we define eight research themes based on the identified topics: fault tolerance,
energy/power, data storage/analytics, network interconnects, computer architectures, par-
allel programming, system software, and scientific applications. For each theme, we discuss
publications selected from the search results and perform and in-depth analysis by analyz-
ing important trends and progress over the last decade.

Section 5 discusses limitations of our study and Section 6 concludes our work. With this sur-
vey, both novice and experienced researchers and engineers gain insight into the ongoing trends,
important developments and exciting research opportunities in exascale research.

2 LANDMARK STUDIES

In this section, we discuss various studies that have been published over the last decade on the chal-
lenges and opportunities of exascale computing. Table 1 lists the studies that have been selected
for this analysis. They were chosen based on their citation count, while also considering variety
in year of publication, authors, and scope. These studies are representative for the prevalent ideas,
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Table 1. Landmark Exascale Studies Discussed in This Work

Title Year Authors

Technology Challenges in Achieving Exascale Systems [103] 2008 US DARPA
Major Computer Science Challenges at Exascale [75] 2009 Geist & Lucas
IESP Roadmap [54] 2011 Dongarra et al.
Top Ten Exascale Research Challenges [115] 2014 ASCAC
EESI2 Vision & Recommendations [66] 2015 EESI consortium
Exascale Computing and Big Data [151] 2015 Reed & Dongarra
The Exascale Computing Project [126] 2016 Messina

opinions, and visions on exascale computing. We discuss these contributions in chronological or-
der and end with a discussion of our findings.

2.1 Technology Challenges in Achieving Exascale Systems (2008)

In 2008, the first HPC system in the TOP500 [4] reached petascale performance: Roadrunner at
Los Alamos National Laboratory. Shortly after, US DARPA (Defense Advanced Research Projects

Agency) presented the results of the Exascale Working Group [103]. The objective of this study
was to understand the trends in computing technology at the time and to determine whether it
was possible to increase the capability of computing systems by 1000× before 2015. The study
group recognizes four major technology challenges in reaching exascale performance for which
the technology trends at the time were insufficient.

Energy and Power. The study group believes that power consumption is the most pervasive
challenge of the four. They establish 20MW as a reasonable power limit for exascale systems, but
trends at the time show that exascale systems in 2015 would be significantly off from this target.

Concurrency and Locality. The group points out that explicit parallelism might be the only so-
lution to increase overall system performance, since single core performance will stagnate due to
clock rates flattening out. Exascale systems might offer billion-way concurrency with thousands of
cores per node. Software needs consideration to exploit this thousand-fold increase in concurrency.

Memory and Storage. The study foresees a lack of available storage technologies that offer suf-
ficient capacity and access rate for exascale applications, while staying within the power budget.
This concerns all levels of the hierarchy: main memory, scratch storage, file storage, and archives.

Resilience. The study predicts that exascale systems will experience faults and errors more fre-
quently than petascale systems. Various reasons are given, including the huge number of compo-
nents (millions of memory chips and disks), very high clock rates (to maximize bandwidth), and
ultra-low voltages (to minimize power consumption). Fault tolerance will become crucial since
critical system failures could occur several times per day.

2.2 Major Computer Science Challenges at Exascale (2009)

Besides technological challenges, there are also computer science issues on topics such as software
engineering and data management. In 2009, Geist and Lucas [75] presented an article that summa-
rizes several studies and workshops (in 2007/2008) on the computer science problems that the com-
munity faces when moving to exascale. These challenges are organized according to four aspects:

Challenges due to Scale and Complexity of Computer Architectures. Computer architectures are
expected to become more complex: massive parallelism, inadequate memory performance (capac-
ity, bandwidth, and latency), more specialized circuits, and increasing amounts of heterogeneity.
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Developing software for these systems is challenging and the traditional programming method
(MPI plus sequential programming language) will become less productive.

Challenges due to Complexity of Applications. As computational capabilities increase, so does
the complexity and resolution of scientific simulations. There are many challenges in adapting
existing programs or developing new applications for future architectures. Existing programs often
consist of millions of lines of code that have been written over long periods of time by hundreds of
scientists/engineers. Adapting such applications to different architectures is not straightforward.

Challenges due to Increased Data. Exascale applications are likely to consume and produce mas-
sive amounts of data and there are several issues related to managing these large datasets. First,
there are technical problems in efficiently storing and retrieving data. Second, there are data man-
agement problems, such as how to transfer large datasets between different compute clusters or
between software components. Third, turning raw data into scientific discoveries requires the abil-
ity to search, visualize, explore, and summarize these large datasets.

Software Sustainability. Reaching exascale computing requires building a software ecosystem,
training scientists on how to use new tools, and raising existing software to production quality.

2.3 IESP Roadmap (2011)

At the beginning of 2009, a large international consortium of researchers initiated the International

Exascale Software Project (IESP) [8, 54]. The IESP recognized that significant amounts of effort
have been invested into software during the petascale era. However, they argue that “a great deal
of productivity has also been lost because of lack of planning, coordination, and key integration
of technologies” [54, p. 1]. The purpose of the IESP was two-fold: (1) “developing a plan for a
common, high-quality computational environment for petascale/exascale systems” [54, p. 6] and
(2) “catalyzing, coordinating and sustaining the effort of the international open-source software
community to create that environment as quickly as possible” [54, p. 6]. In 2011, the IESP presented
their technology roadmap [54] and they proposed a possible software stack for exascale systems.
The project ended in 2012, but IESP’s mission was continued by the Big Data and Extreme-Scale

computing (BDEC) project [5, 13] focusing on the convergence of exascale computing and Big Data.

2.4 Top Ten Exascale Research Challenges (2014)

In 2014, the US ASCAC (Advanced Scientific Computing Advisory Committee) published the re-
port [115] of the subcommittee that was directed by the US DOE (Department of Energy) to com-
pile “a list of no more than ten technical approaches (hardware and software) that will enable the
development of a system that achieves the Department’s exascale goals” [115, p. 80].

The study group found that “the U.S. has the technical foundation to create exascale sys-
tems” [115, p. 66], but “an evolutionary approach to achieving exascale would not be adequate”
[115, p. 66]. Additionally, they argue that the U.S. should increase investments in HPC, since they
may otherwise fall behind the international competition. The top ten challenges are as follows:

• Energy Efficiency: Develop energy-efficient technology to reach the goal of 20MW.
• Interconnect Technology: Improve vertical (intra-node) and horizontal (inter-node) data

movement in terms of energy-efficiency and performance.
• Memory technology: Integrate novel memory technologies (e.g., PCRAM, NOR Flash,

ReRAM, memristor) to improve capacity, bandwidth, resilience, and energy-efficiency.
• Scalable Systems Software: Increase the scalability, energy-awareness, and resilience of sys-

tem software (e.g., operating systems, runtime systems, monitor systems).
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• Programming Systems: Develop new programming methods that enable expressing fine-
grained concurrency, locality, and resilience.

• Data Management: Develop software that is capable of handling massive amounts of data.
This concerns both offensive I/O (e.g., data analysis) and defensive I/O (e.g., fault tolerance).

• Exascale Algorithms: Redesign algorithms to improve their scalability (e.g., reduce commu-
nication, avoid synchronization).

• Algorithms for Discovery, Design, and Decision: Research should focus not only on “one-off
heroic simulations” [115, p. 48], but also on ensembles of many small runs (e.g., common
for uncertainty quantization or parameter optimization).

• Resilience and Correctness: Computations should be correct, reproducible, and verifiable
even in the face of software and hardware errors.

• Scientific Productivity: Scientists should have tools to productively utilize exascale systems
(e.g., develop programs, run applications, prepare input, collect output, analyze results).

These ten challenges are mostly a mixture of the previously recognized technological challenges
(US DARPA) [103] and computer science challenges (Geist and Lucas) [75]. Overall, these chal-
lenges are broad and touch upon nearly all aspects of HPC, indicating that exascale is disruptive.

2.5 EESI2 Vision & Recommendations (2015)

In 2015, the experts of the EESI (European Exascale Software Initiative) presented their vision and
recommendations on development of efficient exascale applications [66]. They consider exascale
computing as “not only a ‘bigger HPC’” [66, p. 3], but also as a new era that requires disruptive
scalable solutions. Additionally, they believe exascale computing and Big Data to be closely as-
sociated since HPC requires processing large-scale data from scientific instruments and scientific
simulations. They argue that Europe has strengths in certain areas (e.g., applications, scalable algo-
rithms, and software couplers), but is weak in other domains (e.g., languages, programming tools).
They consider it urgent for the European Commission to fund large holistic projects on topics
from three pillars:

• Tools and Programming Models: Novel programming models, heterogeneity management,
software engineering methods, resilience, validations, and uncertainty quantification.

• Ultra-Scalable Algorithms: Scalable algorithms that reduce communication, avoid synchro-
nization, and exploit parallelism in the time domain (in addition to the spatial domain).

• Data-Centric Approaches: Flexible and efficient software couplers, in-situ data processing,
and declarative processing frameworks for data analytics.

2.6 Exascale Computing and Big Data (2015)

In 2015, Reed and Dongarra [151] presented their thoughts on the unification of exascale (“high-
end computing”) and Big Data (“high-end data analytics”). They observe that the tools and cul-
tures of these two communities differ significantly and bringing them closer together would
be beneficial. They acknowledge the technical challenges recognized by others, including US
DARPA [103] and ASCAC [115], but consider “research and development of next-generation al-
gorithms, software, and applications [to be] as crucial as investment in semiconductor devices
and hardware” [151, p. 68] since “historically the research community has underinvested in these
areas” [151, p. 68].

