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ABSTRACT 

This deliverable is an update of D3.2 and based on its content. It finalizes the performance modelling 
and prediction approaches outlined in D3.2 based on the results obtained during the project.  
It describes the performance modelling and influences thus the design, development and validation 
of the components of the PROCESS infrastructure. 
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Executive Summary 
This document presents the foundations of the performance modelling and prediction approaches that 
the PROCESS project will use to steer its design, development and validation efforts. The broad range 
of environments that the PROCESS software will run on presents obvious challenges in the 
development of a uniform, easy-to-use and straightforward performance model. The necessary 
streamlining and simplification of the approach should not omit any relevant aspects that are determining 
the actual performance as observed by a user.  

As a way to balance these conflicting needs, the project will use a solution based on measurable 
performance metrics, complemented by a mathematical model that allows extrapolating performance 
on systems that are considerably more complex than the current ones. The extrapolation will also be 
necessary to understand the impact of advances in the capacities of individual components will have in 
the execution speed of complex workflows. 

The model used by the project assumes that typical exascale applications can be modelled as pipelines 
consisting of the input data stage-in, processing and (result) data stage-out steps. However, for 
workflows comprising several dynamically configured and deployed components, the set of performance 
components need to be able to analyse the execution in a more fine-grained manner. The full set of 
metrics consists of: 

• T1: Configuration of the workflow 
• T2: Deployment strategy (selection of resources) 
• T3: Stage-in of the data 
• T4: Container selection (fetching the container encompassing the executable code, as defined 

in T1) 
• T5: Scheduling (time spent on the queue of a compute system) 
• T6: Execution time 
• T7: Stage-Out Strategy (choosing the approach based on required storage capacity, type and 

availability) 
• T8: Stage-Out (actual transfer of data). 

 

It should be noted that some of these steps depend on user input, therefore, the overall execution time 
will depend on the expertise and skills of the user. There are also considerable differences between 
situations where all the necessary resources belong to a single system, on multiple platforms controlled 
by a single organisation or in a federated system crossing organisational and geographical boundaries. 

To focus performance-related development efforts, the PROCESS performance model groups the 
metrics into the following categories: 

𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 = 𝑇1 + 𝑇2 + 𝑇4 + 𝑇7	

𝐷𝑎𝑡𝑎	𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = 𝑇3 + 𝑇8	

𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔 = 𝑇5,							𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛	𝑇𝑖𝑚𝑒 = 𝑇6	

The overhead consists of factors that can be influenced by the PROCESS software, while the data 
transfer and execution time components are primarily dependent on the performance of the networking 
and computing hardware available. The scheduling is highly dependent on the number of competing 
jobs and the policies (e.g. priority queue available for the job). However, similar to the characteristics of 
the underlying hardware, scheduling is an issue that can't be influenced by the design of the software.  

As the relative impact of these four categories on the system-level performance as experienced by the 
user can vary dramatically, the project will develop a user-configurable workflow that will be used to 
complement actual use case software in the evaluation of the PROCESS platform. However, it should 
be noted that the use cases already stress the different aspects of the equation in a quite comprehensive 
manner. For example, UC1 performance will be highly dependent on the data transfer and execution 
time components, whereas the interactive use anticipated in the UC4 will require minimising all of the 
overheads in the PROCESS platform.  
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1 Introduction 
This deliverable D3.3 updates the approach to model the performance of the PROCESS infrastructure 
and its possible scalability towards exascale workflows. Based on D3.1 and D3.2 this deliverable D3.3 
enhances and completes the process of developing a performance model. It gives the opportunity to 
provide predictions of the architecture behaviour towards extreme large workflow executions.  

In order to achieve exascale performance, we need on the one hand local computing centres capable 
of running at such an exascale level. On the other hand, one also needs software being deployable 
not only across several nodes, but also across different locations across Europe, the so-called sites. 
For our use cases presented in earlier and related deliverables and based on PROCESS’s 
architectural design decision, we consider this a prerequisite. In order to technically facilitate the 
decision, we seek for the approach to containerize the architectural elements as well as to push all use 
cases to design their execution in containers. This will allow for deploying instances of independent 
executions on subsets of a given data set on different local nodes and at the same time on different 
geographical based sites. 

However, the hardware and the software development towards exascale is an ongoing process and 
we have to face the challenge to predict a behaviour that cannot be verified within the lifetime of this 
project. Therefore, we had to develop a prediction model based on measurable performance indicators 
and from there on extrapolating runtime behaviour towards a much higher scale. The model needs to 
meet the requirements to predict the behaviour of all our services and the PROCESS infrastructure as 
a whole but must also be able to adapt new requirements coming from future and new applications. 

To distinguish the most common approaches for performance prediction models, we will first give an 
overview and classification of up-to-date performance modelling and prediction methods, on the basis 
of which we will present the approach of choice for PROCESS.  

 

1.1 Performance modelling approaches 
Performance modelling is used for many computational and storage systems around Europe. 
Regarding the exascale challenge, also other EU projects examine the needs and conclusions to 
enable exascale performance. 

The CRESTA8 project (Collaborative Research Into Exascale Systemware, Tools and Applications) 
proposes a framework focusing on software and tool developments for end-user scientist. Their 
solution is limited to local site needs and deals mainly with hardware decisions owners of 
supercomputing centres will face in the next years. 

 

1.1.1 Overview and classification 
One of the CRESTA project partners is David Henty from the Edinburgh Parallel Computing Centre 
(EPCC). In his publications he gives an overview on generic performance modelling techniques and a 
classification of which. In Table 1 he defines four main categories varying from raw measurements, 
over benchmarking and simulations to complex analytical modelling with a large number of 
parameters. 

