Human-centric interpretability of deep learning for digital pathology Mara Graziani

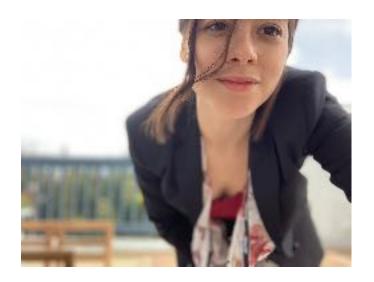
PhD student, Hes-so Valais and UniGe

FACULTY OF SCIENCE Department of Informatics

E-talk @Swiss Digital Pathology

17.09.2020

Who am I?



PhD focus: Interpretability of Deep Learning for Medical Imaging

Started in: November 2017

Funded by: EU H2020 PROCESS

mara.graziani@hevs.ch

Cambridge, MA (Summer 2018)

2013-2015 B.En. in IT Engineering at Sapienza
2015-2016 1y of MSc in Al and Robotics at Sapienza
2016-2017 MPhil in Machine Learning at Univ. of Cambridge
2017- now PhD student at Univ. of Geneva

C in F M 8 R⁶

My research question

Can we generate human-centric we use them to improve model performance?

explanations of deep learning and can

My research question

Can we generate human-centric explanations of deep learning and can we use them to improve model performance?

Motivation:

Ease the interaction, improve models with little extra complexity, debug models, GDPR* right for explainability, improve trust and accountability, remove bias or data memorization, generate answers to "why" questions on model behaviour and decisions.

Hes·so/// WALAIS * General Data Protection Regulation

Outline

- Presentation of research in this direction:
 - Evaluation of visualization tools
 - Concept-based interpretability with Regression Concept Vectors
 - Guiding CNNs with user-defined features
- * Remarks
- Conclusions

* Introduction and definition of human-centric interpretability for deep learning

Interpretability: What and why?

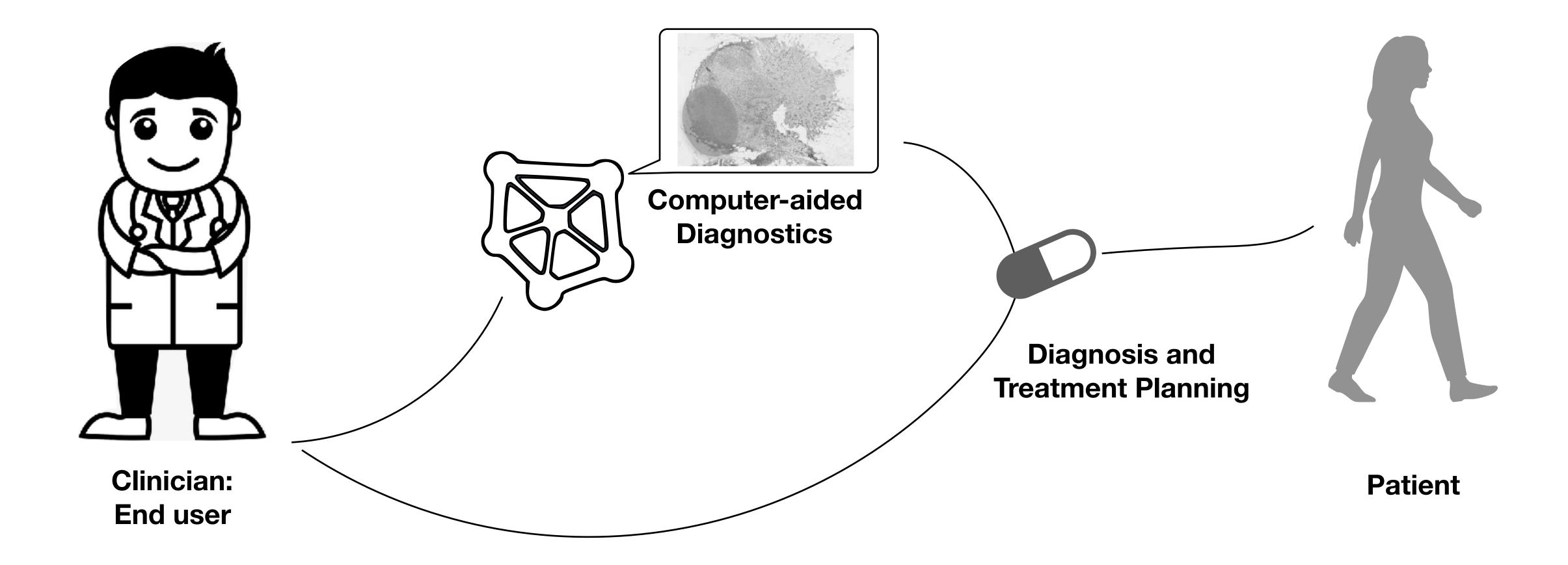
human*."

* not all humans are familiar with Machine Learning

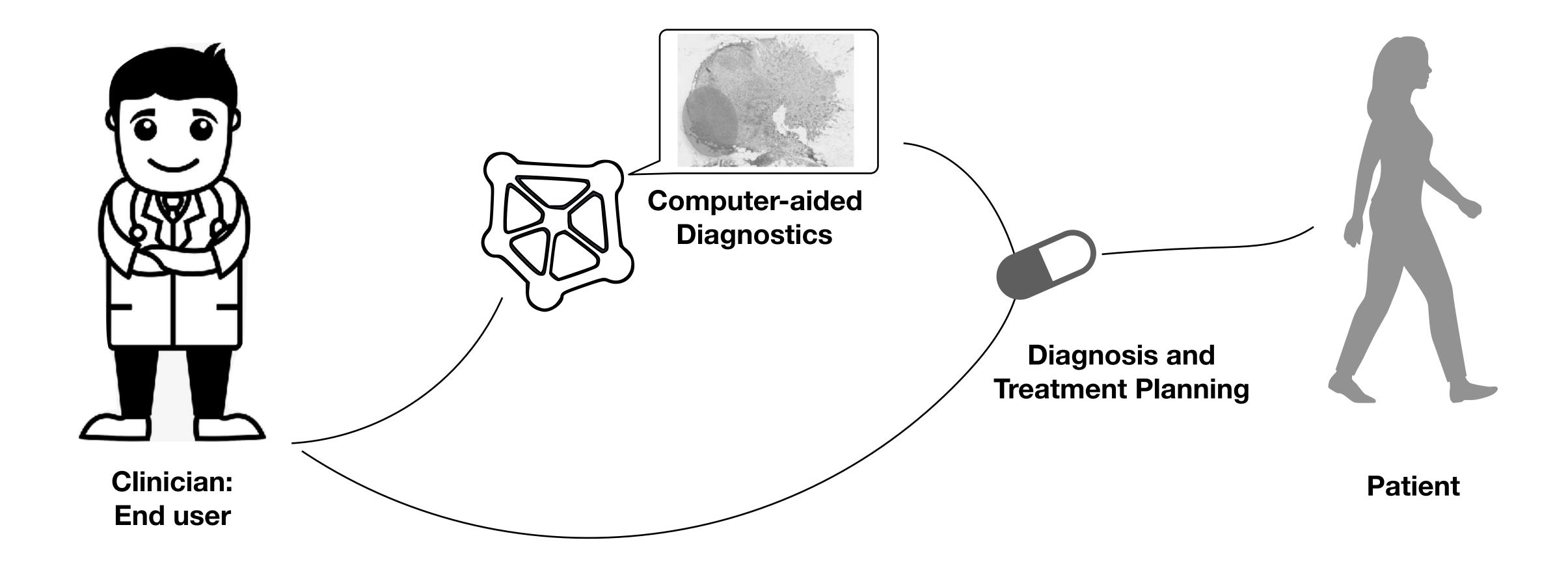
"Interpretability is the ability to explain or to present in understandable terms to a

[Kim et al., 2018]