2.7 The Exascale Computing Project (2016)

In 2016, the Exascale Computing Project (ECP) [126] was launched: a seven year project by the
U.S. Department of Energy (DOE) to coordinate the effort to achieve exascale computing in the
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Fig. 1. Timeline showing landmark studies (top row) and #1 from TOP500 [4] (bottom row).

U.S. The project is a collaboration between six US-based computing laboratories and is funded by
the U.S. National Nuclear Security Administration and the US DOE Office of Science. The project
is organized into four focus areas: “application development”, “software technology”, “hardware
technology”, and “exascale systems”. Additionally, the project includes training of scientists on
software engineering and programming tools. Overall, the project emphasizes “co-design and in-
tegration of activities to ensure that the result is a robust exascale ecosystem” [126, p. 65].

2.8 Discussion

Figure 1 shows a timeline incorporating the discussed studies together with data from the
TOP500 [4]. The figure clearly shows that growth has stagnated as we are reaching exascale: per-
formance increased by ∼33× between 2008 and 2013, but only by ∼3.6× between 2013 and 2018.

Two primary challenges are acknowledged by nearly all of the above studies: energy consump-

tion and fault tolerance. For the energy challenge, US DARPA set 20MW as a reasonable power
budget [103] and most of the subsequent studies acknowledge this ambitious goal. For the fault
tolerance challenge, all studies agree that handling hardware and software faults becomes increas-
ingly more important as the scale of supercomputers continues to increase. These two challenges
were foreseen in 2008 and many subsequent studies echo these concerns. Both topics will be dis-
cussed further in Section 4.

Various other challenges are mentioned, many of which can be attributed to one of two classes:
challenges due to an increase in complexity of software or challenges due to an increase in volume of

data. The first class addresses matters such as scientific applications, programming models, con-
currency, heterogeneity, software sustainability, systems software, and software tools. Scalability
needs to be incorporated across the entire software stack to create exascale-ready platforms. The
second class concerns the fact that exascale systems deal with massive amounts of data. This has
a major impact on hardware (e.g., memory, storage, networks) as well as on software (e.g., data
management, visualization, scientific discovery). Some challenges are on the intersection between
the two classes, such as algorithms that can increase scalability by exploiting parallelism in the
time-domain (i.e., increase software complexity) or reducing communication (i.e., decrease data
movement).

We observe two notable trends among these reports. The first trend is the rise of Big Data and
the gap between large-scale data analytics (i.e., Big Data) and large-scale scientific computing
(i.e., HPC). These two ecosystems appear to be disconnected and bridging this gap is a challenge
acknowledged in recent studies such as “Exascale Computing and Big Data” [151], but also by
the BDEC project and the EESI2 recommendations. The second trend is the acknowledgment that
reaching exascale performance requires, besides solving technical roadblocks in software and hard-
ware, to also work on the “social” problems in preparing the community for exascale computing.
The IESP roadmap [54] emphasizes that much productivity was lost during the petascale-era due
to lack of a cohesive group. The IESP [54] and the ECP [126] both emphasize collaboration among
many different parties and focus on building a larger ecosystem surrounding exascale computing.
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Fig. 2. Flow diagram of article selection.

3 DATA-DRIVEN LITERATURE ANALYSIS

We perform a literature analysis to gain insight into the extensive peer-reviewed literature on
exascale computing. In this section, we explain the method and results of our data-driven literature
analysis. Section 4 presents the results of our qualitative literature analysis.

3.1 Methodology

Scopus [3] was used to get literature on exascale computing. Scopus is a citation database covering
over 22,800 peer-review sources (e.g., journals, books, conference proceedings) from more than 500
publishers (including well-known publishers such as IEEE, ACM, Elsevier, Springer, and Wiley).
The software tool that was used to perform the analysis is available online [91].

3.1.1 Search Query. The following search query was performed and yielded 2,017 search re-
sults.1 Throughout this document, we use the terms search result, article, publication, and document

interchangeably.

The query requests publications that mention the term exascale or extreme-scale in the ti-
tle, abstract, or author-specified keywords. The word exascale is an unambiguous term that is
widely used and there appears to be no conflicting usages of the term. The term extreme scale is
a strongly related term that gained popularity in recent years. Since solely the term extreme scale
is heavily ambiguous (yielding 30,832 results), we refined this query by appending the term
comput* (e.g., computing, computer, computers) or system* (e.g., system, systems). Note that Scopus
ignores punctuation (e.g., exa-scale and exa scale are considered equivalent).

The search results are further refined using the following method (Figure 2). The Scopus doc-
ument type must be conference proceeding, article, review, or book, thus excluding miscellaneous
types defined by Scopus such as erratum, editorial, and press releases. Additionally, non-English
documents are also excluded.

We are aware that an occurrence of the literal term exascale or extreme-scale does not nec-
essarily imply that the entire document is dedicated to this topic, since the term could be used
to provide context or background information. However, for this study, we deliberately make the
assumption that any mention of these terms indicate that the authors are aware of the challenges
in exascale computing and consider their contribution to play some role for future computing
systems, thus making it an interesting candidate for this literature analysis.

Besides exascale, we experimented with three additional queries: ultrascale, exaflop, and
exabyte. Results for ultrascale were limited and it appears to be a rare term. Results for exabyte
were mostly out of scope and present a different line of research focusing on long-term storage
systems. Few results for exaflop were related, but only 46 results were not covered by our query.

1The data was downloaded from Scopus API on 23 August 2019 via http://api.elsevier.com and http://scopus.com.

ACM Computing Surveys, Vol. 53, No. 2, Article 23. Publication date: March 2020.

http://api.elsevier.com
http://scopus.com


23:8 S. Heldens et al.

3.1.2 Metadata Analysis. Scopus provides rich metadata for the search results, including the
document’s title, abstract, DOI, authors, affiliations, publication date, and publication venue. This
data is used to analyze the number of publications per year, per institute, per country, per conti-
nent, and per journal/conference.

To determine the institute, we use the author affiliation data reported by Scopus. These institutes
were manually checked to consolidate different spellings (e.g., “Jülich Supercomputing Centre”,
“Juelich Research Centre”, “Forschungszentrum Jülich” are mapped to “Jülich Research Centre”).

To determine geographical regions, we use the country of the affiliations as reported by Scopus.
For our analysis, we say a document belongs to a certain country if at least one author reports an af-
filiation in that country. One publication with multiple authors could belong to multiple countries.

To determine the publication venues, we use the source title attribute reported by Scopus. The
source titles have been manually rewritten to canonical names (e.g., “16th ACM Symposium on

Principles and Practice of Parallel Programming” is mapped to “PPoPP”). We omit workshops from
the list of publication venues since Scopus often reports the name of the hosting conference (e.g.,
“Workshops at International Conference on Parallel Processing (ICPP)”) instead of the official work-
shop title (e.g., “Workshop on Runtime and Operating Systems for Supercomputers (ROSS)”). Work-
shops are independently organized so including these results would be misleading. Overall, 19%
of the search results originates from workshop proceedings.

3.1.3 Network Analysis. Network analysis helps to identify the contributions of influential pub-
lications and authors in the exascale landscape. To determine influential publications, we construct
a citation network from the results: nodes represent documents and directed edges indicate cita-
tions between documents. To determine influential authors, we construct a co-author network:
nodes correspond to institutes and edges indicate that two institutes have published at least one
document together. Edges are weighted by the number of shared publications.

3.1.4 Text Analysis. To identify the most relevant research topics, we employ a method from
natural language processing (NLP) known as unsupervised topic modeling [10] to extract abstract
“topics” from texts. The model was trained on the article’s title/abstract since they provide a
concise summary of the article’s contributions. Training topic models on academic abstracts is
a proven method that has demonstrated its effectiveness in various domains, including informa-
tion systems [165], software engineering [123], agriculture [101], bio-medicine [28], and fisheries
science [169].

For this work, we selected the unsupervised topic modeling method based on non-negative ma-

trix factorization (NMF) [161, 183]. We have chosen this method since it requires no critical pa-
rameters, has an intuitive interpretation, and has previously been used for various text-mining
applications [19, 142, 180]. NMF detected topics automatically based on the correlations between
word frequencies. For example, the words “programming,” “code,” “compiler,” “parallel,” “perfor-

mance,” and “software” are likely to occur together and thus are strongly correlated.
NMF processes the titles/abstracts into one word-frequency vector per document (see Appen-

dix A for details). It then takes the set of word count vectors and constructs two non-negative
normalized matrices: U and V (Figure 3). Each row of U represents the topic distribution for one
document with elements indicating the degrees of which topics are applicable to document. Each
row of V represents the word distribution for one topic with elements indicating the degrees of
which terms are applicable to the topic.

NMF requires the desired number of topics k as its input parameter. The appropriate value for
k depends on the dataset at hand and the desired level of detail [161]. To determine the optimal
number, we experimented with different values (k = 5, 10, 25, 35, 40, 50) and, for each k , evaluated
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Fig. 3. Topic modeling detects topic-word distribution and document-topic distribution.

Fig. 4. Number of publications per year. Fig. 5. Number of publications per continent.

the semantic quality of the detected topics by hand. We use k = 25 because we found fewer topics
(e.g., k = 10) resulted in composite topics and more topics (e.g., k = 50) led to duplicates.

To gain insight into how these topics are “spread out” over the domain, we visualize the re-
sults using the method proposed by Choo et al. [38] based on t-SNE [174] (t-Distributed Stochastic

Neighbor Embedding). This method embeds the documents into two-dimensional space such that
the distance between documents inversely corresponds to their lexical similarity.

3.2 Results

In this section, we present the results of our data-driven literature analysis. The search was per-
formed on 23 August 2019 and yielded 2,017 results. Of these results, 91% was discovered by the
exascale query and 12% by the extreme-scale query. The term exascale is thus more popular
than extreme scale and there is some overlap (only 3%) between the queries.