 

 

 

 

                                                   
 
8
 https://www.cresta-project.eu 
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Technique Description Purpose 

Measurement running full applications under various 
configurations 

determine how well application performs 

Microbenchmarking measuring performance of primitive 
components of application 

provide insight into application 
performance 

Simulation running application or benchmark on 
software simulation 

examine “what if” scenarios e.g. 
configuration changes 

Analytical Modelling devising parameterized, mathematical 
model that represents the performance 
of an application in terms of the 
performance of processors, nodes, and 
networks 

rapidly predict the expected performance 
of an application on existing or 
hypothetical machines 

Table 1: Performance Modelling Approaches, cited from [PMO] 

Any of the techniques mentioned above will be useful within the PROCESS project: 

Measurement 
Both simple measurements as well as complex model measurement values are the basis of success. 
In Section 2, we will define at which points of the execution sequence meaningful measurements can 
be taken. Measurement values are to deliver input data for further modelling and prediction steps. 

Microbenchmarking 
Microbenchmarking is used to identify performance bottlenecks in the PROCESS architecture and 
assists in debugging and verifying its correctness. The microbenchmark is a very simple application 
(validation or test pipeline) running through the complete PROCESS architecture and gathering first 
results. 

Simulation and Analytical Modelling 
Executing and measuring a given application running on PROCESS in different configurations and 
settings forms the input dataset for this step. The goal of this step is to extrapolate the behaviour and 
runtime of the application from the given observations. The resulting model will allow for predictions of 
runtime behaviour beyond the configuration scales measured, which gives us the chance to forecast 
the performance on an exascale level. 

1.1.2 PROCESS Performance Model 
Based on the previous description we choose a measurement-based approach with extrapolation 
through analytical modelling. First the measurands are identified and measurements are performed. In 
the next step a microbenchmark to evaluate these measurands is developed. Finally, to predict the 
performance of PROCESS, we use these results to create an analytical model that will allow us to 
extrapolate the performance based on given measurements. 
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2 Identification of Measurands 
In the previous Section we categorized the approaches to performance modelling and prediction. One 
of which was a measurement-based approach with extrapolation for performance prediction. To 
achieve this goal, it is necessary to identify the appropriate measurands within the PROCESS 
infrastructure that can be used to model the performance of the infrastructure and predict its scaling.  

We stress that the hardware infrastructure such as computing, storage, and network have a big impact 
on the performance of PROCESS services. However, as a project, we have no real influence on this 
part of the infrastructure. Therefore, our performance measurands focus on the overhead introduced 
by the software services, but also measure all other relevant numbers to identify relations between 
them.  

In the absence of true exascale systems, our objective, as stated in Section 1, is to achieve exascale 
by combining the power of geographically distributed data centres. Unfortunately, the traditional 
configuration of compute centres is more optimized for inner data transfer rather than for outside 
transfers. While technical solutions to optimize data-transfers exist such as the Data Transfer 
Nodes9,10, implementing those solutions is beyond the scope of the project. In PROCESS we try to 
hide the data transfers by overlapping data transfer with computing or use pre-fetching and caching to 
minimize the data transfers.  

Based on the five use cases defined in PROCESS, we can think of a typical application as a pipeline 
of data processes which typically requires a data stage-in step followed with an execution step, and 
finally a data stage-out step. The time required for stage-in and out is expected to be significant, 
because of the necessary data movement between data centres.  

 
T1: Configuration 

The Interactive Execution Environment provides an end-user web portal, where each run of 
any application needs to be configured. For the different use cases, these configurations vary 
as shown in the deliverables D4.2 and D5.2. 

T2: Deployment Strategy  
Part of T2 is the time needed to decide on which computing site[s] and storage site the 
containers and their data will be deployed. It also needs to initiate the required micro-
architecture. 

T3: Stage-In  
Impact by the access to data services in data centre. However, if PROCESS can make use of 
caching, proactive pre-fetching or pre-processing we can reduce the impact of T3 on the 
overall execution performance 

T4: Container selection  
The workflow that has been defined in T1 specifies a container that will be executed as well as 
its version. This version needs to be fetched from the container repository and later deployed 
as a job in T5. 

T5: Scheduling  
The time a job spends in the queue of the compute resource. This time can vary and will be 
hard to predict since it’s affected by each compute site’s scheduling system that isn’t in the 
scope of PROCESS. We may however be able to estimate an upper bound on the queue 
waiting time that could be added to the actual runtime prediction. 

                                                   
 
9 Building User-friendly Data Transfer Nodes, https://www.delaat.net/posters/pdf/2018-11-12-DTN-SURFnet.pdf 
10 Pacific Research Platform https://bozeman-fiona-workshop.ucsd.edu/materials/20180303-dart-dtn-strategic-asset-v1.pptx/view 
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T6: Execution time  
T6 is the time a job takes from leaving the queue to finishing its calculations on the compute 
resource. This time is determined by the performance and scalability of the application on the 
selected compute resource. To predict this time, an application specific performance model is 
required. 

T7: Stage-Out Strategy  
After the job is done, it may have generated large amounts of output data that needs to be 
transferred from the compute resource’s scratch space back to the PROCESS storage 
infrastructure. Based on the amount of data and the specified workflow the data service needs 
to choose a suitable stage-out strategy.  

T8: Stage-Out  
With the appropriate stage-out strategy the output data now needs to be transferred to the 
chosen storage resource. 

 

Figure 1 shows a sequence diagram describing all the steps involved in the execution of an 
application scenario. For each step we define the time corresponding to its completion as follows:  

 

 

Figure 1: Sequence diagram describing the steps involved in execution of a typical application scenario 
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Table 2 summarises the various identified times, we will use as performance measurands.  