Example: Human-Centric Interpretability for Cancer Diagnosis

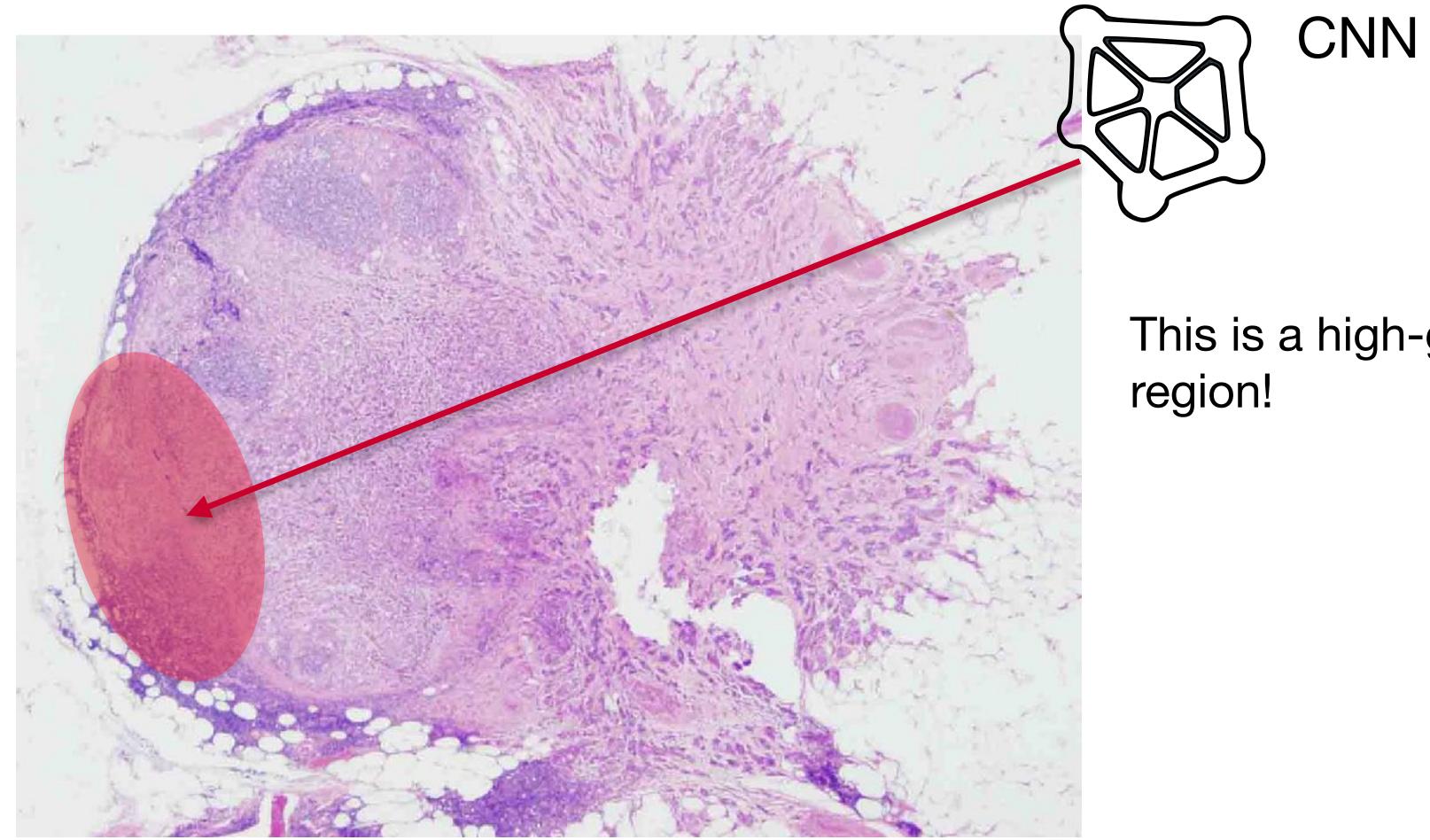


Example: Human-Centric Interpretability for Cancer Diagnosis



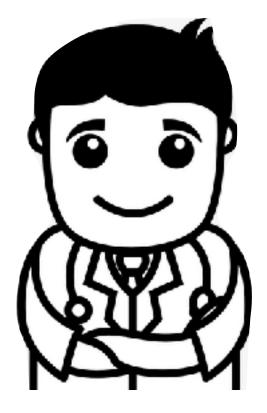
Scenarios: 1. CNN for localization

Clinician: End user

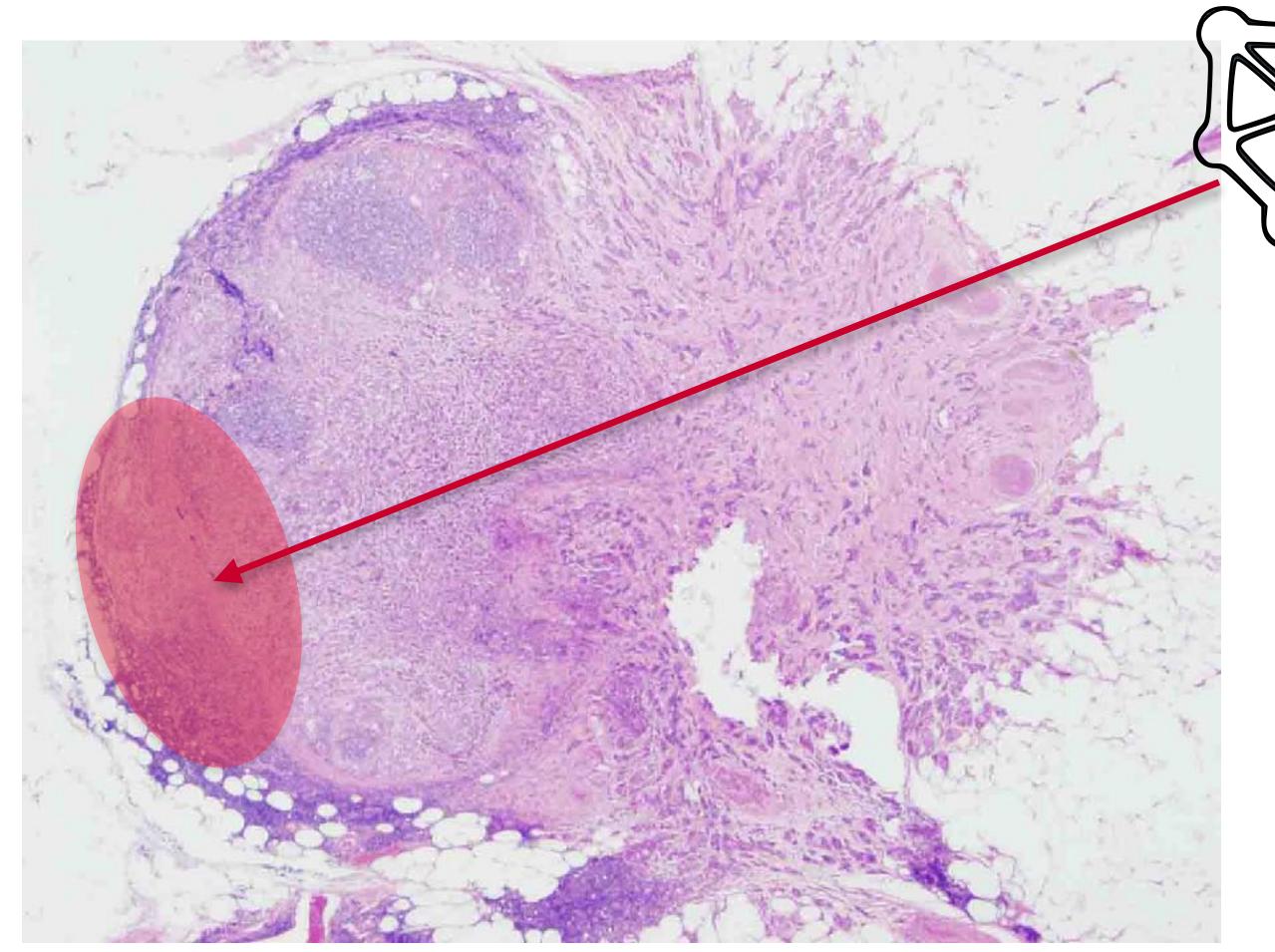


This is a high-grade tumor

Scenarios: 2. CNN for localization with explanations of abnormalities



Clinician: End user



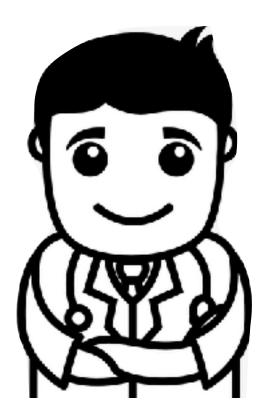
CNN With Interpretability

This is a high-grade tumor region:

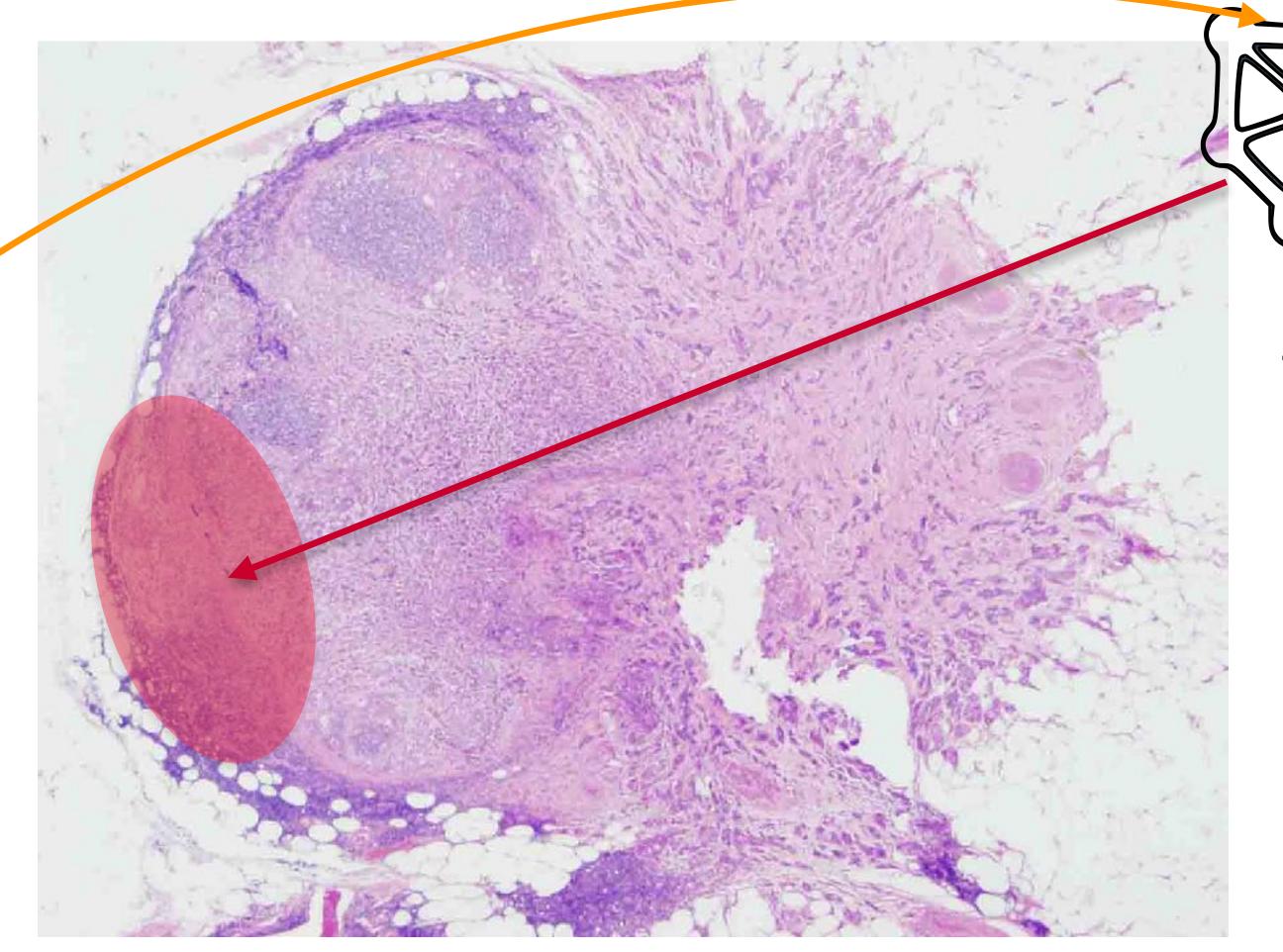
- The nuclei are 30%
 larger than non-tumor average
- The nuclei texture appears vesicular (contrast is 40% larger than average)

Scenarios:

3. CNN for localization with explanations of abnormalities and with guided feature learning by user-input



Clinician: End user



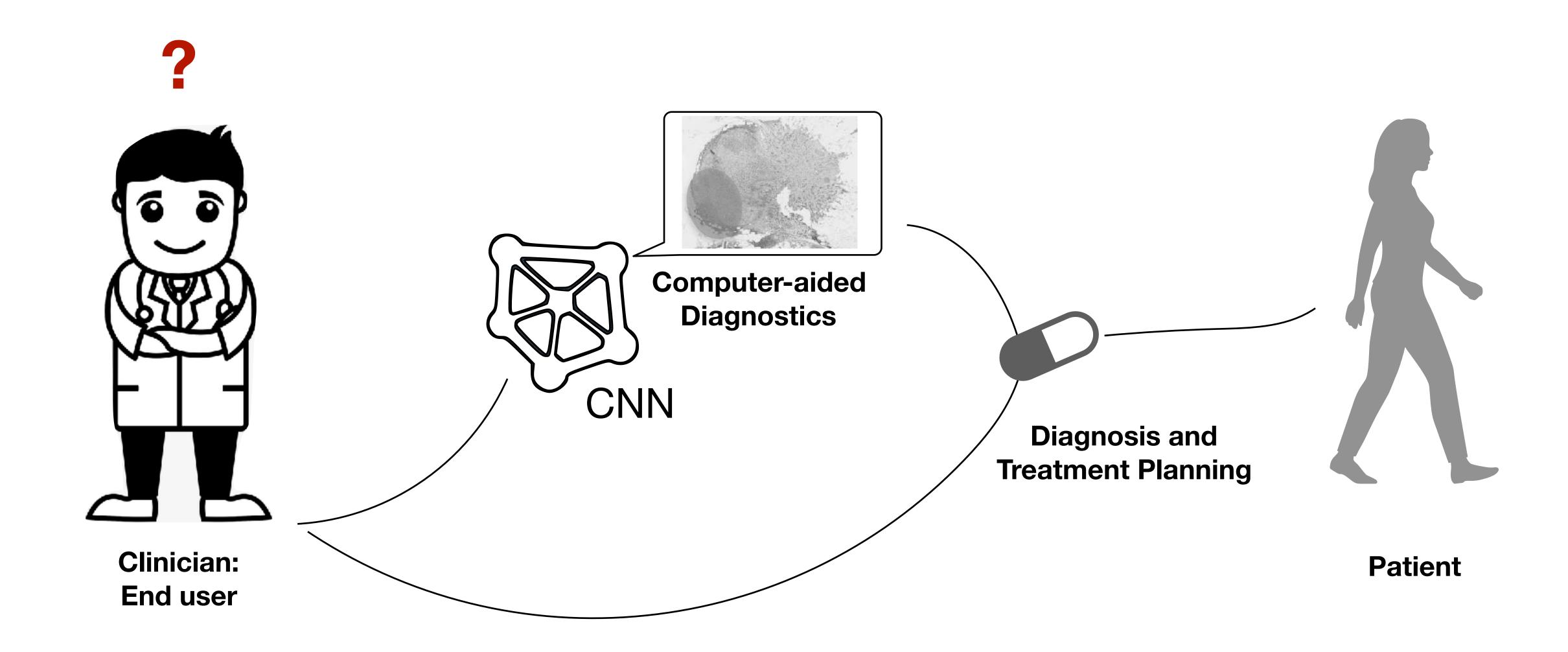
Guided CNN With Interpretability

This is a high-grade tumor region:

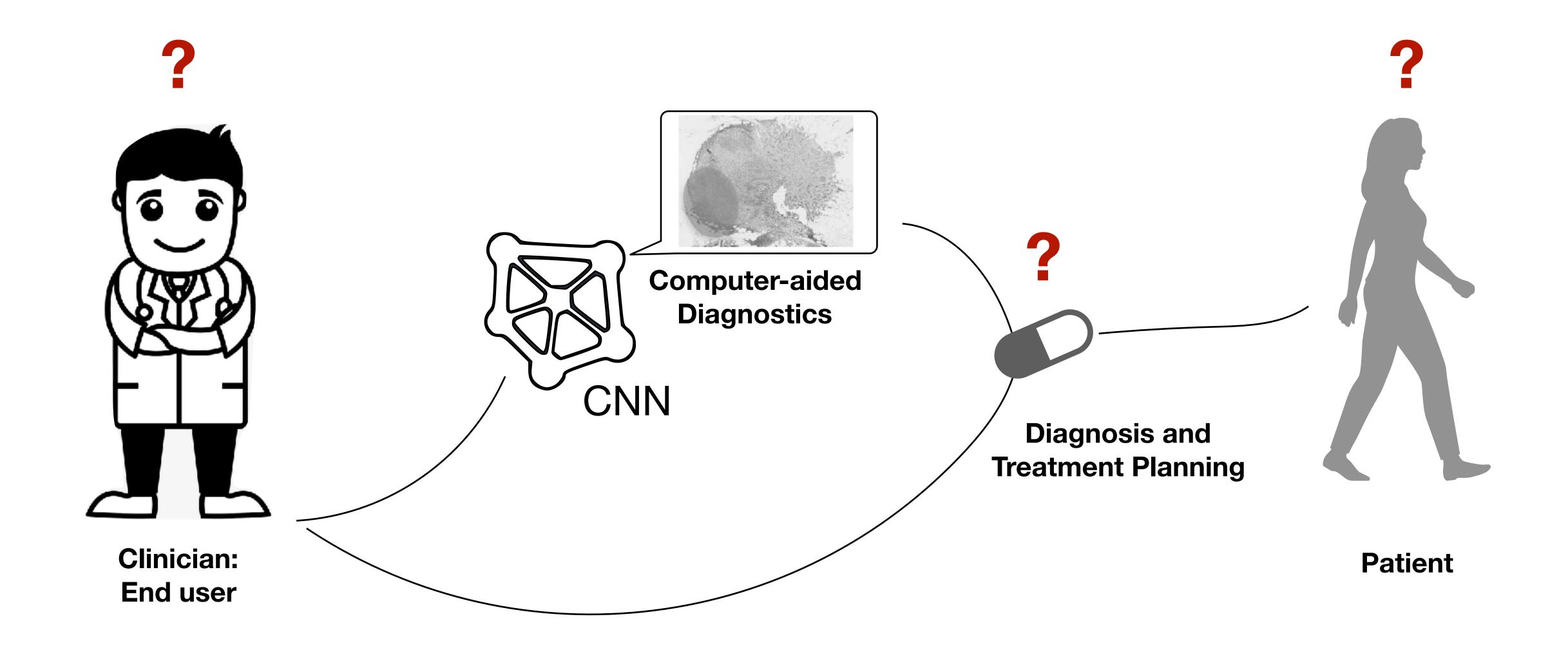
- 1. The cells are 30% larger than non-tumor average
- 2. The nuclei texture appears vesicular (contrast is 40% larger than average)