Figure 4 shows the number of documents per year for both queries. The earliest document
originates from 2007, after which the number of articles increased, exceeding 100 articles in 2011
and 200 articles in 2014. Note that, at the time of writing, not all literature for 2019 is available yet.

Figure 5 shows the number of documents per continent based on author affiliation. The results
indicate that the United States is the primary driver in exascale research, followed by Europe and
Asia. Overall, affiliations from the U.S. are involved in 63% of the documents, Europe in 36%, and
Asia in 14%. Many collaborations exist: nearly 10% of the publications is a collaboration between
the U.S. and Europe (i.e., at least one affiliation from each continent), 3.7% for the U.S. and Asia,
and 2.6% for Europe and Asia. The data per country is available in Appendix B (Figure B.3). For
Europe, the top five countries are Germany (11%), United Kingdom (8%), France (8%), Spain (6%),
and Switzerland (4%). For Asia, the top three consists of Japan (4%), China (4%), and India (2%).

To understand the role of the different institutes in exascale literature, we shift our focus to
author affiliations. Figure 6 shows the number of documents per affiliation as reported by Scopus
(top 25, extended results in Figure B.1 of Appendix B). The figure shows that the national laborato-
ries in the United States play an important role in exascale research, with the top three consisting
of Oak Ridge National Lab., Argonne National Lab., and Sandia National Lab. in New Mexico. For
Europe, the top three is INRIA, Jülich Research Center, and IBM Research Zurich.

3.2.1 Metadata Analysis. Finally, we shift our attention to publication venues. Overall, 51% of
the documents originates from conference proceedings, 26% from journals, 19% from workshops,
and 5% from other sources (e.g., books, reports). See Figure 7 for the top publication venues (top 25,
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Fig. 6. Number of publications based on author

affiliations (top 25). Color indicates continent

(Figure 5).

Fig. 7. Number of publications per publication

venue (top 25). Workshops are omitted from figure,

see text.

extended results in Figure B.2 of Appendix B). As mentioned in the methodology, we omit work-
shop names from this figure since Scopus inconsistently reports the name of the hosting conference
instead of the workshop name. The figure shows that both conferences and journals are impor-
tant. The top three conferences are ACM/IEEE Supercomputing (SC), IEEE Cluster, and IEEE IPDPS

(International Parallel and Distributed Processing Symposium). The top three journals are IJHPCA

(International Journal of High Performance Computing Applications), SFI (Supercomputing Frontiers

and Innovations), and TPDPS (IEEE Transactions on Parallel and Distributed Systems). Overall, exas-
cale research is spread out over many venues.

3.2.2 Network Analysis. Figure 8 shows the citation network: nodes represent documents and
edges are citations. An interactive version is available.2 The visualization shows that the network
contains a small number of “core” publications and a large number of “peripheral” publications.
Appendix B (Table B.1) lists the complete top 10 publications according to the number of citations.
Three of these publications were already discussed as landmark studies in Section 2. Surprisingly,
six out of the ten publications are on the topic of fault tolerance. The remaining four papers are
on diverse topics: software challenges, technology challenges, big data, and power constraints.

The collaboration network for the top 50 institutes is available in Appendix B (Figure B.3). The
figure shows that the network is highly interconnected with many collaborations between dif-
ferent institutes. Additionally, national laboratories and supercomputing centers appear to play
a central role in the network and they are often strongly connected to various universities and
research institutes. Examples of strongly connected laboratory-university pairs are Barcelona Su-

percomputing Center↔ Polytechnical University of Catalonia; Riken↔ University of Tokyo; Sandia

Lab. New Mexico↔ University of New Mexico; and Argonne Lab.↔ University of Chicago.

3.2.3 Text Analysis. Figure 9 visualizes the output of topic modeling. Each topic is assigned
a letter (A-Y) and the words having the highest weights are shown. A table of the results is in
Appendix B (Table B.2).

2Interactive network visualization available at https://exascale-survey.github.io/assets/citation.html.
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Fig. 8. Citation network. Nodes are publications and edges represent citations. Node size and color indi-

cate number of citations. Numbers indicate top 10 publications (see Table B.1). Interactive view available in

Footnote 2.

Fig. 9. Visualization of topic model using word clouds. Each word cloud represents one detected topic where

the size of words indicates the relevance of each word to that particular topic (i.e., weights in matrix U).
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Fig. 10. Examples of topic distribution for four articles. The height of the bars represents the elements of

matrix U indicating the relative degree of which topics are applicable to articles.

Based on the dominant terms, it is clear that each topic represents some coherent area of re-
search. For example, topic E (top three words are network, topology, interconnect) is on network
topologies, topic X (memory, bandwidth, hierarchy) is on memories, topic L (scheduling, job, re-

sources) is on job scheduling and, topic U (programming, parallel, code) is on parallel programming.
Figure 10 illustrates the topic distributions for four articles. In general, we observe that the

weights are either large (i.e., the topic is strongly related) or near zero (i.e., the topic is unrelated).
For most articles, only a small number of topics (i.e., between 1 and 5) is applicable. For example,
the International Exascale Software Roadmap [54] (Figure 10(a)) strongly belongs to topic A (devel-

opment, software, hardware). On the other hand, Exascale Computing Technology Challenges [162]
(Figure 10(b)) belongs to five topics (topic H, K, Q, U, Y), indicating that this work touches upon
multiple issues. More examples are available in Appendix B (Figure B.4).

Figure 11 shows the embedding of the documents into two-dimensional space. In this visual-
ization, the documents form clusters according to their topics. Some of these clusters are more
isolated than others. For example, documents for topic B (energy, consumption, efficiency) and for
topic J (power, consumption, budget) are close to each other, indicating that these two topics are
related. On the other hand, documents for topic O (visualization, in-situ, analysis) appear as an
isolated cluster in the two-dimensional embedding.

3.2.4 Research Themes. Based on the detected terms for the topics (Figure 9) and the visual-
ization (Figure 11) we group the topics into eight research themes based on our interpretation.
Four research themes appear as clear clusters in the visualization: fault tolerance (Topic C, G, I,
W), energy/power (Topic B, J), networks (Topic E, Q), and data storage/analysis (Topic D, S, F, V, O).

The remaining topics are present near one central “island” in the visualization, indicating that
the corresponding publications are closely related to each other. These topics are mostly on vari-
ous topics from HPC such as MPI, GPU programming, numerical simulations, parallel algorithms,
scheduling, and operating systems. Based on our interpretation, we divide these topics into four
research themes: topics at architecture-level such as memories, GPUs and FPGAs (topic H, X, Y),
topics on parallel programming such as libraries and programming languages (topic U, R, N), topics
on system software such as operating systems and job schedulers (topic L, T), and topics on scien-

tific applications such as scientific simulations and parallel algorithms (topic A, K, M, P). Figure 12
shows where these research themes are located in the visualization.

4 QUALITATIVE LITERATURE ANALYSIS

In this section, we depart from the data-driven approach and we further explore each of the re-
search themes from Section 3.2.4. We have manually selected relevant publications from the search
results for each research theme and identified the promising research trends. This section mostly
revolves around these publications, although additional sources are referenced when deemed
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Fig. 11. Embedding of documents into two-dimensional space. Each point represents one document with

letter/color indicating its dominant topic. Distance between documents inversely corresponds to lexical sim-

ilarity. Labels have been placed manually and list the top three terms from Figure 9.

Fig. 12. Documents from Figure 11 highlighted for the eight research themes.
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Fig. 13. Research themes and identified research trends within each theme from Section 4.

Table 2. Further in-depth Reading for Each Research Theme

Theme Literature

4.1 Energy/Power Jin et al. [98], Czarnul et al. [42], Zakarya et al. [186]
4.2 Fault Tolerance/Resilience Herault and Robert [92], Snir et al. [166], Cappello et al. [33]
4.3 Data Storage Lüttgau et al. [116], Kunkel et al. [105]
4.4 Network interconnect Trobec et al. [172], Thraskias et al. [170]
4.5 Computer Architecture Kogge and Shalf [104], Shalf et al. [163]
4.6 System Software Naughton et al. [134], Gerofi et al. [76]
4.7 Parallel Programming Gropp and Snir [84], Diaz et al. [51], Dongarra et al. [54]
4.8 Scientific Computing Ashby et al. [14], Åström et al. [15]

necessary. For each research theme, we discuss relevant work and end with a conclusion of
progress in this area.

Since each theme is broad, this section aims to provide a bird’s-eye view of the different aspects
of exascale computing. Figure 13 shows the eight research themes and the identified trends within
each theme. Note that this is not a strict classification, as some articles touch upon multiple topics
(e.g., research on energy-efficiency of storage systems). For expert technical readers, we compiled
a list of relevant in-depth literature dedicated to each theme (Table 2).

4.1 Energy/Power

Energy consumption is an important challenge and there has been a tremendous amount of
progress. Figure 14 shows the performance and energy efficiency of the TOP500 over time. In
June 2009, Roadrunner was no. 1 in the TOP500 [4] and delivered 0.41 PFLOPS/MW (1.1 PFLOPS at
2.4MW). At that time, an exascale system would have required over 2,000MW. In June 2019, Sum-

mit was no. 1 in the TOP500 and delivered 14.7 PFLOPS/MW (149 PFLOPS at 10MW). US DARPA
established 20MW as a reasonable power envelope for an exascale system (see Section 2.8), thus re-
quiring an energy efficiency of 50 PFLOPS/MW for the whole system. The yearly energy-efficiency
increase was ∼56% and extrapolating this trend means this goal would be reached around 2022.

Much of this improvement came from hardware technology, but software techniques also play an
important role. There has also been tremendous progress in models and tools on energy usage.