TX Name Description 

T1 Configuration Time to configure the workflow for the application 

T2 Deployment Strategy Time to select appropriate storage and computing site 

T3 Stage-In Time to transfer data from source to selected storage site 

T4 Container selection Time to select specified container for the workflow from repository 

T5 Schedule Time the submitted job spends in queue 

T6 Execution time Time spent executing the job on the compute resource 

T7 Stage-Out Strategy Time to select appropriate storage site for output 

T8 Stage-Out Time to transfer result to storage site 

Table 2: Description of the PROCESS measurands 

Using the identified performance measurands listed in Table 2 we propose a three-step approach to 
the modelling and performance prediction of the PROCESS infrastructure. First, we will show that the 
overhead of the PROCESS platform for a deployment on one site (initializing the micro-infrastructure 
and scheduling) is negligible. Second, since the deployment strategy of process is to deploy every 
application containerized, we show the weak scaling capabilities of PROCESS by deploying multiple 
containers with a split of the input data on one site. And third, since the goal is to achieve an exascale 
system solution, we enable applications to scale by splitting the data and deploying containers across 
multiple sites of PROCESS. 

We therefore describe three measurement scenarios: 

Scenario 1: Single container – single site (Figure 3-a) 
In this scenario we measure the execution time of processing the input sequentially within one 
container running. This container uses the maximal possible and available number of compute 
resources PROCESS can use at one single site (e.g. use case 2 running only at one cluster). 

Scenario 2: Multiple containers – single site (Figure 3-b) 
In the second scenario we submit several containers on one cluster. Here, we either expect a 
speedup, since the container in scenario 1 eventually did not fully utilize compute resources or 
the same runtime as before, since the overhead to deploy more than one container in parallel 
should be minimal. 

Scenario 3: Multiple containers – multiples sites (Figure 3-c) 
This last scenario will deploy several containers in parallel on two different sites with an also 
split input data set. We expect a significant speedup since multiple containers will be deployed 
on multiple sites. 
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Figure 2: Three measurement scenarios 

Figure 2: Three measurement scenarios: (a) Single container – single site, (b) Multiple container – single site, (c) 
Multiple container – multiple site. In all three scenarios Stage-In and Stage-Out will down scale the system overall 
performances, unless we address the data transfer over a wide area network.   

After evaluating these scenarios and measurements, we will present a generic performance model 
that allows to predict the scalability of the PROCESS infrastructure for a given application. 
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3 Development of a balanced Prediction Model 
In this section we will present our approach to determine the components of a simple predictive model 
for workflow performance on the PROCESS infrastructure.  

3.1 Runtime Composition 
Based on Figure 2 the total runtime of an application can be defined as follows: 

𝑅𝑢𝑛𝑡𝑖𝑚𝑒 = 𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 + 𝐷𝑎𝑡𝑎	𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 + 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔 + 	𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛	𝑇𝑖𝑚𝑒	

Where: 

𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 = 𝑇1 + 𝑇2 + 𝑇4 + 𝑇7;	
𝐷𝑎𝑡𝑎	𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = 𝑇3 + 𝑇8, ;	
𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔 = 𝑇5;	
𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛	𝑇𝑖𝑚𝑒 = 𝑇6	

The overhead component contains all overhead directly related to the PROCESS services. This 
includes selecting the appropriate resources for data access and compute in the Execution 
Environment, configuring the micro-architecture of LOBCDER for data access, fetching the application 
containers, and submitting the application to the selected resource using Rimrock. 

To support exascale it is important that this overhead is low per submitted workflow and does not 
depend on the scale of the compute resources which are targeted by PROCESS services. We expect 
that this overhead component is orders of magnitude smaller than the other components and will 
therefore be negligible. 

The data transfer, scheduling and execution time components are mostly determined by factors 
outside of the control of PROCESS services, such as network capacity, queue waiting times, and how 
well a workflow performs and scales on a given resource. Nevertheless, having an estimate of the 
data transfer and scheduling delay is useful for selecting a resource to which a workflow should be 
submitted. If execution time estimates are available, this selection may be improved further, and a total 
runtime estimate may be provided to the user.  

The data transfer component is mainly determined by two parts: the time required by Dispel to perform 
pre-processing of the data (if any), and the time required to transfer the resulting data volume given 
the end-to-end transfer capacity between the storage and compute site. These two components may 
largely overlap if the data pre-processing is simple and can be performed on the fly, but for complex 
operations this may not be the case.   

For the latter part, predicting large long-distance data transfers, a significant amount of research has 
been performed in the last two decades. For example, [[Liu2017]] describes a model that predicts end-
to-end data transfer times with high accuracy based on logs of the Globus transfer service. Similarly, 
much research has been done on estimating queue waiting times of HPC applications which 
dominates the scheduling component. For example, [[Nurmi2007]] describes a model that provides 
estimates with a high degree of accuracy and correctness for a large number of supercomputing sites.  

For PROCESS we will re-use this existing work to provide estimates for both the data transfer and 
scheduling components of the model. 

Predicting the execution time is highly application specific and must be done separately for each of the 
use cases. It may be dependent on input datasets, application parameters, number of resources used 
(number and type of cores, amount and speed memory, availability and type of GPUs, etc).  

Strong scalability of the use case applications is expected to be limited well below exascale, as 
currently only few applications are able to exploit a petascale level. To determine the limits of the 
strong scalability of the use case workflows, traditional performance benchmarking of the applications 
can be used for representative input data sets and parameters. To circumvent limits in strong 
scalability, we can exploit weak scalability, where multiple workflows are running at the same time to 
process different datasets. However, doing so may shift the bottleneck from the application to other 
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sources, such as the data service, or local storage on the resources. Such limits can be discovered by 
performing weak scalability testing, both on a single site and multiple sites.  