Let's analyse the three scenarios

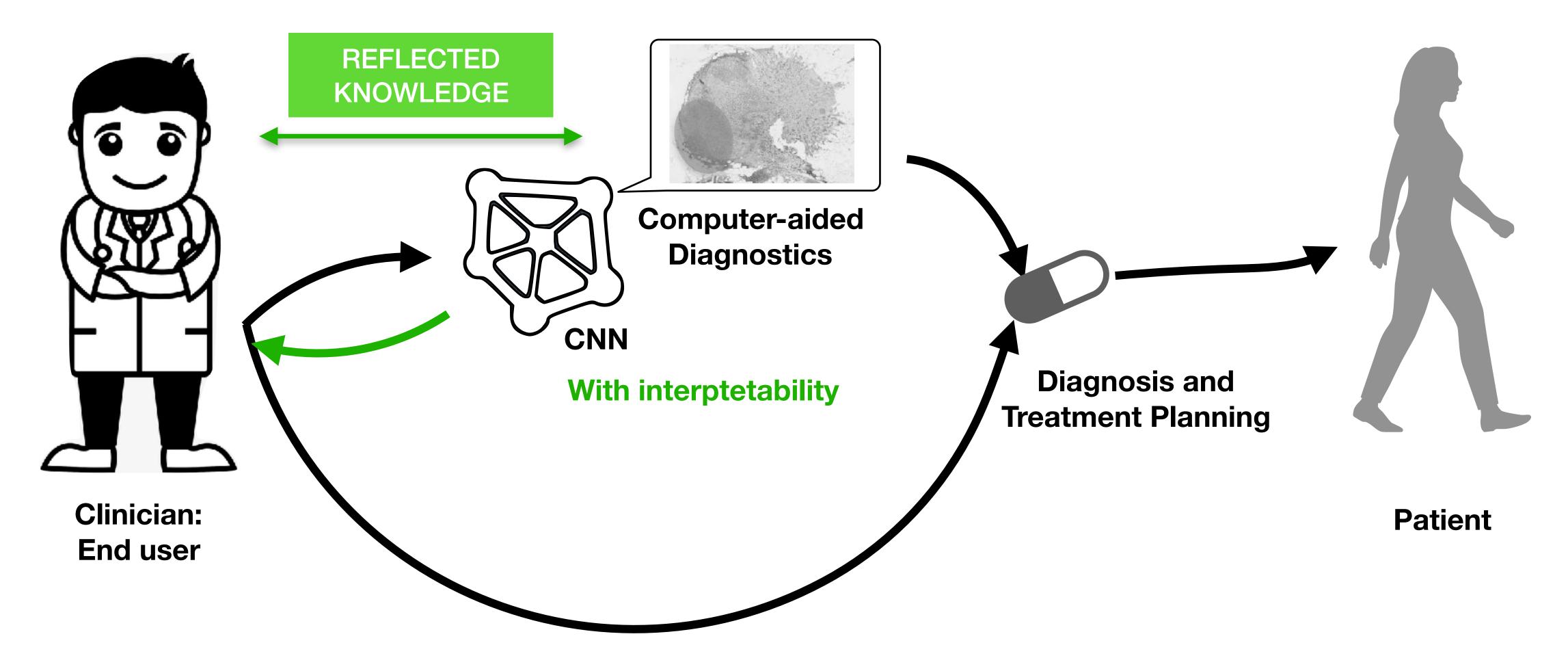
Scenarios: 1. CNN for localization



Scenarios: 1. CNN for localization



Scenarios: 2. CNN for localization with explanations of abnormalities

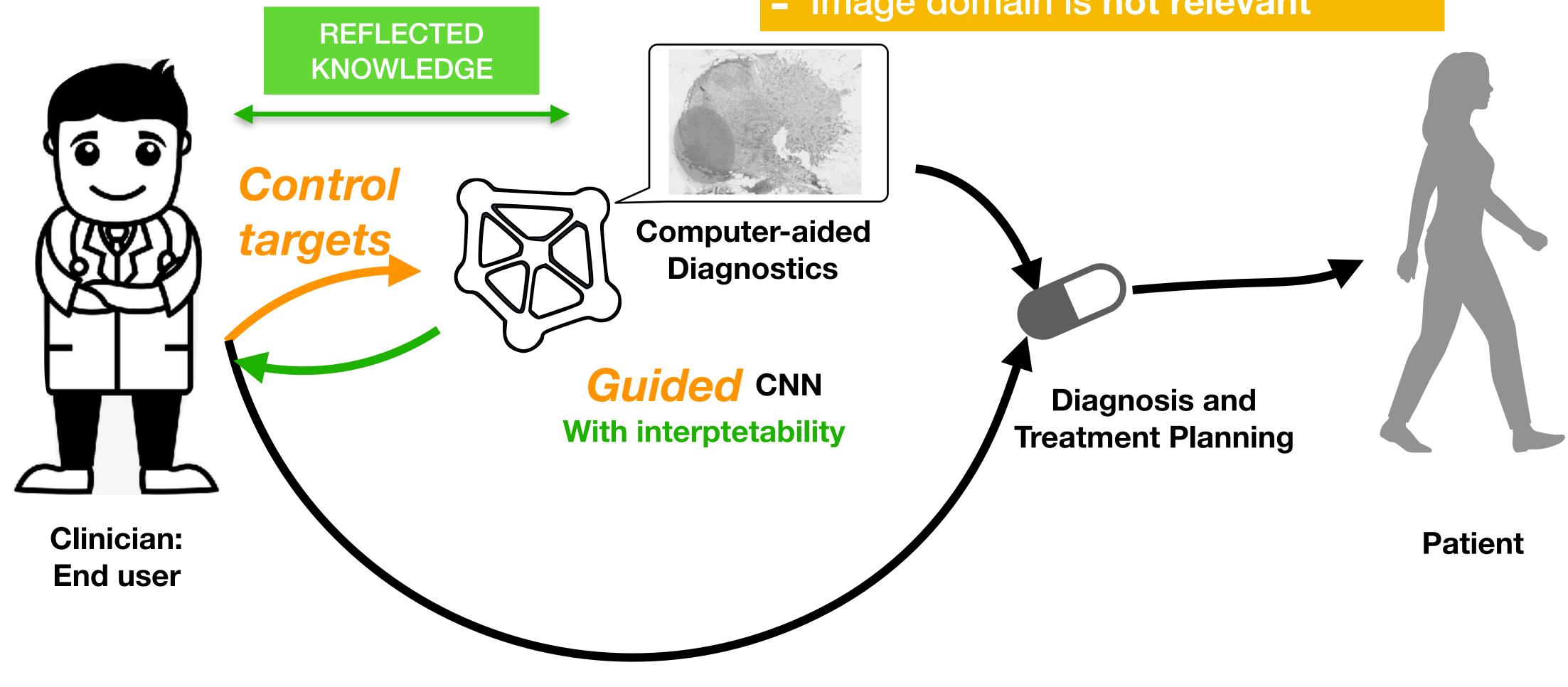


Al and improves the quality of the diagnosis [Carrie J.C. et al., 2019].

- Explaining the decisions of a complex model in understandable terms by doctors eases the interaction with

Scenarios:

3. CNN for localization with explanations of abnormalities and with guided feature learning by user-input Control Targets:



Control Targets:
Nuclei size is relevant
Image domain is not relevant

To summarize

- unanswered questions about the output (scenario 1)
- * Interpretability should help the clinician verify that the CNN decision making respects the guidelines and knowledge in the domain (scenario 2).
- * The expertise of clinicians is a valuable input for the network training, that **could** be **guided** to ensure that certain visual features are taken into account and others are not (scenario 3).

Human-centric **DL** interpretability

* CNNs for tumor localization can support pathologists in the diagnosis, but may leave them with

A tool that **supports** the pathologists in making decisions by providing explanations and allowing the introduction of **feedback** to refine training

Our work in this direction

Evaluation of visualization methods for histopathology

- Concept-based interpretability of CNNs
- Guidable CNNs

Feature-attribution: Evaluation of visualization tools

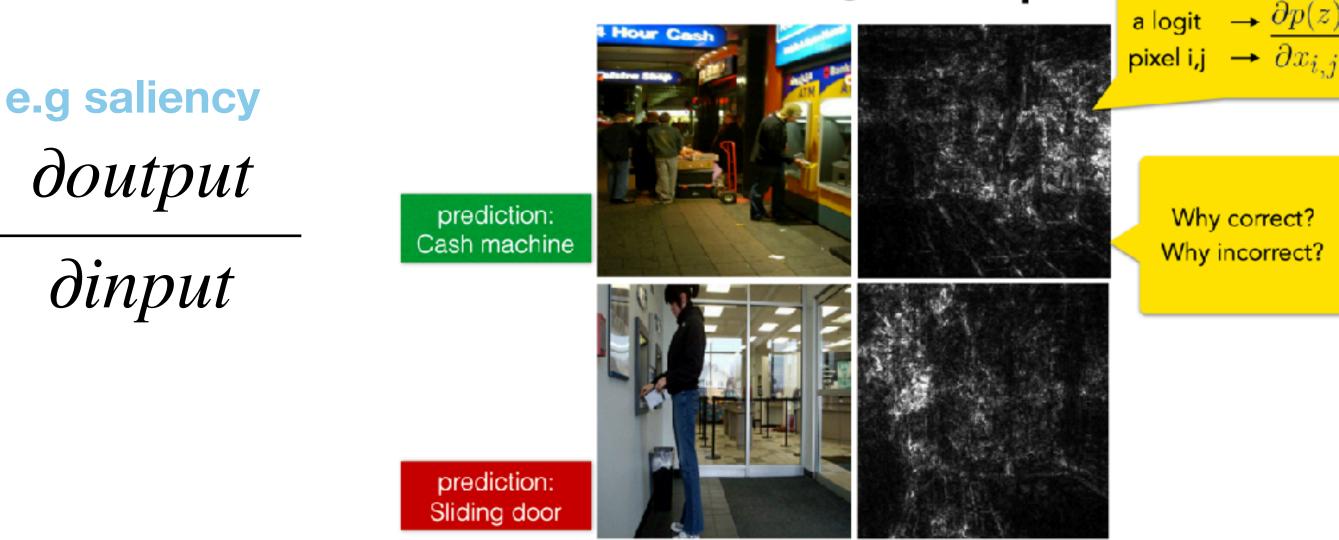
ATTĔĨ network 11es relevant[•] att OS propagation integrated

Issues:

- Difficult Abstraction

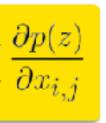
One of the most popular interpretability methods for images:

Saliency maps

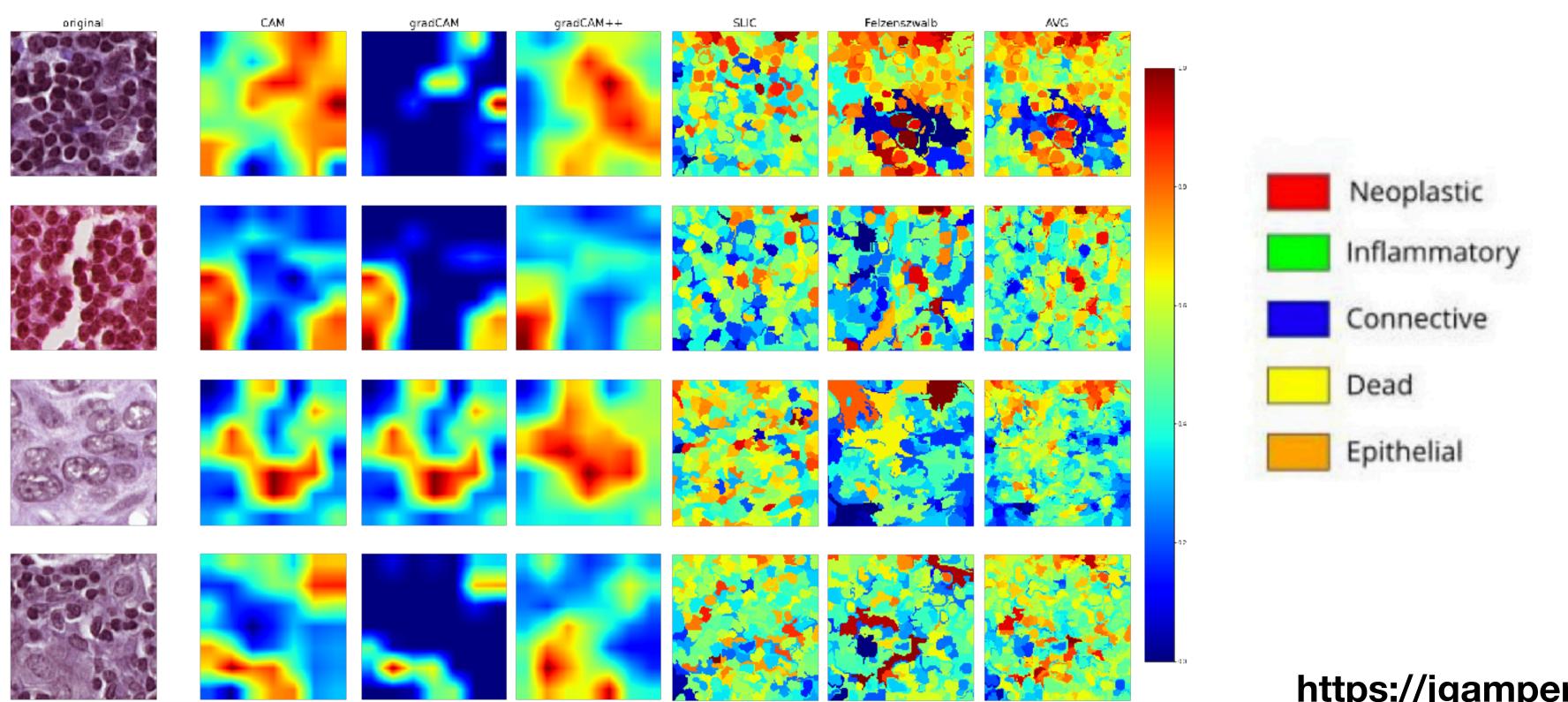


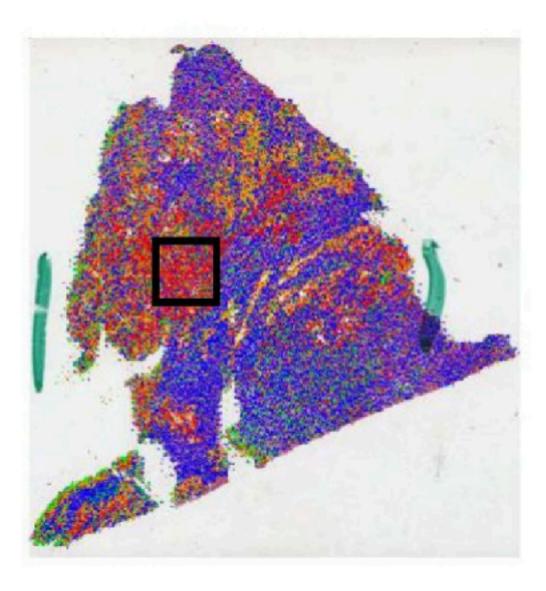
Slide credits: B. Kim

- Sometimes Ambiguous [Kim et al., 2018] - Consistency issues [Adebayo et al., 2018]



Feature-attribution: Evaluation of visualization tools





https://jgamper.github.io/PanNukeDataset/

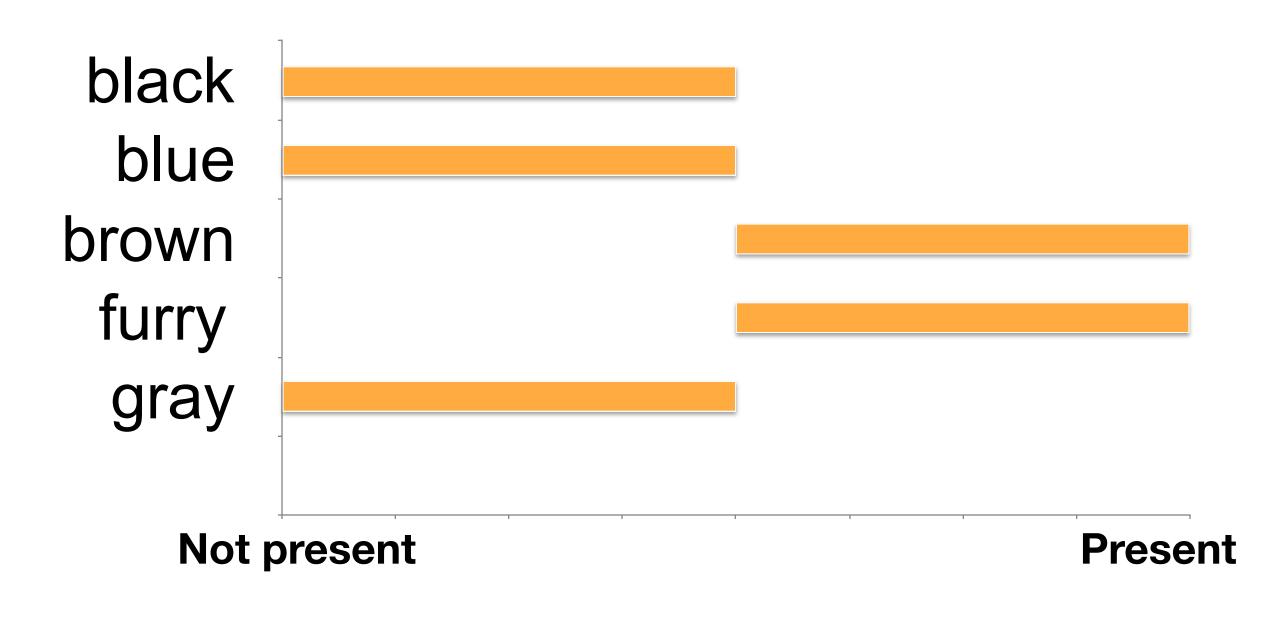
Our work in this direction

- Evaluation of visualization methods for histopathology
- Concept-based interpretability of CNNs
- Guidable CNNs

hods for histopathology ty of CNNs

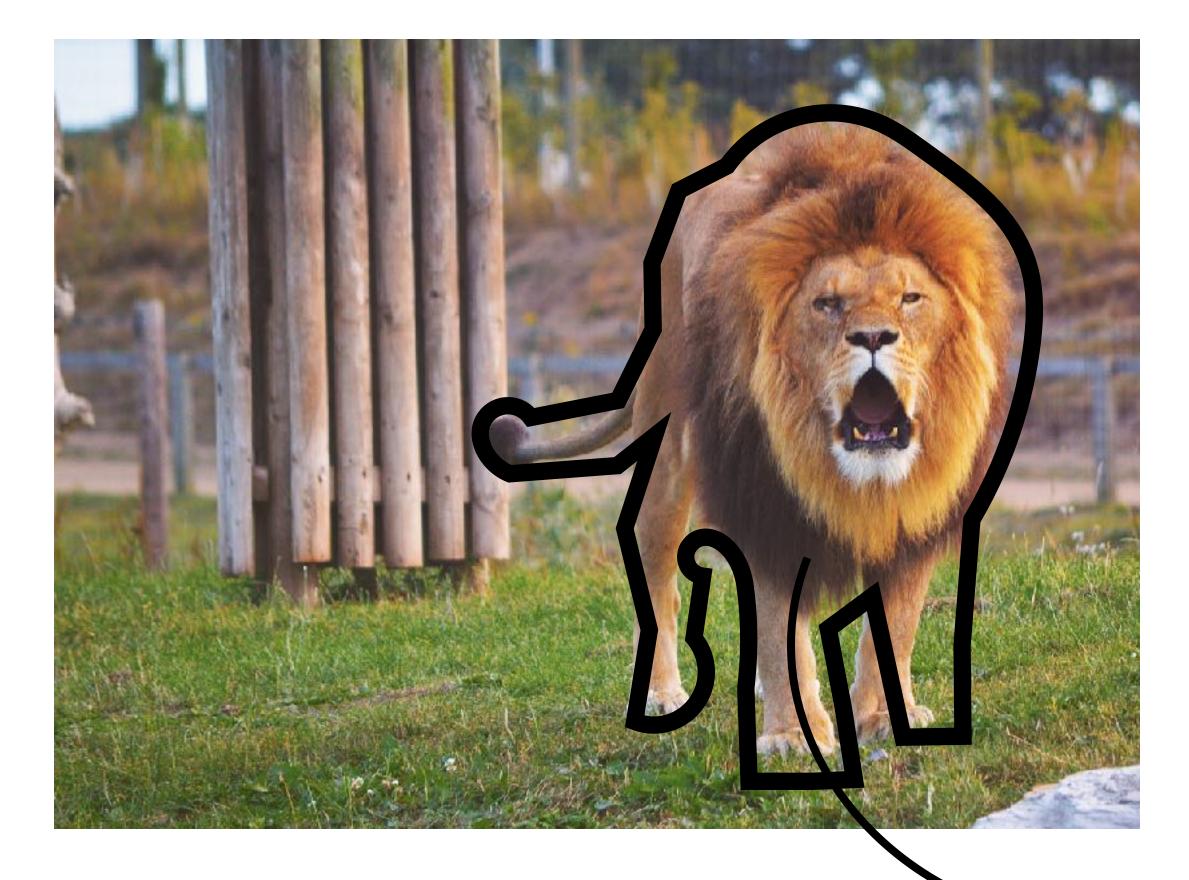
Concept-based interpretability: Concept attribution with Regression Concept Vectors