4.1.1 Hardware Technology. An HPC system consists of many components (i.e., processors,
memory, interconnects, power delivery, cooling, persistent storage) and for each, there is active
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Fig. 14. Performance/energy efficiency of the no. 1 in the TOP500 [4]. Dashed lines extrapolate trends over

the time period 2014-2019. The right figure also includes the no. 1 from the Green500 [4].

research into improve its energy efficiency. For example, optical interconnects [172] replace copper
cables by optical links to deliver high bandwidth at low power consumption. Non-volatile memory
(NVM) [178] is a novel memory technology that provides better energy efficiency than conven-
tional DRAM. Villa et al. [179] explains how NVIDIA plans to reach exascale using low-voltage
SRAM, low-energy signaling, and on-package memory. The Mont-Blanc project [149] experiments
with building HPC clusters from low-power components from mobile computing.

4.1.2 Software Techniques. Solutions have been proposed at the node-level or the system-level.
At the node-level, a common technique to improve energy efficiency is to dynamically scale the
frequency, voltage, or level of concurrency for different components depending on the workload.
For example, Porterfield et al. [147] show how energy consumption is affected by aspects such as
the algorithm, compiler, optimizations, number of threads, and temperature of the chip. Sarood
et al. [158] propose a thermal-aware load-balancing solution that limits processor temperatures
and results show reduction of cooling demand of up to 63% while barely affecting run times. Haidar
et al. [86] investigate the effect of power limiting for various scientific kernels and find reductions
in energy consumption (up to 30%) without impacting performance.

At the system-level, research focuses on solutions to efficiently distribute available power over
nodes while not exceeding the power cap. For instance, Bodas et al. [25] present a power-aware job
scheduler that continuously monitors power consumption of jobs and adjusts clock frequencies.
Patki et al. [141] compare traditional worst-case power provisioning (i.e., maximum power draw
of hardware is within system power cap) to overprovisioning (i.e., maximum power draw exceeds
system power cap) with dynamic power management and they find up to 50% improvement in
performance. Gholkar et al. [79] propose a two-level power management solution: the system’s
power budget is divided over each job and each job further distributes the power across the nodes.
Results show performance improvement of up to 29% compared to a static per-node power cap.

4.1.3 Modeling and Tools. Tools for measuring and modeling energy-efficiency of existing sys-
tems are important. Borghesi et al. [26] use machine-learning to predict the power consumption
of typical HPC workloads and show promising results. Mair et al. [120] extensively analyze trends
in the TOP500. They find that the greenest computers are often small-scale deployments and they
propose a new energy-efficiency metric that also takes into account system scale. Cabrera et al. [30]
present the Energy Measurement Library (EML): a framework that standardizes energy measure-
ments across different devices (such as Intel CPUs, NVIDIA GPUs, and Power Distribution Units
(PDU). Shoukourian et al. [164] propose the PowerDAM toolset for collecting sensor data in HPC
clusters and correlating sensor data with resource management data.

4.1.4 Discussion. Overall, we see tremendous progress for energy-efficiency of hardware and
energy-awareness of software. We also observe progress in tools for measuring/modeling energy
consumption and in energy-efficient solutions for fault tolerance. Extrapolating the current trend
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shows that we can expect to reach the target of 20MW for one exaflop (see Section 2.8) around the
year 2022. We conclude that, although energy efficiency is likely to remain a major concern in HPC,
we are reaching the point where building an exascale system is feasible in terms of energy usage.

4.2 Fault Tolerance

Fault tolerance (also called resilience) refers to the ability of a system to continue operation, de-
spite failures in the underlying software or hardware. In 2009 [32] and 2014 [33], Cappello et al.
presented their thoughts on the state of resilience for exascale computing at that moment in time.
They anticipated that exascale systems would experience much higher failure rates than petas-
cale systems (possibly failing once every 30 minutes [166]) since the number of components is
increasing while components’ failure rate is not improving.

Much work in exascale fault tolerance is dedicated to handling fail-stop faults (i.e., faults where a
node stops abruptly), but there is also increasing amounts of work on fail-continue faults (i.e., faults
were a node continues), such as data corruption. Other trends are in programming abstractions,
helping programmers integrate fault tolerance into their applications, and fault analysis, to better
understand the cause and impact of faults for supercomputers.

4.2.1 Fail-Stop Faults. Traditionally, fault tolerance research in HPC has focused on handling
fail-stop [33] faults (i.e., a process fails and stops abruptly) by performing globally synchronized
checkpoint-restart: system execution is paused at regular intervals to save application state to
remote storage, which can be used to restart the job in case of failure. However, if the number of
nodes grows, the mean time between failures shrinks, thus checkpointing becomes less effective
since execution time would be dominated by checkpoint/restart time.

Much work is thus dedicated towards reducing checkpointing/restart overhead. For example,
Di et al. [49] consider multi-level checkpointing: writing checkpoints at different time intervals
to different levels in the memory hierarchy (e.g., local memory, remote memory, local disk, and
remote file system). They show that, with optimal selection of levels and parameters, their so-
lution outperforms single-level methods by up to 50%. Zheng et al. [187] propose an in-memory
checkpoint solution that does not use stable storage and their evaluation on 64,000 cores shows
checkpoint/restart times in milliseconds. Sato et al. [159] consider non-blocking checkpointing
(i.e., overlapping I/O with computation) and find high efficiency even when I/O bandwidth is lim-
ited. Dong et al. [52, 53] experiment with fast non-volatile memory (NVM) to reduce checkpoint
overhead. Their predictions for exascale systems show overhead of at most 4%, a significant im-
provement over the current 25% for petascale systems. Ibtesham et al. [96] use compression to
reduce checkpoint size and thus the amount of I/O, at the cost of additional compute time.

Alternatives to checkpointing are also subject of study. Ferreira et al. [68] evaluate the suitability
of replication as the primary resilience method for exascale and show how it outperforms tradi-
tional checkpointing for some applications. Pickartz et al. [145] see opportunities for process mi-
gration by moving active processes away from faulty nodes. Results are promising, but require ac-
curate fault prediction. Integrating fault tolerance into MPI is a common research topic [22, 23, 74].

We also observe that the number of compute nodes has not grown as expected. For example,
Roadrunner (1.1 PFLOPS, 2008 [4]) consisted of 3,240 compute nodes [114]. Titan (27 PFLOPS,
2012 [4]) was the first GPU-accelerated supercomputing to be ranked 1st in the TOP500 and con-
sisted of 18,866 compute nodes each having a NVIDIA K20x GPU [136]. Summit (149 PFLOPS,
2018 [4]) is currently ranked 1st in the TOP 500 and consists of just 4,608 compute nodes each
having 6 NVIDIA V100 GPUs [106]. The move towards “leaner” clusters of “fatter” nodes may
imply that traditional checkpointing methods are still adequate for the coming years.
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4.2.2 Data Corruption. Besides fail-stop faults, an upcoming trend is research into fail-continue

faults such silent data corruptions (SDC) [33]. These faults are caused by transient hardware er-
rors, such as bit flips in memory or arithmetic units, and are difficult to combat since execution
could continue normally. These events are exceedingly rare under normal operation, but several
researchers [32, 33, 166] contest that these errors can no longer be ignored when further scaling
systems. Di and Cappello [50] characterize the impact of bit-flip errors on execution results for
18 HPC applications. Liu and Agrawal [111] use machine learning with offline training to detect
signatures of SDCs. Gomez and Cappello [83] present a solution that uses interpolation and predic-
tion methods to detect and correct SDCs in stencil applications. Huber et al. [94] present a resilience
solution for parallel multigrid solvers that recomputes corrupted values based on redundant stor-
age of ghost values.

4.2.3 Programming Abstractions. Since much is unsure about future fault tolerance solutions,
there is active research into programming abstractions for resilience. For example, Chung et al. [39]
present containment domains: a programming construct that enables programmers to explicitly de-
fine the fault tolerance requirements for sections of code. Rolex [95] is a C/C++ language extension
that incorporates resilience into application code. Chien et al. [37] propose versioned distributed

arrays as a portable solution to extend existing codes with resilience. Results for four real-world
applications (OpenMC, PCG, ddcMD, and Chombo) show that the required changes are small, lo-
calized, and machine-independent. Meneses et al. [125] demonstrate that migratable objects form
a scalable programming model for exascale computing.

4.2.4 Fault Analysis. Much is unknown about the cause/impact of failures in supercomputing
centers and exascale computing has sparked interest in this area. Martino et al. [122] analyze
5 million HPC jobs submitted between 2013 and 2014 to Blue Waters (13.1 PFLOP/s) and they
present a large number of findings. For instance, while only 1.5% of the jobs fails due to system
problems, they account for 9% of all compute time. Additionally, failure rates increase dramat-
ically when increasing job size: going from 10,000 to 22,000 nodes increases failure probability
from 0.8% to 16.2%. El-Sayed and Schroeder [64] analyze failures from a decade of historical data
from Los Alamos National Laboratory. They present several conclusions, for example that some
nodes experience significantly more failures than others (even if hardware is identical) and once
a node fails, it is likely to experience follow-up failures. Gupta et al. [85] perform a large in-depth
study using data from more than one billion compute hours across five different supercomputers
over a period of 8 years. They present many findings, including that failures show temporal re-
currence, failures show spatial locality, and reliability of HPC systems has barely changed over
generations.

4.2.5 Energy Tradeoff. As discussed in Section 4.1, energy is one of the main exascale chal-
lenges. A notable research trend is the tradeoff between fault tolerance and energy-consumption:
increasing system resilience often comes at a cost of decreased energy-efficiency and vice-versa.
For example, Giridhar et al. [82] consider the tradeoff in memory design between the benefit of
memory error correction versus its energy cost. Sarood et al. [157] study the tradeoff between
component reliability and cooling (since high temperatures increase fault rates) and propose load-
balancing techniques that move active processes to “cool” nodes. Chandrasekar et al. [36] propose
a power-aware checkpoint framework and results show up to 48% reduction in energy consump-
tion during checkpointing. Dauwe et al. [46] optimize multi-level checkpointing for performance
and energy-efficiency and find that optimizing both metrics simultaneously is not possible.