Unfortunately, it requires a large effort to create a complete and accurate model of the application 
behaviour for each of the use cases. Although users may be willing to perform some testing in 
advance to tune their application, they are mostly interested in obtaining application results. Therefore, 
highly accurate modelling of the application workflows is not required, instead a rough estimate of the 
processing time is generally enough. 

We will initially assume the user will provide an estimate for the execution time, as is customary on 
HPC systems. At a later stage, this estimate may be refined based on easy to determine parameters, 
such as input data size and number of resources used, which may be extracted from the logs of 
previous runs of the workflow. A significant amount of research has been done on estimating 
application execution time based on limited information. For example, [Smith1998] presents a 
technique that predicts application runtimes based on historical information of “similar” applications. 
Search techniques are used to automatically determine the best definition of similarity. In 
[Gaussier2015], a similar technique is used to fine tune the execution time estimate provided by the 
user. 

3.2 Model Verification 
3.2.1 Benchmark Application 
An artificial benchmark workflow will be created which allows configuration of the different aspects of a 
workflow, such as the sizes and locations of in- and output data, pre- or post-processing requirements, 
the number and type of compute resources required, the execution time of the application, etc. This 
benchmark workflow can be used to test the functionality or the PROCESS services, determine the 
initial values of the model, and validate model predictions. 

By choosing minimal values for data transfer and execution time (for example 0 bytes and 0 seconds) 
the lower bound for the runtime can be determined and the overhead of the PROCESS services can 
be measured. By submitting large numbers of such workflows, the scalability of the services 
themselves can be tested. By choosing large values for data transfer an initial estimate of the data 
transfer capacity between locations can be made.  

Similarly, different pre-processing patterns can be tested, ranging from straightforward filtering or 
conversion to more complex operations such as mixing or transpositions, to create an initial estimate 
of the Dispel overhead. By varying the target resources of the workflow, an initial estimate of the 
scheduling delays in different locations can be made. 

Once an initial model is available, this benchmark application can be used to validate it by comparing 
the error rates of the predictions against actual measurements. This will allow us to iteratively refine 
the model during the course of the project.  

3.2.2 Use Case Workflows 
As explained above, strong and weak scalability tests may be performed on the use case workflows to 
determine the limits to their scalability and the initial parameters of the execution time models. Once 
these parameters are available, an initial execution time model can be created, and its predictions can 
be verified using the logs of subsequent workflow runs. Consistently measuring the workflow 
performance and selected key parameters (such as input data size and type and number of resources 
used) allows the model to be refined further. By default, a simple placeholder model will be used by 
the PROCESS services. If necessary, a more detailed use case specific model may be created for a 
use case and provided upon workflow submission. 

3.3 Conclusion 
In this section we have described the components of a simple predictive model for workflows 
performance on the PROCESS infrastructure. The main goal of this model will be to verify that the 
overhead incurred by the PROCESS services (the sum of T1, T2, T4 and T7 in Figure 1) is negligible 
compared to the cost of data staging (T3 and T8), scheduling (T5) and execution (T6). Using this 
model, we try to verify if the proposed services are capable of scaling into the exascale range.  
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4 Measurements 
 

4.1 Platform-wide measurements 
In this section, we report the overhead and scheduling measurements on the PROCESS platform in its 
production prototype. 

4.1.1 Overhead measurements 
Due to some integration issues preventing us from using certain resources, the overhead 
measurements are performed for scenarios 1 and 2 and are presented together. The measurements 
are taken on Prometheus and each value is the average of four consecutive runs whenever possible. 
Indeed, not all runs lead to data usable for the analysis. The benchmarking uses an event-based 
approach, where the state transitions allow to extract event durations. Because of the polling required 
to extract the events, most of the transitions are missed in normal operations, which is good from a 
production point of view. Unfortunately, this leads to quite a small set of data points for most of our 
performance analyses. In contrast to D3.2, other overhead factors are measured in addition to T2. The 
operational conditions of the tests impose frequent polling, whose consequence is a dither of +/-5 
seconds in the data, which are plotted in Figure 3 for T2 or submission delay. The main observation is 
that, except for an outlier at container count 96, the overhead is small, almost constant and 
independent of the number of containers. Indeed, both the submission and the scheduling delays (see 
below) are not under the control of IEE; consequently, some jobs get stuck either waiting for or in the 
queue of the job scheduler on the used HPC systems which leads to occurrences of outliers. 

 

Figure 3: Submission delay (T2) behaviour in PROCESS production prototype 

In Figure 4-a (left), the measured values of T2 are grouped by input data size of 10MB, 100MB, 1GB 
and 10GB which are the test input data sizes. We observe that up to 1GB, the average value of T2 is 
quite small with little deviation from that value. However, for the 10GB batch, the average value has 
significantly increased with a large standard deviation. This is due to the outlier at container count 96 
shown above. A plot without the outlier is shown in Figure 4-b (right). We can indeed observe that the 
average submission delays are close within the 2-3 seconds range. The only reason the 10G batch is 
larger is because of an outlier at container count 96 for this input data size. 
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Figure 4: Submission delay in IEE batched by input data size. 

We also measure other overhead factors including the initial directory building, which creates a 
directory structure to hold the input data and the intermediary results, and the implicit staging which 
involves transferring the output of one step into the input directory of the subsequent step and a clean-
up step removing the above directory structure. While the first and last steps may happen on any data 
processing infrastructure, the implicit staging is specific to IEE; consequently, this is the only one we 
will consider here. The behaviour of the metric is shown in Figure 5 below. We observe that the implicit 
staging is of the same order of magnitude as T2 but at a generally lower scale. 