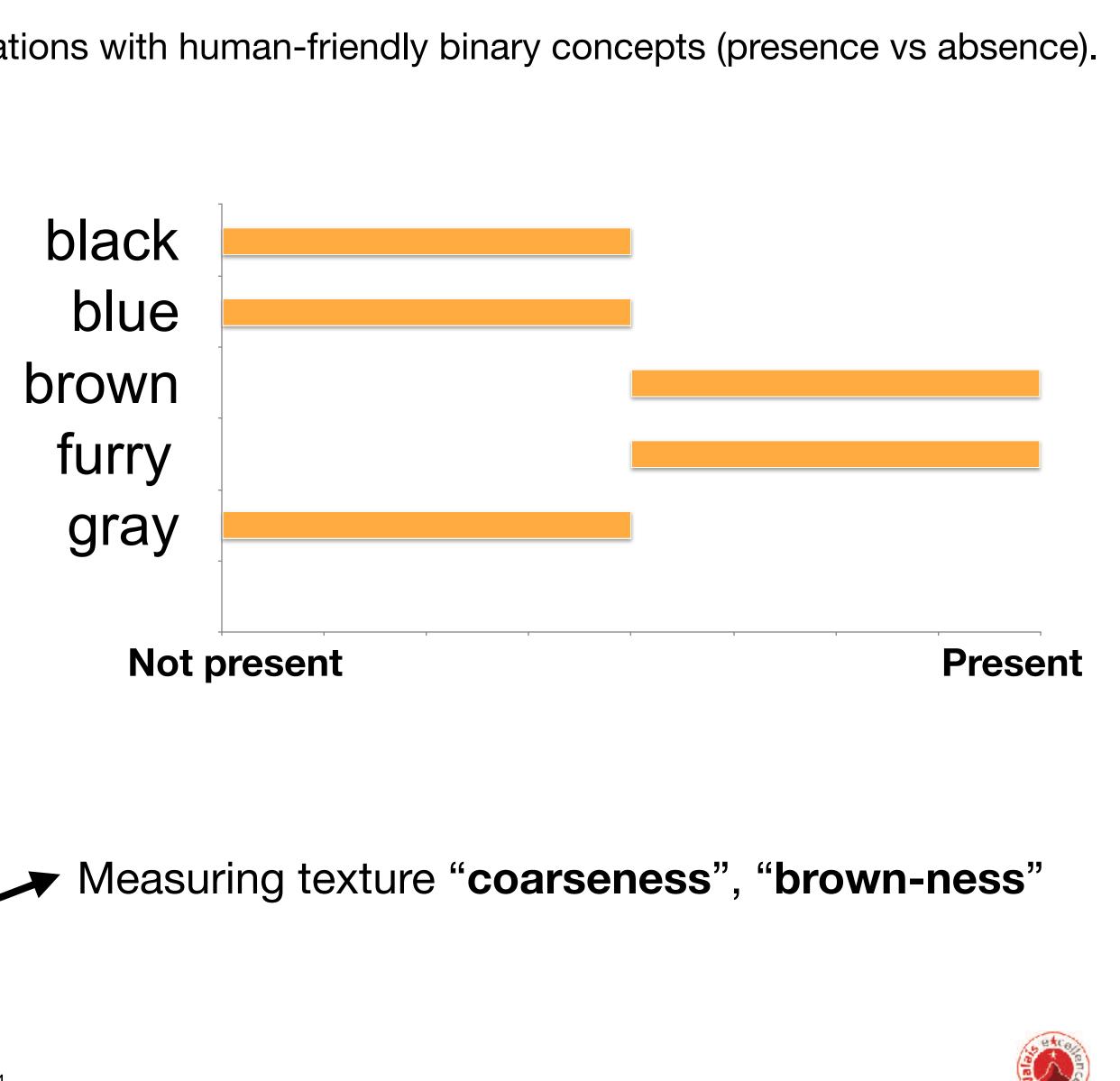
Taking inspiration from [Kim et al., 2018] on interpreting CNN activations with human-friendly binary concepts (presence vs absence).



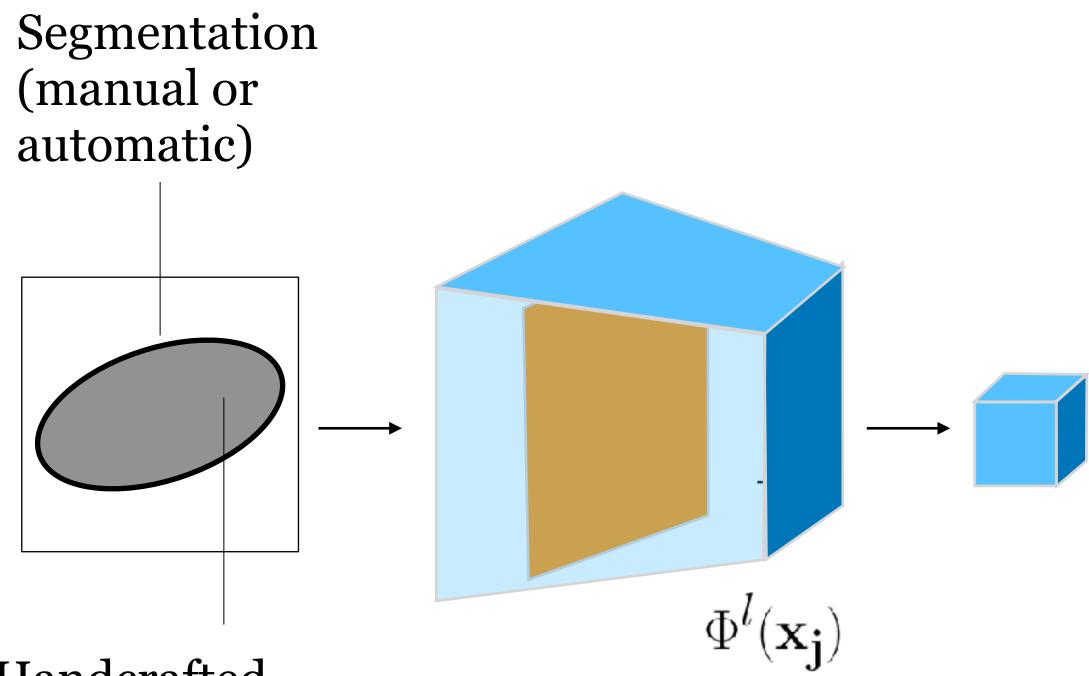
Concept-based interpretability: Concept attribution with Regression Concept Vectors

Taking inspiration from [Kim et al., 2018] on interpreting CNN activations with human-friendly binary concepts (presence vs absence).





Concept-based interpretability: Concept attribution with Regression Concept Vectors*



Handcrafted features, texture descriptors, shape, size, ...

Hes·SO// WALAIS WALLIS Best paper award, iMIMIC, MICCAI 2018! 25

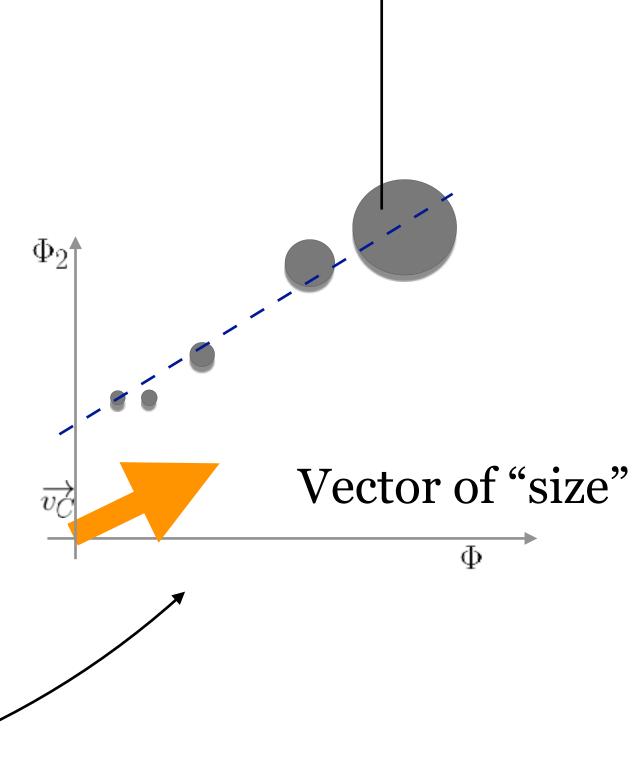
Concept-based interpretability: Concept attribution with Regression Concept Vectors*

Size of the ball = concept value corresponding to one input image

Segmentation (manual or automatic) $\Phi^{t}(\mathbf{x_{i}})$ Handcrafted features, texture descriptors, shape, size, ...