4.2.6 Discussion. For fault tolerance, much of the work is related to improving existing check-
pointing solutions, alternatives to checkpointing, and understanding faults in supercomputers.
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There are also crossovers to the other research themes such as energy consumption (e.g., tradeoff
between ECC and energy usage) and parallel programming (e.g., containment domains). Check-
pointing seems to stay a feasible solution for exascale fault tolerance, taking into account recent
developments such as multi-level checkpoints, non-volatile memory, and non-blocking check-
pointing. Snir et al. [166] support this by arguing that “recent results in multilevel checkpoint-
ing and in fault tolerance protocol [ . . . ] make checkpoint/restart a viable approach for exascale
resilience” [166, p.152]. However, silent data corruption (SDC) might require more research since
their impact is not well understood. All in all, we argue that exascale systems are feasible in terms
of fault tolerance.

4.3 Data Storage

Exascale storage systems must handle massive volumes of data, both for scientific discovery (i.e.,
inputs/outputs of jobs) as well as fault tolerance (i.e., checkpoints). Kunkel et al. [105] analyze
historical data from the German Climate Computing Center (DKRZ) and predict processor perfor-
mance growth by 20× each generation (∼5 years), while storage throughput/capacity improves by
just 6×. Hu et al. [93] quantify this problem and define the storage wall for exascale computing:
some I/O-intensive applications may never scale to exaflops due to I/O bottlenecks.

As we are moving towards exascale, the gap between computing power and I/O bandwidth will
widen and researchers are looking for solutions to tackle this problem. There are essentially three
lines of research: at hardware level, at middleware level, and at application level. For application
level, one prominent trend is in-situ analysis.

4.3.1 Hardware Technology. One important research trend in storage systems is the use of non-

volatile memory (NVM). The capabilities of NVM (i.e., capacity, bandwidth, energy consumption)
are somewhere in-between main memory and persistent storage, thus it is often used as a “caching”
solution between these two layers. Bent et al. [18] propose burst buffers: extending I/O nodes (i.e.,
between compute and storage nodes) with solid state drives (SSDs) to aggregate many small I/O
requests into few larger ones. HPC applications often show bursty I/O behavior (i.e., all processes
read/write at the same time) and burst buffers help to absorb these workloads. Their simulations
show performance increase of 30% and the authors consider inclusion of burst buffers to be neces-
sary for exascale. da Silva et al. [69] measure the benefit of burst buffers at Cori (14 PFLOPS) [4] for
two applications and find read and write performance increases by an order of magnitude. Congiu
et al. [40] attach SSDs to compute nodes to speed-up MPI-IO operations and they find significant
improvements in I/O bandwidth. The SAGE project [133] propose a four-layer storage hierarchy
incorporating NVM, SSDs, and two types of hard disk drives. Overall, the exact storage solution
for exascale is not clear, but it likely consists of multiple layers.

4.3.2 I/O Middleware. I/O performance can also be improved by solutions in I/O middle-
ware (e.g., file systems, I/O interfaces). Dorier et al. [57] observe that I/O performance is unpre-
dictable and processes often need to wait for the slowest one. They propose a software framework
(Damaris) that overlaps computation and I/O operations by dedicating a single to core to I/O tasks.
ADIOS [112] is an I/O abstraction framework for HPC applications that enables switching between
different I/O transport methods with little modification to application code, enabling integration of
new I/O solutions. Liu et al. [112] discuss ADIOS’ history and lessons learned during its develop-
ment. They foresee four major challenges in moving ADIOS towards exascale: data integrity, fault
recovery, automated tuning, and data consistency. DeltaFS [188] is a file system that improves the
scalability of file systems by letting compute nodes manage metadata instead of a centralized server
(common in traditional distributed file systems). Kunkel et al. [105] review three methods to im-
prove I/O performance at exascale: re-computation (found to be beneficial for infrequent accesses),
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deduplication (not promising), and data compression (promising, but application-dependent).
Lofstead et al. [113] propose a solution that allows different storage technologies to be deployed
over time without changes to application code. Their design exposes a high-level model-based
programming interface and uses a low-level layer (DAOS) to translate the user-defined model to
underlying storage.

4.3.3 In-Situ Analysis. Another promising trend is in-situ analysis [117]. Rather than applica-
tions writing their raw output to storage to later be read again for post-processing (e.g., visual-
ization, filtering, statistics), in-situ processing removes this overhead by performing the analysis
directly on the same machines as where the applications run. Ma et al. [117] provide an overview
of the challenges and opportunities of in-situ processing for exascale computing. Yu et al. [185]
show how large-scale combustion simulations benefit from in-situ visualization. ParaView [67],
Dax [130], and Damaris/Viz [59] are tools for large-scale in-situ visualization.

4.3.4 Discussion. An important concern is the mismatch between the massive computational
performance of processors and relatively limited I/O bandwidth of storage systems. There are
essentially three methods to alleviate this problem: new hardware technology (e.g., non-volatile
memory), new I/O middleware (e.g., ADIOS, DAOS), and application-specific solutions (e.g., in-situ
analysis). Hardware technology shows promising solutions, but different systems might employ
different solutions (i.e., SSDs, NVM, burst buffers), reducing the portability and increasing the
complexity of software. Middleware can alleviate some of this complexity with solutions such as
ADIOS. In-situ analysis is an example of how application-specific solutions can be used to improve
I/O throughput and thus application performance. All in all, there appears no one-size-fits-all so-
lution to the storage problem and programmers must take I/O into careful consideration when
developing applications.

4.4 Network Interconnect

Exascale systems require ultra scalable, low latency, high bandwidth network interconnects.
Trobec et al. [172] predict the important trends for future interconnects by reviewing the past
networks from the fastest petascale systems. They observe that, while reasonable techniques for
routing and flow-control algorithms are known, optimal network topology is still a topic of re-
search. By extrapolating current trends, they find the requirements for exascale networks: novel
topologies scalable to millions of nodes, adaptivity of scheduling/routing to specific applications,
high-radix switches for high bandwidth, and optical links for low latency. In this section, we dis-
cuss three relevant research areas: network topology, scheduling/routing, and optical interconnects.

4.4.1 Network Topology. The topology of a network determines how nodes are connected and
how they communicate. No topology is optimal since their design involves tradeoffs in terms of
latency, bandwidth, wiring complexity, cost, power consumption, and resilience. Several designs
have been proposed having exascale “ambitions”. An important trend is the inclusion of high-radix

switches [172] (i.e., network switches having hundreds of ports) to simplify network topology.
Flajslik et al. [71] consider 3-hop topologies to be the most likely candidate for exascale system
in which each path is at most three hops. They propose a design called Megafly: a hierarchical
topology with high path diversity. HyperX [11] is an extension of the hypercube topology and also
takes advantage of high-radix switches. Tofu [12] is a 6D torus topology developed by Fujitsu for
the K computer (8 PFLOPS) [4]. BXI [48] (Bull eXascale Interconnect) is an interconnect developed
by Atos that allows offloading many communication primitives to hardware.

Modeling and simulating is important to enable exploring different designs. Mubarak et al. [131]
propose an accurate simulation framework for exascale networks. Pascual et al. [140] design and
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Fig. 15. Percentage of TOP500 systems [4] equipped with accelerator per vendor.

simulate interconnects by modeling them as a multi-objective optimization problem (i.e., fault
tolerance, performance, cost).

4.4.2 Scheduling and Routing. Besides the (static) network topology, performance can also be
improved by (dynamic) scheduling/routing algorithms that are workload- or topology-aware. For
example, Prisacari et al. [148] study the effect of task placement in systems with dragonfly net-
works. Dorier et al. [58] evaluate different collective operations and study the effect of topology-
awareness and sensitivity to network contention. Bhatele et al. [20] propose routing techniques
to prevent hot-spots in dragonfly networks. Totoni et al. [171] study the effectiveness of disabling
underutilized links and reduce power consumption by 16% without impacting performance.

4.4.3 Photonics. A promising technology is optical interconnects [154, 170] that replace tradi-
tional copper wires by optical links. Optical interconnects could potentially offer lower latency,
lower power consumption, and higher throughput than current solutions. However, according to
Rumley et al. [154], the technology is not yet cost-effective except for distances over several me-
ters. There is also much ongoing work into on-chip optical interconnects [17, 182] that enable
efficient small-scale links (e.g., core to core, processor to memory). Werner et al. [182] argue that
the technology will be disruptive for HPC, but is not yet production-ready.

4.4.4 Discussion. For network interconnects, important trends are high-radix switches, mod-
eling, scheduling/routing, and optical interconnects. Several topologies have been proposed for
exascale, each having its own advantages and disadvantages. Photonics is a promising direction,
both for inter- and intra-node connections, but the technology is not yet ready for all types of
communication links. We foresee that the gap between computing power and network bandwidth
will continue to increase and this could limit the scalability of various scientific applications.

4.5 Computer Architecture

It is likely that future platforms integrate new technology alongside conventional components.
Two important developments are research into hardware accelerators and developments in memory

technology. Another active topic of research is co-design: the process where hardware design is
optimized for specific applications.