 

Figure 5: Implicit staging overhead behaviour in PROCESS production prototype. 

The cumulative behaviour of T2 and implicit staging is illustrated in the Figure 6 below. The principal 
observation is that the global overhead is moderate. It culminates at 25 s at container count 384. 
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Figure 6: Overall overhead (T2 + implicit staging) behaviour in PROCESS production prototype 

 
4.1.2 Scheduling measurements 
Overhead due to scheduling in IEE is measured as queueing times which are plotted in Figure 7 in 
relation with the number of containers. The measurements are taken in the same conditions as for the 
overhead and, each measurement is an average of up to four measurements. We observe that 
scheduling does not harm PROCESS performance as its overhead is the order of tens of seconds for 
most container counts. A few of the jobs got stuck in the queue, spending there much longer time than 
average. The job with container count 192 is one of these. 

 

Figure 7: PROCESS scheduling overhead measurements from IEE 

A complementary explanation of the scheduling behaviours is given in Figure 8. Just as Figure 7 
shows that T5 does not depend on the container count, Figure 8 shows it does not depend on the 
input data size neither. The delay batches for 1GB and 10GB are both lower than that of 100M, which 
is where the above outlier happens to be. 
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Figure 8: Scheduling delay measurements in PROCESS production prototype batched by input size. 

 

4.1.3 Staging measurements 
We also evaluate the staging performance, although this is better done with the data services inside 
the use cases. However, this gives us a glimpse of their performance in the IEE context. In the latter, 
the most interesting is the stage-in duration (T3) which involves real data transfer using PROCESS 
data services, which we report in Figure 9. The stage-out depends on the use case and for the test or 
validation pipeline it does not involve data services and does not correspond to any useful output. The 
obvious note is that T3 does not depend on the container count, but rather on the input data size. 
Indeed, although the transfer durations are almost indistinguishable for up to 1GB, the transfer 
duration for 10GB clearly increases. This is expected as transfer time only depends on input size and 
network performance and conditions. The latter is probably responsible for the important spread at 
container count 192. 

  

 

Figure 9: Staging-in measurements in IEE production prototype. 
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4.2 Use case specific measurements 
4.2.1 UC1 
 
Data transfer measurements 
Measurements of data transfer rates with the SCP protocol were reported in D8.1. As reported in the 
deliverable, frequent stalls and broken connections happened frequently in head nodes. The DTN 
connection from LRZ to AMS and AMS to LISA showed 30% faster transfer than a direct copy (see 
Table 6 in D8.1, page 11). In Table 3we report the measurements of copying the UC1 Camelyon16 
dataset between PROCESS sites including our DTN using gridFTP.  
 
Table 3: Measurements of copying the Camelyon16 dataset between PROCESS sites, with gridFTP protocol in 
MB/s. 

Camelyon 16 30Gb 
transfer 
source/destination  

AMS-DTN LISA LMU-DTN AGH 

AMS-DTN 0 324.17 494.51 25.53 

LISA 549.62 0 324.97 0 

LMU-DTN 405.32 25.53 0 19.55 

AGH 51.07 0 14.71 0 

 
The asymmetry in the measurements is due to different reasons. The lack of open ports of sites, for 
example, reduced the possibility of having concurrent connections. Moreover, the sites have different 
upload to download bandwidth ratios. Direct connectivity between Lisa and Prometheus was not 
possible with gridFTP, since this would require one of the sites to act as a server and have open ports. 
These many restrictions further emphasize the need for a DTN approach with more performance and 
programmability for data transfers.  
 
A further analysis concerning the usage of container protocols to program DTNs shows a better 
amortization of the costs for data transfer (see Figure 10 and Figure 11): 

 
Figure 10: Comparison of the standard SCP protocol and the containerized FDT protocol to transfer from UvA to 
LMU. Time for transfer is reported against file size in Mb. FDT shows better performance on files larger than 2Gb. 
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Figure 11: Transfer from LMU to UvA: comparison of the standard SCP protocol and the FDT protocol in a 
containerized approach. FDT shows better performance on files larger than 2Gb. 

Figures show a comparative of using standard SCP protocol to transfer data between DTN nodes vs 
the dynamically reprogram DTNs with different protocol containers. In this case we deploy FDT 
protocol inside a container. What is evident is that for files smaller than 2Gb the overhead of deploying 
the containers on the fly is greater than the transfer time which results in a degradation. For larger files 
(around 2GB) the overhead is amortized by the better performing FDT protocol which at 10GB data 
size, FDT is ~22% faster.   
Note that this analysis can be applied to the five PROCESS use cases.  
 
Execution time and/or FLOPS measurements vs data size 
 
Initial measurements of the execution time for each software layer were reported in D8.1 Table 2 and 
3, pages 8-9. In Table 4 we report the execution time against the size of the data in the data pre-
processing step, for each of the two methods proposed, namely random sampling and dense 
sampling. Measurements were computed on the AGH site in Krakow, Poland. The execution time vs 
data size is reported in s/Mb or s/Gb to show the scalability to increasingly larger datasets and the 
gains in computing time which reach up to processing 1 Gb per second. 

 

Table 4: Measurements of execution time vs data sizes for extracting high resolution patches from the 
Camleyon17 dataset at the PROCESS AGH site. 

