Human-centric interpretabllity of
deep learning for digital pathology

Mara Graziani

PhD student, Hes-so Valais and UniGe

UNIVERSITE Hes
DE GENEVE

FACULTY OF SCIENCE a
Department of Informatics

E-talk @Swiss Digital Pathology 17.09.2020



Who am | ?

w Cambridge, MA (Summer 2018)

2016 TCambridge, UK

Geneva, CH
Now ISierre, CH

.y . Rome, IT
Interpretability of Deep Learning for - I
Medical Imaging
November 2017
2013-2015 B.En. in IT Engineering at Sapienza
2015-2016 1y of MSc in Al and Robotics at Sapienza
2016-2017 MPhil in Machine Learning at Univ. of Cambridge
EU H2020 PROCESS 2017- now PhD student at Univ. of Geneva
mara.graziani@hevs.ch O y m n m @ @
Hes ; P

-~ -
—®


mailto:mara.graziani@hevs.ch

My research question

Can we generate human-centric
explanations of deep learning and can
we use them to improve model
performance’?




My research question

Can we generate human-centric
explanations of deep learning and can
we use them to improve model
performance’?

Motivation:

Ease the interaction, improve models with little extra complexity, debug models, GDPR”* right for explainability,
iImprove trust and accountability, remove bias or data memorization, generate answers to “why” questions on
model behaviour and decisions.

Hes <0/ . *General Data Protection Regulation A



Outline

* |Introduction and definition of human-centric interpretability for deep learning
* Presentation of research in this direction:
* Evaluation of visualization tools
* Concept-based interpretability with Regression Concept Vectors
* Guiding CNNs with user-defined features
* Remarks
* Conclusions



Interpretability: What and why?



‘Interpretabllity 1s the abllity to explain or
to present In understandable terms to a

*x )

numan®.

[Kim et al., 2018]

* not all humans are familiar with Machine Learning
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Human-Centric Interpretability for Cancer Diagnosis
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Scenarios:
1. CNN for localization

S 2 CNN

This is a high-grade tumor
region!

Clinician:
End user
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2. CNN for localization with explanations of abnormalities

CNN
With
Interpretabllity

This is a high-grade tumor
region:

1. The nuclei are 30%
larger than non-tumor
average

2. The nuclel texture
appears vesicular
(contrast is 40% larger
than average)

Clinician:
End user

Hes N )



3. CNN for localization with explanations of abnormalities_ and with guided feature
learning by user-input

CNN
With
Interpretability

This is a high-grade tumor
region:

AN 1. The cells are 30% larger
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2. The nuclel texture
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Let’s analyse the
three scenarios



1. CNN for localization
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2. CNN for localization with explanations of abnormalities
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- Explaining the decisions of a complex model in understandable terms by doctors eases the interaction with
Al and improves the quality of the diagnosis [Carrie J.C. et al., 2019].
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3. CNN for localization with explanations of abnormalities and with guided feature
learning by user-input
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To summarize

* CNNs for tumor localization can support pathologists in the diagnosis, but may leave them with
unanswered questions about the output (scenario 1)

* Interpretability should help the clinician verify that the CNN decision making respects the
guidelines and knowledge in the domain (scenario 2).

* The expertise of clinicians is a valuable input for the network training, that could be guided to
ensure that certain visual features are taken into account and others are not (scenario 3).

A tool that supports the pathologists in

H u m an _Centri C making decisions by providing

— explanations and allowing the

D L i nte rp retabi I ity E[rrl;tllir:])icil]téction of feedback to refine



Our work in this direction

* Evaluation of visualization methods for histopathology
* Concept-based interpretability of CNNs
* Guidable CNNs



Evaluation of visualization tools

One of the most popular interpretability methods for images:

Saliency maps

o Coss | alogit — 9p(z)

B pixelij — OJz;

doutput

Why correct?
Why incorrect?

prediction:;
Cash machine

dinput

prediction:
Sliding door

Issues:
- Difficult Abstraction
- Sometimes Ambiguous [Kim et al., 2018]

- Consistency issues [Adebayo et al., 2018]
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Feature-attribution:
Evaluation of visualization tools
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https://jgamper.github.io/PanNukeDataset/



Our work in this direction

* Evaluation of visualization methods for histopathology
* Concept-based interpretability of CNNs
* Guidable CNNs



Concept-based interpretability:
Concept attribution with Regression Concept Vectors

Taking inspiration from [Kim et al., 2018] on interpreting CNN activations with human-friendly binary concepts (presence vs absence).
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Concept-based interpretability:
Concept attribution with Regression Concept Vectors

Taking inspiration from [Kim et al., 2018] on interpreting CNN activations with human-friendly binary concepts (presence vs absence).
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Concept-based interpretability:
Concept attribution with Regression Concept Vectors”

Segmentation
(manual or
automatic)

Handcrafted
features, texture
descriptors, shape,
size, ...
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Concept-based interpretability:
Concept attribution with Regression Concept Vectors”

Size of the ball = concept value corresponding to one input image
Segmentation
(manual or
automatic)

Handcrafted
features, texture
descriptors, shape,

size, ... ’

Linear regression of

measures
Take the internal

activations (aggregation)
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Concept attribution with Regression Concept Vectors

Size of the ball = concept value corresponding to one input image

Segmentation

(manual or

automatic)

Generalized
— ’ saliency
o Vector of “size” - N
P g
doutput

Handcrafted
features, texture ovector
descriptors, shape . .
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Take the internal
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Concept-based interpretability:
Regression Concept Vectors: application to histopathology

1 Modelling of visual concepts 2 Measuring concepts from images 3 CNN explanation
Diagnostic measures are expressed as

measurable image features 3 S
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Remarks

* Interpretability can be used to verify that the CNN decision making respects clinical guidelines
and knowledge in the domain

* Visualizations of saliency heatmaps give feedback on the relevant input pixels, while concept-
based explanations use directly clinically relevant measures such as nuclei size and appearance.

* The expertise of clinicians can be used to guide network training by the combination of
multitask and adversarial learning.
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