4.5.1 Accelerators. Figure 15 shows the percentage TOP500 systems equipped with accelera-
tors. The figure shows that the popularity of GPUs in HPC systems has skyrocketed in just 8 years,
thus is it likely that exascale system include GPU-like accelerators. Mittal and Vetter [129] per-
formed an extensive survey on CPU-GPU heterogeneous computing and conclude that a collab-
oration between CPU and GPU is inevitable to achieve the exascale goals. To achieve exascale
performance, AMD [160] envisions a heterogeneous processor (accelerated processing unit, APU)
that integrates both CPUs and GPUs on the same chip. They consider such a design to be ideal
for HPC since it combines the high throughput and energy-efficiency of GPUs with the fast serial
processing of CPUs. Nikolskiy et al. [135] benchmark the energy-efficiency and performance of
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the Tegra X1 and K1 for algorithms from molecular dynamics and show promising results. Tegra
is a system on a chip (SoC) that integrates an ARM-based CPU and NVIDIA-based GPU.

Some work focuses on exploring alternative accelerators besides GPUs. For instance, O’Brien
et al. [137] evaluate the performance and energy efficiency of a dynamic programming application
on three platforms: FPGA, GPU, and Intel Xeon Phi. Overall, they find that GPUs deliver the best
performance, the FPGAs demonstrate the best energy efficiency, and the Xeon Phi is easiest to pro-
gram but shows mediocre results (both run times and energy efficiency). Varghese et al. [176] dis-
cuss their experiences with the Adapteva Epiphany 64-core network-on-chip co-processor. They
consider the device to be suitable for exascale computing due to its energy-efficiency, but program-
ming is difficult due to the low-level primitives and the relatively slow external shared memory
interface. Mitra et al. [128] experiment with the TI Keystone II architecture for exascale computing
and conclude it is a low-power solution but programming is challenging.

There are also research projects exploring alternative system designs: DEEP [63] focuses on
developing a Booster cluster composed of Intel Xeon Phi co-processors, EXTRA [167] proposes
FPGAs as exascale technology, and Mont-Blanc [149] (discussed in Section 4.1.1) aims to build
HPC systems out of low-power components.

4.5.2 Memory. Novel memory technology is an active area of research. Some contributions
were already discussed in previous sections, such as Dong et al. [52, 53] using 3D stacked memory
to reduce checkpointing overhead and Kannan et al. [102] using active non-volatile memory (NVM)
to reduce I/O overhead. Meswani et al. [127] propose a two-level memory hierarchy for future
systems: a first-level stacked memory to provide large bandwidth and second-level conventional
memory to provide large capacity. They experiment with a programmer-managed memory system
and use three exascale applications as case studies. Nair et al. [132] present an architecture called
the active memory cube that performs computations within the memory modules, thus reducing
data movement between memory and CPU. Li et al. [109] identify possible opportunities of NVM
for exascale applications. Their simulations suggest that many applications are not affected by
longer write latency and energy improvements are 27%. Vetter and Mittal [178] enumerate the
many possible opportunities of NVM in exascale systems.

4.5.3 Co-design. An active topic of research in exascale computing is co-design: the process
of optimizing hardware architectures and application software in unison, with the requirements
of one influencing the other and vice-versa. Shalf et al. [163] argue that co-design is beneficial
since it is application driven: scientists can decide what future systems need to offer to solve
their scientific problems, instead of looking for specific applications that match existing systems.
CoDEx [163] is a co-design environment that consists of three key elements: tools for extraction of
memory/interconnect traces from applications, a cycle-accurate hardware simulator, and a coarse-
grained interconnect simulator. ExaSAT [35, 173] is a framework for co-design that uses compiler
analysis to automatically extract performance models from source code. Dosanjh et al. [60] pro-
pose a co-design methodology based on a hardware simulator and they study the accuracy for
several algorithms and architectures.

4.5.4 Discussion. For computer architectures, important trends are accelerators, novel memory
technology, and co-design. The popularity of GPUs in HPC has increased rapidly over the past
decade and it is highly likely that future systems include GPUs (or similar accelerators). Novel
memory technologies (e.g., non-volatile memory, processing-in-memory, multi-level memory) are
promising, but they increase heterogeneity and introduce additional levels in the data hierarchy.
Co-design helps to bring hardware capabilities closer to application requirements, but it is un-
likely that the first exascale systems will be built using application-specific hardware. All in all,
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it is evident that computer architectures will continue to become more complex, heterogeneous,
and hierarchical over time, increasing the complexity in understanding and programming these
systems.

4.6 Parallel Programming

Programming exascale applications requires rethinking our current approaches. Sarkar et al. [156]
argue that two aspects are crucial at exascale: parallelism, due to the massive concurrency, and
locality, since moving data is expensive compared to computation. They consider the primary
exascale challenges to “boil down to the ability to express and manage parallelism and locality
in the applications” [156, p.10]. Da Costa et al. [41] discuss the limitations of existing program-
ming models (e.g., MPI, OpenMP, OpenCL, CUDA) for exascale applications. They conclude that
“new programming models are required that support data locality, minimize data exchange and
synchronization, while providing resilience and fault tolerance mechanisms” [41, p. 21] since “no
programming solution exists that satisfies all these requirements” [41, p. 7]. Parallel programming
is clearly an important topic and this section discusses four important trends: MPI/OpenMP, PGAS,
alternative programming models, and heterogeneity.

4.6.1 MPI and OpenMP. According to Gropp and Snir [84], MPI is ubiquitously used in HPC as
communication library, often in combination with OpenMP for thread-level parallelism. They fore-
see issues in scaling MPI+OpenMP to exascale: MPI is too low-level and relies on the programmer
to use it well and OpenMP encourages fine-grained synchronization that does not scale.

Several researchers investigated scaling the MPI+OpenMP approach to exascale. Bosilca
et al. [27] investigate the scalability of MPI in practice and isolate two major considerations: paral-
lel launching and distributed management. They estimate that it is possible to launch up to 20,000
MPI ranks within 1 minute. Engelmann [65] evaluates MPI runs for up to 224 nodes using simu-
lations. Iwainsky et al. [97] experiment with the scalability of OpenMP constructs. Results show
that the OpenMP overhead is compiler-dependent and scales linearly with the number of threads,
which is undesirable for massively parallel processors. Jin et al. [99] argue that OpenMP’s flat
memory model does not match current architectures which limits performance. OpenMP syntax
extensions are proposed to control locality of tasks and data.

4.6.2 PGAS. PGAS (partitioned global address space) [84] is a possible parallel programming
solution for exascale computing. PGAS aims to ease programming of distributed systems by offer-
ing a global memory address space partitioned across the nodes. Each node can access the entire
address space (usually via direct memory access (DMA)), but locality of data is made explicit since
local access is faster than remote access. DASH [72] is a data-structure oriented library build on
the PGAS model. Chapel [89] is a PGAS-based programming language by Cray Inc. UPC++ [16]
is a library based on asynchronous PGAS, adding the ability to spawn and coordinate tasks. The
EPiGRAM project [121] aims to improve the interoperability of MPI and PGAS.

4.6.3 Alternative Programming Models. Several alternative programming platforms have been
proposed. For example, HPX [100] is a parallel task-based runtime offering a global address space,
fine-grained parallelism, lightweight synchronization mechanisms, message-driven computation,
and explicit support for hardware accelerators. The Open Community Runtime (OCR) [124] is pro-
posed as a runtime system for high-level exascale programming models, although recent develop-
ment has been scarce. StarSs [168] is a programming model that enables programmers to parallelize
existing sequential application using code annotations. Legion [90] is a scalable data-centric frame-
work for programming distributed platforms. PaRSEC [45] is a data-flow programming framework
in which dataflow dependencies can be expressed by means of a Parameterized Task Graph (PTG),
an input-size independent representation of the dataflow graph that allows nodes to determine
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data dependencies in a distributed and independent way. Yang et al. [184] consider hierarchically

tiled arrays (HTA) to be promising high-level abstraction for writing exascale applications. Van
der Wijngaart et al. [175] compare the scalability and performance of eight different programming
models having “exascale ambitions” on three different benchmarks, but found no clear winner.

4.6.4 Heterogeneity. As mentioned in Section 4.5.1, accelerators are likely to be included in
future exascale systems. According to Da Costa et al. [41], these accelerators are programmed
using either CUDA (NVIDIA GPUs) or OpenCL (OpenCL-compliant devices), but using these
low-level languages remains challenging and high-level programming models are needed. Lee
and Vetter [108] see directive-based programming models as a solution to simplify programming
GPUs. They compare five different platforms (PGI accelerator, OpenACC, HMPP, OpenMPC, and
R-Stream) and find that performance of these high-level models is competitive compared to hand-
crafted GPU programs. The Kokkos library [34] is a portable many-core programming model
that compiles to many different back-ends (e.g., OpenMP, CUDA, OpenCL). OpenMC [110] is a
programming model which provides a unified abstraction of compute units, meaning code is
portable across CPUs and accelerators. Hairi et al. [87] accelerate large-scale particle-in-cell (PIC)
simulations using OpenACC. They experiment with different parallelization strategies and show
how the optimum depends on the problem and architecture, meaning tuning of OpenACC appli-
cations is a necessity. Rasmussen et al. [150] explore how to extend Coarray Fortran with support
for accelerators.

4.6.5 Discussion. For parallel programming, there are essentially two lines of research: improv-
ing the traditional programming models (i.e., MPI+OpenMP) and developing alternative models.
MPI could potentially scale to thousands of nodes (shown in simulations and controlled experi-
ments) and PGAS is an attractive alternative. However, it is questionable whether these tools are
the right solution for exascale computing since they do not take into account many of the concerns
of exascale such as fault tolerance, energy management, heterogeneity, and accelerators. Several
programming frameworks have been proposed, such as HPX, StarSs, Kokkos, OCR, PaRSEC, but it
is unclear which model, if any, will become the de-facto standard for future systems. The lack of a
standardized programming model, combined with the increasing complexity of computer architec-
tures (see Section 4.5), means that writing exascale applications becomes an extremely challenging
task.