Method # patches WSI 
coverage  data size  sampling 

time 

 execution 
time 
(upper-
bound) 

Execution 
time vs. 
data size 

Random sampling 500  1 file 144 Mb 0.05 s  49.12 s 0.29 s/Mb 

Random sampling 
(in D8.1, Table 2) 

5000 5 files 12 Gb 0.05 s 286.2. s  21.9 s/Gb 

Dense sampling  118773 10% of 2% 
of files 

200 Gb 0.004 s 620.31 s 2.8 s/Gb 

Dense sampling  1 Mill. 100% of 
10% of files 

1 Tb 0.004 s ~ 7500 s (2 
hours) 

1 s/Gb 

Dense sampling 
(sequential at 
UISAV) 

4.5 Mill 100% of 
100% of 
files 

7 Tb 0.02 s ~ 739651 s 
(8.5 days) 

106 s/Gb 
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Table 5: Parallel Model Training lower bounds expressed as number of trained models trained per hour (on 50 Gb 
of training data) 

Number of models GPUs Model complexity in 
number of parameters 

Model Training time 
(upper bound in 
hours:minutes) 

1 x ResNet 50 1 x Nvidia K80 23 Million 07:00 

1 x ResNet 50 1 x Nvidia V100 23 Million 06:00 

1 x ResNet 101 2 x Nvidia K80 44.5 Million 05:00 

1 x Inception V3 1 x Nvidia V100 23.83 Million 07:00 

100 x Inception V3 3 x Nvidia V100 7149 Million (7 Billion) 36:00 

 

 

4.2.2 UC2 
 
Data transfer measurements 
Since the benchmarks carried out in D8.1, the services for the data transfer between the LOFAR long-
term archive (LTA) and the HPC cluster sites (CYF, LISA, and LRZ) have been further developed. To 
measure the effect of these developments, part of the benchmarking has been redone. The queuing 
time and staging time at the side of the LTA has not been benchmarked again, since this mechanism 
has not been updated and is out of our control. Therefore, the existing results, as outlined in Section 
3.2 of D8.1, still remain accurate. 

For completeness, we recall here our findings from D8.1. We performed three types of measurements: 
estimating the queueing and preparation time on LOFAR LTA tape archive, total staging time as a 
function of total size and data transfer speed from the archive to the HPC sites. We have found the 
queueing durations quite variable in and across LOFAR LTA locations, those variations being 
attributed to differing configurations and/or loads at the respective locations. We have also found the 
staging durations to be variable because of the shared nature of the tape systems. Finally, the data 
transfers between the LTA locations and the various computing sites are shown to be suboptimal 
(roughly in the range of 5 to 12 MB/s) and constitute a bottleneck that needs to be overcome. The 
updated transfer speed benchmark (Figure 12) shows an improved average speed. It is expected that 
this is due to a switch in the Globus library used for the transfers (from a Java to a C library) and the 
use of concurrent transfers, instead of transferring files one by one. 

In most cases, the transfer speed is increased to roughly the 80 to 120 MB/s range. With an exception 
being the transfers between LISA and the Amsterdam LTA location, which is significantly higher, but not 
changed since the previous benchmark. This is expected, since both locations operate on SURFsara’s 
optimized grid infrastructure11. The other exception are the transfers from the Ponzán LTA location to 
the LRZ and LISA clusters, although a modest speed improvement has been achieved. It remains 
unclear why this is not at the same level as the other transfers. It may be due to the particular (public) 
network in place or load thereof, configuration, temporary disruption.  

                                                   
 
11 https://www.surf.nl/en/use-case-space-research-with-grid-infrastructure  
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Figure 12: UC2 data staging and transfer measurements. 

Although we were able to improve the transfer speeds, the conclusion as provided in D8.1 still holds. In 
the extreme-scale data services that we are targeting, the current speeds are still too low compared to 
the size of the files that we would like to transfer. Therefore, the transfer speed is still considered a 
bottleneck, when not using an optimized network, e.g. with DTNs. 

 

Execution time and/or FLOPS measurements vs data size 
For UC2, we only measure the execution time for the time being as the most intensive components 
capable of generating high FLOPS values are currently sequential or multithreaded. The wall clock 
times of the main steps of the data reduction pipeline are given in Table 6. The main conclusion to 
draw from the very high magnitude of these values is that the overhead due to scheduling and 
interaction between platform components as seen in the previous section is negligible. 

 

Table 6: Wall clock times of the main steps of the data reduction pipeline. 

step data size (GB) execution time (s) 

calibrator DI 25 8534 

target DI 433 11909 

init-subtract 76 37212 

DD2 (FACTOR) 76 ~5d  

 
 
4.2.3 UC4 
 
Data transfer measurements 
Since there are still ongoing negotiations with our customer about the usage of their database, the 
measurement of real data transfer cannot happen during the project. To be able to run the model 
training container we prepared a test data generator as already mentioned earlier in deliverable 
documents. The test data generator is able to generate the data directly into the PROCESS 
environment running at UISAV. We have taken the measurements of how long the data generation 
takes which also measures the times of inserting data into HDFS. Please see Table 7 and Figure 13. 
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The average times for inserting batches of 1 million records were oscillating near 50ms. There is a 
noticeable increase in the insertion time during a few first inserts which application does where many 
inserts take more than 100ms and some even take about a second. There are also occasional spikes 
of about 500ms inserts. But with a large number of inserts done any of the mentioned spikes are 
negligible. 

 

Table 7: UC4 data generation time. 

Records amount Generation time [min] Records generated / s 

10,000,000 0.33 499,226.20 

20,000,000 0.85 391,910.96 

50,000,000 1.79 465,783.54 

100,000,000 2.45 679,564.81 

200,000,000 4.66 715,241.07 

250,000,000 5.85 712,147.24 

300,000,000 6.93 721,780.20 

350,000,000 8.09 721,192.98 

400,000,000 9.38 710,389.99 

450,000,000 9.77 767,523.85 

500,000,000 11.25 740,792.32 

1,000,000,000 22.40 744,071.42 

2,000,000,000 45.07 739,653.72 
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Figure 13: UC4 data transfer measurements. 