Take the internal activations (aggregation)

Hes·SO/// WALAIS Best paper award, iMIMIC, MICCAI 2018! 26



Linear regression of measures

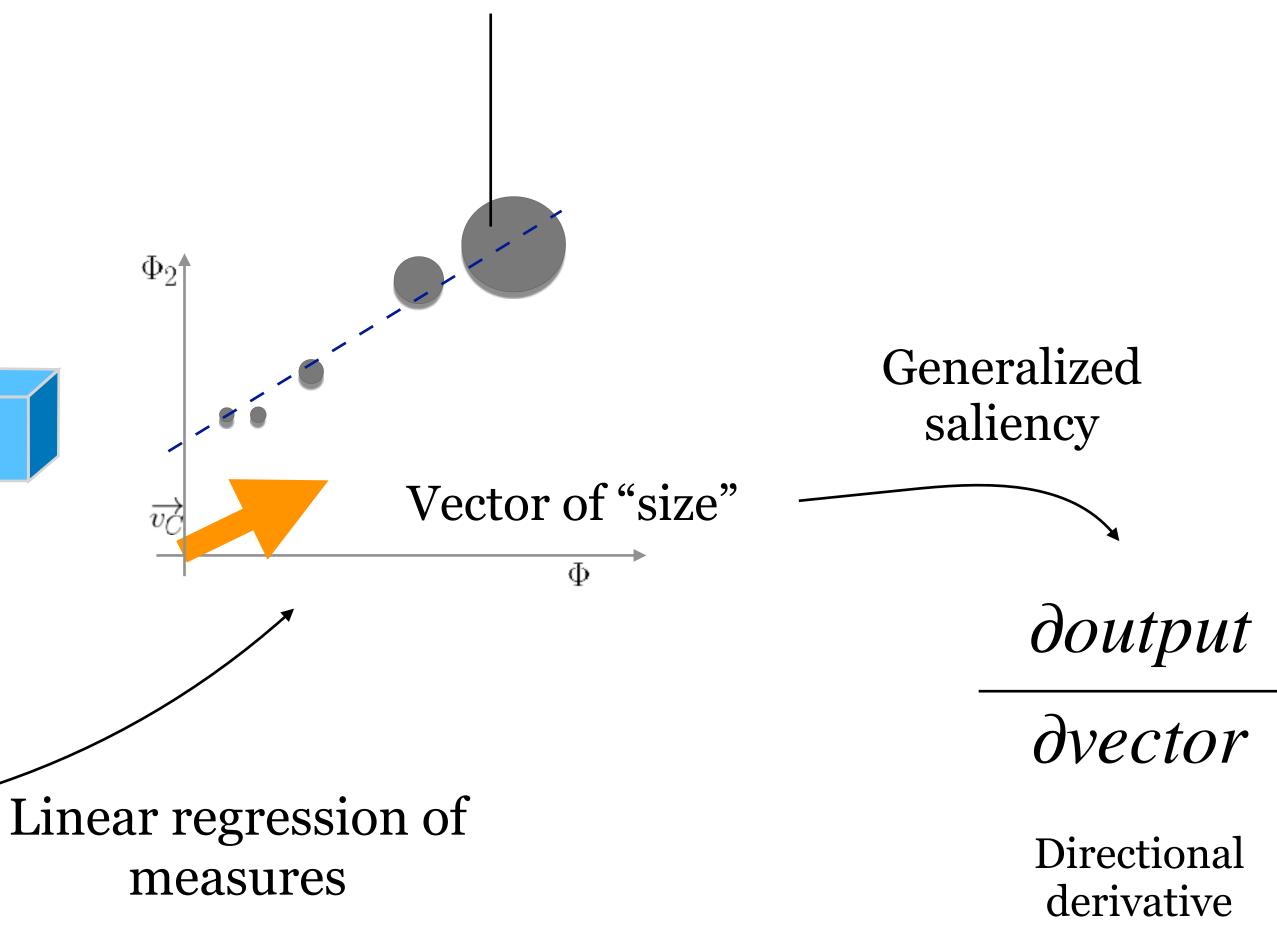
Concept-based interpretability: Concept attribution with Regression Concept Vectors^{*}

Size of the ball = concept value corresponding to one input image

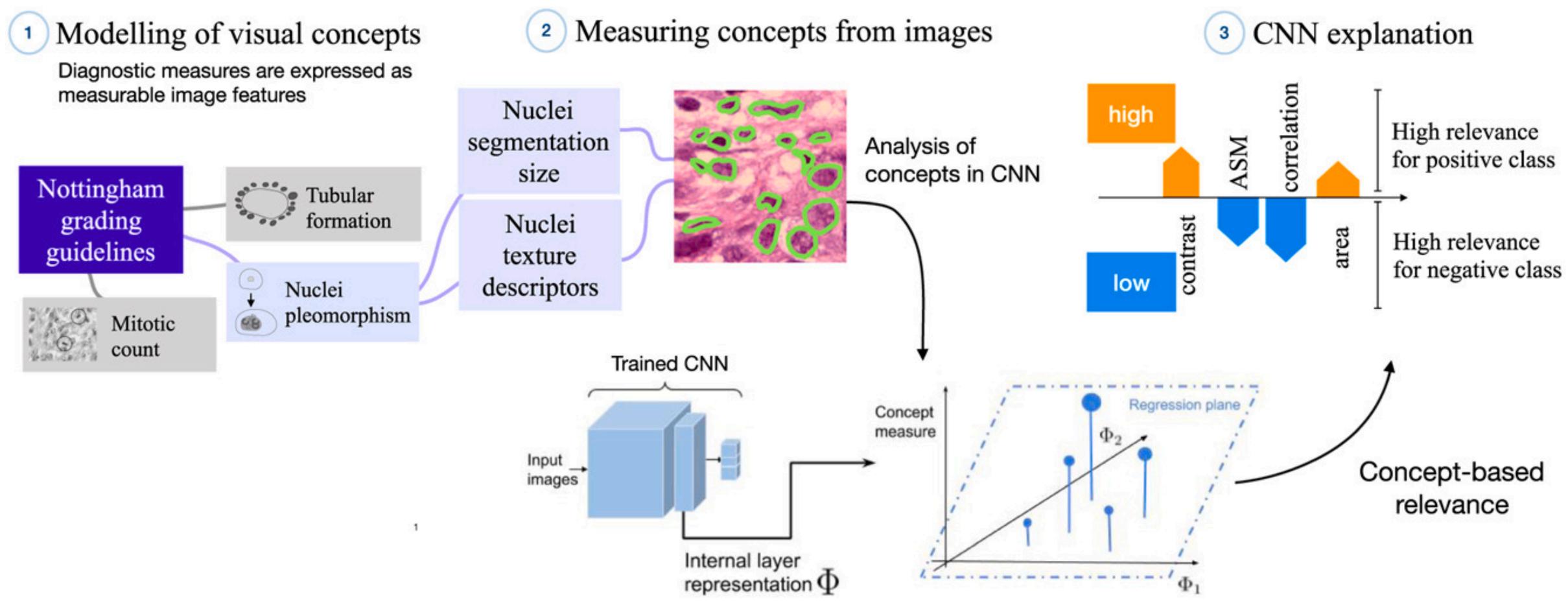
Segmentation (manual or automatic) $\Phi^{t}(\mathbf{x_{i}})$ Handcrafted features, texture descriptors, shape, size, ...

Take the internal activations (aggregation)

Hes·SO// WALAIS WALLIS Best paper award, iMIMIC, MICCAI 2018! 27



Concept-based interpretability: Regression Concept Vectors: application to histopathology



Hes·so// WALAIS [Graziani et. al, 2020]

Remarks

- and knowledge in the domain
- * The expertise of clinicians can be used to guide network training by the combination of multitask and adversarial learning.

* Interpretability can be used to verify that the CNN decision making respects clinical guidelines

* Visualizations of saliency heatmaps give feedback on the relevant input pixels, while concept**based** explanations use directly clinically relevant measures such as nuclei size and appearance.

Remarks

- and knowledge in the domain
- * The expertise of clinicians can be used to guide network training by the combination of multitask and adversarial learning.

* Interpretability can be used to verify that the CNN decision making respects clinical guidelines

* Visualizations of saliency heatmaps give feedback on the relevant input pixels, while concept**based** explanations use directly clinically relevant measures such as nuclei size and appearance.