4.7 System Software

System software is the software that is situated in-between the hardware and application code. It
is important for scheduling jobs and managing resources. We discuss three important directions
relevant for exascale computing: operating systems, system management, and virtualization.

4.7.1 Operating Systems. One research direction is on LWKs (light-weight kernel) for exascale
systems: operating systems that reduce overhead by providing minimal functionality and services.
Giampapa et al. [81] describe their experience with the LWK on Blue Gene/P, carefully describe the
tradeoffs between light-weight and full kernels, and discuss considerations for the future. Gerofi
et al. [77] explore a hybrid solution that runs a LWK and FWK (full-weight kernel) side-by-side:
applications run on the LWK and additional features are accessible through the FWK. Weinhold
et al. [181] propose a full system architecture for exascale computers incorporating LWKs. Despite
these efforts, the diversity in operating systems in the TOP500 is decreasing [4] and the list for June
2019 shows over 95% run a conventional Linux-based solution. For instance, Argo NodeOS [144] is
a Linux-based system specifically designed for exascale computing.
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4.7.2 System Management. PanDA [119] is a large-scale workload management system. Al-
though originally developed for the ATLAS experiment at the Large Hadron Collider, the next
generation of PanDA targets a wider audience. Argo [143] (project by Argonne National Labo-
ratory) aims to develop a workload manager and OS for exascale systems. Argo divides the sys-
tem into enclaves: sets of resources that can be controlled and monitored as a whole (e.g., power
management, performance monitoring, fault tolerance). These enclaves form a hierarchy with the
complete system at the root to enable resource management at different levels.

4.7.3 Virtualization. While virtualization completely dominates cloud computing, it is still a
relatively rare sight in HPC clusters, although there is research into how to use these techniques
for HPC. For instance, Pickartz et al. [145] argue that application migration has benefits for ex-
ascale computing (e.g., fault tolerance, maintenance, load balancing) and propose a method to
migrate MPI processes using virtual machines (VM). Ouyang et al. [138] describe how to achieve
performance isolation by running multiple VMs on the same physical machine, which is needed for
concurrent jobs on one node (e.g., in-situ analysis).

Containerization is similar to virtualization in that it provides an isolated environment for run-
ning application software, with the difference being that containers run directly on host’s operat-
ing system instead of a VM. This minimizes overhead and makes it an attractive technology for
HPC. For instance, the Argo NodeOS [189] uses containers to isolate jobs and manage resources.

4.7.4 Discussion. For system software, important topics are operating systems, workload man-
agers (e.g., Argo project, PanDA), and virtualization. Linux is likely to remain the dominant op-
erating system. Workload managers and virtualization could benefit system administrators and
ease deployment of complex applications. However, these topics do not appear to be the major
roadblocks in reaching exascale computing.

4.8 Scientific Computing

Exascale computing will have a major impact on many computational sciences, although existing
applications likely need to be adapted to exploit this immense computational power. For instance,
Oak Ridge National Laboratory selected 13 applications to be prepared for exascale computing by
adapting them for the Summit supercomputer [6]. These codes are from diverse fields including
climate science, quantum chemistry, biophysics, seismology, and plasma physics. In this section,
we discuss the impact of exascale computing for scientific applications and algorithmic methods.

4.8.1 Scientific Applications. Bhatele et al. [21] analyze the architectural constraints to reach
one exaflop for three scientific applications: molecular dynamics, cosmological simulation, and fi-
nite element solvers. They conclude that network performance (low latency and high bandwidth) is
crucial and emphasize research into communication-minimizing algorithms. Reed and Hadka [152]
demonstrate that large-scale multi-objective evolutionary algorithms (MOEA) can be used in water
management and predict performance at exascale. Páll et al. [139] discuss the challenges in mov-
ing GROMACS, a package for bio-molecular simulations, to exascale and they discuss issues such
as parallelization schemes, algorithms, and profiling, but also lessons learned from open-source
software development. Alya [177] is a multi-physics simulation code aimed at exascale comput-
ing and performance results for up to 100.000 processors are presented. Atlas [47] is a library
for large-scale weather/climate modeling with exascale ambitions. OpenMC [62] is a software
package for Monte Carlo particle transport simulations that should scale to exaflops. Lawrence
et al. [107] argue that new libraries and tools are needed for weather/climate models to make ef-
fective use of future exascale systems. The Square Kilometer Array (SKA) [29] is a next-generation
radio telescope consisting of thousands of antennas spread out over South Africa and Western
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Australia. Broekema et al. [29] estimate that real-time processing of the sensor data requires sev-
eral exaflops.

4.8.2 Scalable Algorithms. There is much research into how parallel algorithms would perform
at exascale and how to improve their scalability. Czechowski et al. [43] discuss how 3D fast Fourier
transforms (FFTs) would perform at exascale. They conclude that all-to-all inter-node communica-
tion is the major bottleneck, but intra-node communication also plays a critical role due to limited
main memory bandwidth. Gahvari and Gropp [73] apply performance models to study two exas-
cale use-cases (FFT and multigrids) and conclude that scalability of these applications is limited by
interconnect bandwidth. Hasanov et al. [88] present a hierarchical approach to distributed matrix
multiplication. Evaluation on existing systems (Grid500 and BlueGene/P) and prediction for future
exascale systems show better performance than the state-of-the-art. Gholami et al. [78] compare
the performance of different large-scale Poisson solvers (FFT, FMM, GMG, and AMG). Evaluation
up to ∼220,000 cores show that the methods scale well and differences are application-dependent.
Ghysels et al. [80] analyze scalability of the general minimal residual method (GMRES) and find that
global all-to-all communication is the main bottleneck. Their pipelined GMRES variant hides this
communication cost and they predict speedups up to 3.5×, although empirical results are absent.
Dongarra et al. [55] describe a hierarchical QR factorization algorithm that scales better than ex-
isting QR factorization implementations. Dun et al. [62] prepare OpenMC for exascale computing
by incorporating global view arrays.

4.8.3 Discussion. There are many computational domains that could benefit from exascale sys-
tems. Studies on the scalability of current applications make clear that data movement (both intra-
and inter-node), not computation, will be the limiting factor. Developments in network and mem-
ory technology would be beneficial.

5 LIMITATIONS

In this section, we discuss the threats to the validity of our work. Every literature study has limi-
tations and this one is no exception.

We utilized Scopus for our literature search since it covers most publishers common in HPC.
However, despite Scopus’ extensive database, it does not index non-peer-reviewed contributions
such as preprints (e.g., arXiv.org, personal homepages) or technical reports (e.g., osti.gov, science.
gov, cds.cern.ch). Including these contributions could be an interesting extension to our work, but
quality control would be essential since not all documents have been reviewed. Several landmark
studies (Section 2) were deliberately chosen from non-peer-reviewed sources as compensation.

For our search query, we assume that work is related if it mentions the literal term exascale or
extreme-scale in the title, abstract, or author-specified keywords. However, a small fraction of
relevant publications might be excluded due to two reasons. The first reason is that authors might
mention exascale computing in the full text, but refer to it in the title/abstract using alternative
descriptions (e.g., “next-generation supercomputer”, “future platforms”, “post-petascale systems”,
“quintillion FLOPS”). We experimented with various search queries, but were unable to identify
additional search terms that would extend the results while not also increasing our scope. The
second reason is that some relevant publications might not mention exascale computing at all
since the authors were (at the time) unaware of the relevance. However, we argue that, even when
the original publication is not included in our analysis, later work that expands upon those ideas
will be included. Overall, we believe our search query to be concise and precise.

For topic modeling, we selected the method based on non-negative matrix factorization

(NMF) [161, 183]. Besides NMF, we also experimented with Latent Direchlet Allocation (LDA) [24]
(poor semantic quality and sensitive to input parameters), Latent Semantic Analysis (LSA) [61]
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(decent quality but negative weights made interpretation difficult), and hierarchical cluster-
ing [153] (does not capture articles touching upon multiple topics).

For the qualitative literature analysis, we manually selected publications from the search results
related to each research theme. This selection was made based on the title/abstract and topic dis-
tribution while also taking into account year of publication (favoring newer work) and number of
citations (favoring highly cited work). This selection method is subjective and requires interpreta-
tion of the work. However, we argue that this combination of data-driven analysis and qualitative
analysis provides a balance between objective and subjective views on exascale research.

6 CONCLUSION

In this work, we have explored and mapped the landscape of exascale research. Exascale computing
is a broad topic that touches upon many different aspects of HPC and we captured the important
trends using a three-stage approach. First, we identified the challenges and opportunities of ex-
ascale based on various landmark studies. Second, we used data-driven techniques to analyze the
large collection of related academic literature. Finally, we identified eight research themes and dis-
cussed the trends and progress within each area of research. While the three-stage methodology
itself was not the research focus of this manuscript, we believe our data-driven approach to be a
promising tool for literature reviews.

Overall, great progress has been made in tackling two of the major exascale barriers: energy
efficiency and fault tolerance. Energy efficiency has improved dramatically with an increase of
∼35× over the past decade, meaning we are nearing the point where an exascale system would be
feasible in terms of energy consumption (i.e., 20MW for one exaflop). Fault tolerance is another
topic that has seen much attention with major developments in checkpoint-restart protocols, data
corruption detection, and fault understanding.