Execution time and/or FLOPS measurements vs data size 
Based on the generated data we measured the execution time of training the machine learning 
models. Two types of models were generated, a random forest model and a deep neural network 
model. Both models were trained with the same dataset. Measured time was increasing exponentially 
for random forest model and linearly for deep neural network model. The biggest issue was that both 
the application and the H2O cluster [H2Ocluster] were deployed in the same container. Furthermore, 
the H2O cluster sometimes did not have enough memory to load all the data. The maximum amount 
that we were able to load were bookings and services generated for 350 million flights (Table 8 and 
Figure 14, Figure 15). 

 

Table 8: UC4 model generation time. 

Records amount 
Model training time [H:MM:SS] 

Random Forest Total Deep Neural Network Total 

10,000,000 0:00:05 0:02:04 

20,000,000 0:00:06 0:05:19 

50,000,000 0:00:07 0:13:55 

100,000,000 0:00:09 0:30:38 

200,000,000 0:00:12 1:02:24 

250,000,000 0:00:19 1:14:24 

300,000,000 0:00:24 1:56:24 

350,000,000 0:00:40 2:16:48 
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Figure 14: UC4 Random Forest model training time over sample size. 

 

Figure 15: UC4 Deep Neural Network model training time over sample size. 

The version of Use Case 4 written in R language had problems with very long build times which 
hindered the possibility of fast prototyping. Because the H2O framework library is also available for 
Python it was decided that the whole application could be rewritten in that language. Performance of 
both build times (Table 9) and model training times were measured (Figure 16, Figure 17) to confirm 
that build times are now faster and model training times are similar to the R version of the application. 
It was measured by using an external H2O cluster with a minimal set of 2 nodes, 4 cores and 2GB of 
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memory in total. Build times were significantly better but there was a slight decrease in performance of 
calculating deep neural network models. 

Average build time of Docker container [H:MM:SS]: () 

● without cache (R version) - 0:36:10 
● without cache (Python version) - 0:25:40 
● with cache, code change, no Dockerfile change (R version) - 0:16:18 
● with cache, code change, no Dockerfile change (Python version) - 0:02:36 

 

Table 9: UC4 Python and R versions comparison. 

Records 
amount DRF (Python) DRF (R) DNN (Python) DNN (R) 

20,000,000 0:00:07 0:00:08 0:03:33 0:02:58 

50,000,000 0:00:10 0:00:11 0:08:35 0:07:24 

100,000,000 0:00:12 0:00:12 0:16:42 0:14:58 

200,000,000 0:00:20 0:00:20 0:30:49 0:24:55 

350,000,000 0:00:25 0:00:26 0:49:38 0:44:56 

400,000,000 0:00:29 0:00:33 0:52:28 0:46:20 

450,000,000 0:00:38 0:00:32 1:04:02 1:02:24 

500,000,000 0:00:51 0:00:35 1:15:46 1:01:12 

 

 

Figure 16: UC4 Python and R versions Deep Neural Network model training comparison. 
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Figure 17: UC4 Python and R versions Random Forest model training comparison. 

 

4.2.4 UC5 
 
Data analysis based on satellite data from the Copernicus project to model agricultural usage is an 
important task and impacts not only academic but also industrial research. Within PROCESS this Use 
Case is driven by the proprietary SME software, PROMET, which is executed as a closed source 
application on a distinct target system. As reported in D8.1, Section 6, this execution is connected to 
PROCESS via an API as an intermediary between the IEE and the target system. The resulting 
workflow overview was presented in D8.1, Figure 9, and detailed in a sequence diagram shown in 
D8.1, Figure 10.  
This sequence diagram allows a very precise mapping of the described measurements T1 to T8 as 
explained in the following Table 10. 
 

Table 10: Use Case 5 measurements. 

TX Name Realisation 

T1 Configuration Each run is configured manually in the IEE, where different values of the 
software can be set. Additionally, a demonstration workflow can be executed 
without any interaction. 

T2 Deployment Strategy The selection of storage and computing sites is not applicable to this use 
case, since the software is bound to a closed source target system. The 
deployment is done with one API call. 

T3 Stage-In Input data is not transferred to the target site, since it is proprietary and not 
publicly available. 

T4 Container selection Within the deployment API call, also a specific version of the software can be 
chosen within T1. 
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T5 Schedule 

Although scheduling and execution is part of the closed target system, these 
measurements are provided by the use case. T6 Execution time 

T7 Stage-Out Strategy 
The output is accessible by the end user through the IEE. The data storage is 
predefined and the transport is done via LOBCDER. The measurement 
therefore includes only the transfer time. T8 Stage-Out 

  
Based on the presented measurements the resulting data is shown in Figure 18. The plot includes 
error bars with the standard deviation of each measurement, which is quite high in T1, T5 and T6. T1 
is dependent on the user’s input and configuration and differs therefore based on several reasons, e.g. 
amount of choices, experience, distraction. The scheduling in T5 of the actual job is dependent on the 
load of the whole system and is not controllable by PROCESS. Although the execution time of the 
software is slightly influenced by the overall load on a HPC cluster, the displayed spread is based on 
the execution of very different configurations and therefore resulting in very different execution times. 
The interaction of the API and IEE is negligible, since it requires only one call to start the deployment 
and another one for confirmation. T3, T4 and T7 are not applicable to this Use Case. T8 measures the 
transport of a 10.4 GB output file through LOBCDER including the necessary protocol steps. The 
average bandwidth is 0.34 GB/s which is limited by the transport network, which is not controlled by 
PROCESS. 
Overall, the UC5’s measurements show a very efficient usage of the PROCESS ecosystem. 
Throughout this deployment no overhead introduced by PROCESS could be observed. All queuing 
times and transport delays are directly connected to systems and networks not controlled by 
PROCESS. 
 