As we move forward, we foresee that these two barriers will slowly be overshadowed by the
other two challenges: software complexity and data volume. For the software complexity challenge,
we see a lack of suitable programming models that simplify the development of scalable scien-
tific applications. Programming is still often done using low-level solutions, such as Fortran and
MPI. However, exascale applications must handle more and more complex issues such as power
management, fine-grained fault tolerance, in-situ processing, topology-aware routing/scheduling,
and heterogeneity. For the data volume challenge, we observe a growing gap between comput-
ing power of processors and data bandwidth (i.e., memory, storage, network). While we expect
that computation (i.e., floating-point operations per second) will become cheaper over time, data
movement (i.e., bytes per second) might not grow at the same pace and become relatively more
expensive. Novel hardware technology (i.e., accelerators, memories, networks) are promising so-
lutions to the data movement challenge, but they conflict with the software complexity challenge
since they introduce additional complication when programming these systems.

Thanks to the substantial body of exascale research that has already been done, from where we
are today, we estimate an evolutionary approach should be sufficient to eventually reach exaflop
performance, but the major challenge for subsequent generations will be how we are actually going
to use this massive computational power effectively and efficiently to advance scientific research.

APPENDICES

A PREPROCESSING OF DOCUMENTS

As is common in natural language processing [10], topic modeling requires preprocessing of
the documents. We have used a standard preprocessing pipeline that we will demonstrate using
Cappello et al. [32] as an example. First, the title and abstract are extracted and concatenated.
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Toward Exascale Resilience Over the past few years resilience has became a
major issue for high-performance computing (HPC) systems, in particular in the
perspective of large petascale systems and future exascale systems.

Second, punctuation (i.e., dashes, commas, brackets) is replaced by whitespace and the remain-
ing characters are converted to lowercase.

toward exascale resilience over the past few years resilience has became a major
issue for high performance computing hpc systems in particular in the perspective
of large petascale systems and future exascale systems

Third, neutral words that do not contribute to the content are removed (e.g., “this”, “an”, “year”,
“author”, “propose”). This list of stopwords was manually compiled by the authors.

toward exascale resilience resilience major issue performance computing systems
particular perspective petascale systems future exascale systems

Words that are rare (occur in less than 5 documents) are removed. This removes names and
other unique words.

exascale resilience resilience issue performance computing systems petascale
systems future exascale systems

Words that occur frequently (more than 75% of the documents) are removed. For our dataset,
frequent words are the following: exascale, computing, application, performance, and system. They
can be omitted since they contribute little to differentiating the documents.

resilience resilience major issue particular perspective petascale future

Words are stemmed using Porter’s algorithm [146] (e.g., the algorithms maps “communicating”,
“communicate” and “communication” to their stem “commun”).

resili resili major issu particular perspect petascal futur

The document is converted into a term frequency vector.

futur: 1, issu: 1, major: 1, particular: 1, perspect: 1, petascal: 1, resili: 2

As is common in natural language processing [10], the terms are weighed using TF-IDF [155]
to reflect how important each word is to the entire collection. This final vector is the input to the
topic modeling algorithm.

futur: 0.69, issu: 1.8, major: 2, particular: 1.1, perspect: 1, petascal: 3.2,
resili: 7.2

For results presented within this manuscript, words are manually “un-stemmed” for improved
readability (e.g., “resili” is mapped back to “resilience”).
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B EXTENDED RESULTS OF LITERATURE ANALYSIS

Fig. B.1. Number of publications based on au-

thor affiliations (top 75). Colors indicate conti-

nent as in Figure 5.

Fig. B.2. Number of publications per publica-

tion venue (top 75).
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Fig. B.3. Number of publications per country (top 50), excluding United States (involved in 62% of all publi-

cations).

Table B.1. Top 10 Publications in the Citation Network (Figure 8)

Title Authors Year
Citations (within

dataset)
The International Exascale Software Project
Roadmap [54]

Dongarra et al. 2011 128

Exascale Computing Technology Challenges [162] Shalf et al. 2010 80
Toward Exascale Resilience [32] Cappello et al. 2009 72
Evaluating the Viability of Process Replication
Reliability for Exascale Systems [68]

Ferreira et al. 2011 59

Fault Tolerance in Petascale/Exascale Systems:
Current Knowledge, Challenges and Research
Opportunities [31]

Cappello et al. 2009 49

Addressing Failures in Exascale Computing [166] Snir et al. 2014 46
Toward Exascale Resilience: 2014 Update [33] Cappello et al. 2014 43
Detection and Correction of Silent Data Corruption
for Large-Scale High-Performance Computing [70]

Fiala et al. 2011 35

Exascale Computing and Big Data [151] Reed et al. 2015 32
Exploring Hardware Overprovisioning in
Power-Constrained, High Performance
Computing [141]

Patki et al. 2013 26

The number of citations is measured as the number of publications within our dataset that reference the given publication.
In other words, it is the number of incoming links in Figure 8.
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Fig. B.4. Visualization of the collaborations network (top 50). Nodes represent institutes with the number

of shared publications indicated by the node size. Edges represent collaborations with the number of shared

publications indicated by the edge width. Colors indicate continent as in Figure 5.

ACM Computing Surveys, Vol. 53, No. 2, Article 23. Publication date: March 2020.



The Landscape of Exascale Research: A Data-Driven Literature Analysis 23:31

Table B.2. Dominant Words (Top 20) per Detected Topic from Figure 9

# Dominant words

A software, development, project, challenges, hardware, science, research, codesign, technology, community,
design, architectures, supercomputers, future, years, infrastructure, scientific, tools, components, advanced,

B energy, consumption, efficiency, savings, frequency, tuning, datacenter, techniques, optimization, runtime,
consume, improve, aware, dvfs, dynamic, voltage, measurements, metrics, evaluation, tools,

C failure, logging, recovery, fault-tolerance, resilience, message, overhead, techniques, protocol, event, nodes,
prediction, execution, processing, tolerant, check, reliability, fail, mean, scale,

D data, bigdata, compression, processing, analysis, scientific, science, distributed, analytics, volume, intensive,
stream, query, centric, movement, analyze, techniques, cloud, staging, store,

E network, topology, interconnect, routing, traffic, dragonfly, torus, nodes, links, latency, bandwidth,
workloads, noc, router, design, packet, simulation, switch, radix, diameter,

F io, nodes, collective, patterns, filesystem, burst, coordinated, optimization, access, tuning, buffer, parallel,
staging, requests, adios, write, improve, layer, file, variability,

G checkpoint, restart, overhead, compression, fault-tolerance, reduce, level, scheme, intervals, optimization,
incremental, state, coordinated, mechanism, multilevel, uncoordinated, future, increasing, protocol,
filesystem,

H gpu, cpu, heterogeneous, accelerators, hybrid, nvidia, processingunit, kernels, graphics, cuda, code,
supercomputers, openacc, devices, implementation, evaluation, nodes, important, research, fmm,

I errors, detection, corruption, detectors, soft, sdc, correct, silent, resilience, recovery, bit, rates, reliability,
latent, protection, dram, injection, false, overhead, flipping,

J power, consumption, budget, capping, limited, job, supercomputers, efficiency, constraints, constrained,
optimization, bound, management, overprovisioning, level, control, achieving, monitoring, study, improve,

K algorithms, parallel, solver, methods, problem, matrix, scalability, linear, scale, implementation, sparse,
multigrid, equations, grid, hierarchical, algebra, iterative, numerical, solve, efficiency,

L scheduling, task, job, resources, allocation, management, distributed, heuristics, execution, utilization,
dynamic, heterogeneous, workloads, aware, shared, many, optimization, dispatching, algorithms, stealing,

M simulation, scale, code, physics, numerical, turbulence, mesh, flow, fidelity, resolution, framework,
multiscale, plasma, particle, running, multi, cores, fusion, coupled, generation,

N mpi, message, threads, processing, openmp, implementation, hybrid, interface, passing, cores, scalability,
standard, manycore, rank, matching, millions, ulfm, benchmarks, comm, parallel,

O visualization, in situ, analysis, post, processing, data, simulation, interactions, image, disk, extract, savings,
rendering, explore, tools, damaris, scientists, raw, parallel, traditional,

P model, prediction, climate, earth, analytics, parameters, atmospheric, resolution, cloud, weather, variability,
accurate, different, e3sm, version, water, parameterization, ocean, author, execution,

Q optical, photonic, interconnect, technology, chip, silicon, switch, integrated, bandwidth, low, circuit, devices,
datacenter, density, electrical, enable, cmos, board, 3d, requirements,

R communication, global, message, pgas, onesided, overlap, protocol, collective, trace, extrapolation, improve,
operations, scheme, latency, distributed, characteristics, primitives, interface, potential, replay,

S storage, metadata, filesystem, server, object, devices, tier, data, scalability, reliability, raid, file, write,
management, disk, hierarchy, prototype, design, centric, stack,

T kernels, os, linux, virtual, lwk, lightweight, operations, monitoring, nodes, cluster, environment, running,
noise, runtime, enclave, provides, multi, machines, execution, host,

U programming, parallel, runtime, code, language, model, task, programmers, grain, execution, abstraction,
level, pgas, support, compiler, portable, fine, openmp, threads, development,

V workflows, scientific, management, proven, tools, analysis, complex, metadata, analytics, science, end,
services, execution, discovery, experiments, scale, environment, monitoring, online, optimization,

W fault, resilience, tolerant, injection, fault-tolerance, redundancy, transient, presence, detection, techniques,
tools, solution, propagation, grid, overhead, components, monitoring, blocks, expected, extensions,

X memory, cache, bandwidth, hierarchy, access, dram, locality, shared, cores, architectures, capacity, improve,
reuse, coherence, nvram, contention, processors, study, hardware, chip,

Y architectures, heterogeneous, accelerators, intel, cluster, reconfigurable, xeon, manycore, platforms,
processors, phi, deep, fpga, mic, cores, nodes, hardware, booster, project, efficiency,
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Fig. B.5. Example of topic distribution for 20 randomly selected publications.
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Fig. B.6. Location in embedding for the 20 publications from Figure B.5.
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