 
Figure 18: UC5 Measurements. 

Comparing the actual scheduling (T5), computation (T6) and data transfer (T8) time on the compute 
resource with the overall deployment and execution time logged in the IEE, we can reduce the 
introduced overhead to seconds. This overhead is limited to the communication between the IEE and 
the UC’s API.  
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5 Application of the Prediction Model to actual 
Measurement Results and Conclusion 

5.1 Overhead model and projection 
Using the measurement data collected in Section 4, we model the behaviour of the platform overhead 
using regression analysis to get insight into the data. However, because of the occurrence of outliers 
here and there, we do use robust regression to down weight extreme values. Modelling results for 
overhead are shown in Figure 17.  The linear model (equation: overhead (o) = 0.011 * (number of 
containers (c)) + 20) of the data shows a very slow variation of the overhead in function of the number 
of containers, which is very important for PROCESS scalability. Although the very small value of the 
slope implies that the increase is very slow, so we can consider this overhead as practically constant 
and independent of the number of containers. To put this in context, we can confidently assert that the 
overhead of processing the entire LOFAR LTA archive (around 1800 observations of 16TB) would only 
be about 40 seconds. 

Figure 19-a (left) plots the residual values for each observation and allows to check whether the 
regression model is appropriate for the dataset. If it does, then the values should be randomly 
scattered around the value y = 0. As this is what we observe in Figure 19-b (right), we are confident 
that our approach is appropriate. 

 

 

Figure 19: PROCESS T2 overhead models. 

 

5.2 Scheduling model and projection 
Similar to the general overhead, we use the measurements in Section 4 to model the behaviour of the 
platform scheduling overhead. As illustrated in Figure 20, the IEE model shows a moderate variation of 
the scheduling overhead proportionally to the number of containers (o = 1.67* c + 160) . The principal 
observation is that the scheduling due to PROCESS creates some burden, the latter is moderate and is 
not under the control of PROCESS services. Indeed, depending on the resources and load on the used 
HPC clusters, some jobs get stuck in the workload management system queues for unpredictable 
durations. And the more jobs, the more probable some will get stuck. 
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Figure 20: PROCESS scheduling overhead models in IEE production prototype. 

5.3 Data transfer model and projection 
 

In section 4.1.3, we showed that the staging performance is independent of the container count. This 
is illustrated by the linear model of the staging delays in function of the number of containers as a 
practically horizontal line in Figure 21. 

 

Figure 21: PROCESS staging-in delay model in IEE. 

We know that the staging (in and out) performance depends instead on the input data size whose 
linear model is shown below in Figure 22. The equation of the shown linear model is T3 = 0.032 * M + 
39 where M is the size of the input data in MB. 
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Figure 22: PROCESS staging-in delay model in IEE. 

According to the linear model, it would take on average about 359s to transfer 10GB of data which 
makes for an average speed of about 27.85MB/s; at this speed, it would take 574,506,283 seconds 
(or 18 years 79 days 9 hours 4 minutes and 43 seconds!) to stage in a full LOFAR observation of 
16TB. 

 

5.4 Conclusion and discussion 
In this section we model the measurements detailed in section 4. Mainly, three models have been 
built, for PROCESS platform overhead, scheduling overhead and data staging and transfer.  

The platform overhead model validates the choices made in PROCESS architecture and 
implementation by exhibiting quite a low burden even in case of high load in terms of number of 
concurrently running containers. 

The scheduling overhead model also shows that the scheduling due to PROCESS creates a moderate 
burden and does not constitute a bottleneck. Finally, the staging model shows that staging can take 
quite some time, especially for UC2. Unfortunately, it is beyond the control of PROCESS. The very low 
transfer rates observed for the staging-in is likely due to throttling of local data transfer as the staging 
uses a shared file system.  
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6 Conclusion 
 

In this deliverable and the previous related documents we laid down the foundations for the definition 
and use of a predictive model based on clearly defined performance indicators and scenarios. We 
briefly reviewed relevant approaches to performance modelling and devised an approach for 
PROCESS based on a combination of measurements, micro benchmarking and analytical modelling. 

An analysis of the architectural components clearly identified the performance indicators or 
measurands and the scenarios in which they are measured. Then, the measurands were categorized 
into overhead, attributable to PROCESS, and otherwise, including scheduling and staging. The main 
goal of the predictive model was to verify that the overhead incurred by the PROCESS services is 
negligible compared to the other cost factors and that these services are capable of scaling to the 
exascale range. 

The performance indicators were measured across different PROCESS service prototypes and use 
cases, culminating at the production prototype in this deliverable. Each time, the three main categories 
(overhead, scheduling and staging) of measurands are modelled and projections to the exascale 
realised. Our results show that the overhead of the PROCESS platform is generally found to be low, 
validating the architectural choices made for the project. The scheduling overhead is generally shown 
to be moderate, but out of the control of the PROCESS project. Finally, the last metric consistently 
shows that data staging is a bottleneck, especially for use cases involving transfer of large datasets 
such as UC2. This data transfer performance is highly dependent upon external components such as 
interconnection networks which are out of scope of PROCESS. Solutions for optimising network 
performance such as data transfer nodes and FTS are being investigated and implemented.   
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