
1

This project has received funding from the European

Union’s Horizon 2020 research and innovation
programme under grant agreement No 777533.

PROviding Computing solutions for ExaScale ChallengeS

D3.3 Performance modelling and prediction – final approach

Project: PROCESS H2020 – 777533 Start /
Duration:

01 November 2017
36 Months

Dissemination1: PU Nature2: R
Due Date: 30 April 2020 Work Package: WP 3

Filename3
PROCESS_D3.3_PerformanceModellingAndPrediction-
FinalApproach_v1.0.docx

ABSTRACT

This deliverable is an update of D3.2 and based on its content. It finalizes the performance modelling
and prediction approaches outlined in D3.2 based on the results obtained during the project.
It describes the performance modelling and influences thus the design, development and validation
of the components of the PROCESS infrastructure.

1 PU = Public; CO = Confidential, only for members of the Consortium (including the EC services).
2 R = Report; R+O = Report plus Other. Note: all “O” deliverables must be accompanied by a deliverable report.
3 eg DX.Y_name to the deliverable_v0xx. v1 corresponds to the final release submitted to the EC.

2

Deliverable
Contributors: Name Organisation Role / Title

Deliverable Leader4 Pancake-Steeg, Jörg LSY Coordinator

Contributing
Authors5

Madougou, Souley;
Maassen, Jason NLESC Writers

Valkering, Onno;
Cushing, Reggie UvA Writers

Graziani, Mara HES-SO Writer

Schmidt, Jan;
Höb, Maximilian LMU Writers

Meizner, Jan AGH Writer

Somoskői, Balázs;
Matejko, Pawel LSY Writers

Reviewer(s)6
Habala, Ondrej UISAV Reviewer

Belloum, Adam UvA Reviewer

Final review and
approval

Höb, Maximilian LMU Coordinator

Document History
Release Date Reasons for Change Status7 Distribution

0.0 31.10.2019 Final Version of D3.2 Draft Working Group

0.1 15.01.2020 Use Case updates Draft Working Group

0.2 15.05.2020 Use Case updates Draft Working Group

0.3 29.05.2020 Measurements update Draft Consortium

0.4 05.06.2020 Evaluation update Draft Consortium

0.5 17.06.2020 Internal review In Review Consortium

0.6 22.06.2020 Final internal review In Review Consortium

1.0 30.06.2020 Release Released Public

4 Person from the lead beneficiary that is responsible for the deliverable.
5 Person(s) from contributing partners for the deliverable.
6 Typically, person(s) with appropriate expertise to assess the deliverable quality.
7 Status = “Draft”; “In Review”; “Released”.

D3.3: Table of Contents

3

Table of Contents
Executive Summary ... 4
List of Figures .. 5
List of Tables ... 5
1 Introduction .. 6

1.1 Performance modelling approaches ... 6
1.1.1 Overview and classification ... 6
1.1.2 PROCESS Performance Model ... 7

2 Identification of Measurands ... 8
3 Development of a balanced Prediction Model ... 12

3.1 Runtime Composition .. 12
3.2 Model Verification .. 13

3.2.1 Benchmark Application .. 13
3.2.2 Use Case Workflows ... 13

3.3 Conclusion .. 13
4 Measurements ... 14

4.1 Platform-wide measurements .. 14
4.1.1 Overhead measurements .. 14
4.1.2 Scheduling measurements .. 16
4.1.3 Staging measurements .. 17

4.2 Use case specific measurements... 18
4.2.1 UC1 .. 18
4.2.2 UC2 .. 20
4.2.3 UC4 .. 21
4.2.4 UC5 .. 26

5 Application of the Prediction Model to actual Measurement Results and Conclusion 28
5.1 Overhead model and projection ... 28
5.2 Scheduling model and projection ... 28
5.3 Data transfer model and projection .. 29
5.4 Conclusion and discussion .. 30

6 Conclusion ... 31
7 References ... 32

D3.3: Executive Summary

4

Executive Summary
This document presents the foundations of the performance modelling and prediction approaches that
the PROCESS project will use to steer its design, development and validation efforts. The broad range
of environments that the PROCESS software will run on presents obvious challenges in the
development of a uniform, easy-to-use and straightforward performance model. The necessary
streamlining and simplification of the approach should not omit any relevant aspects that are determining
the actual performance as observed by a user.

As a way to balance these conflicting needs, the project will use a solution based on measurable
performance metrics, complemented by a mathematical model that allows extrapolating performance
on systems that are considerably more complex than the current ones. The extrapolation will also be
necessary to understand the impact of advances in the capacities of individual components will have in
the execution speed of complex workflows.

The model used by the project assumes that typical exascale applications can be modelled as pipelines
consisting of the input data stage-in, processing and (result) data stage-out steps. However, for
workflows comprising several dynamically configured and deployed components, the set of performance
components need to be able to analyse the execution in a more fine-grained manner. The full set of
metrics consists of:

• T1: Configuration of the workflow
• T2: Deployment strategy (selection of resources)
• T3: Stage-in of the data
• T4: Container selection (fetching the container encompassing the executable code, as defined

in T1)
• T5: Scheduling (time spent on the queue of a compute system)
• T6: Execution time
• T7: Stage-Out Strategy (choosing the approach based on required storage capacity, type and

availability)
• T8: Stage-Out (actual transfer of data).

It should be noted that some of these steps depend on user input, therefore, the overall execution time
will depend on the expertise and skills of the user. There are also considerable differences between
situations where all the necessary resources belong to a single system, on multiple platforms controlled
by a single organisation or in a federated system crossing organisational and geographical boundaries.

To focus performance-related development efforts, the PROCESS performance model groups the
metrics into the following categories:

𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 = 𝑇1 + 𝑇2 + 𝑇4 + 𝑇7	

𝐷𝑎𝑡𝑎	𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = 𝑇3 + 𝑇8	

𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔 = 𝑇5,							𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛	𝑇𝑖𝑚𝑒 = 𝑇6	

The overhead consists of factors that can be influenced by the PROCESS software, while the data
transfer and execution time components are primarily dependent on the performance of the networking
and computing hardware available. The scheduling is highly dependent on the number of competing
jobs and the policies (e.g. priority queue available for the job). However, similar to the characteristics of
the underlying hardware, scheduling is an issue that can't be influenced by the design of the software.

As the relative impact of these four categories on the system-level performance as experienced by the
user can vary dramatically, the project will develop a user-configurable workflow that will be used to
complement actual use case software in the evaluation of the PROCESS platform. However, it should
be noted that the use cases already stress the different aspects of the equation in a quite comprehensive
manner. For example, UC1 performance will be highly dependent on the data transfer and execution
time components, whereas the interactive use anticipated in the UC4 will require minimising all of the
overheads in the PROCESS platform.

D3.3: List of Figures

5

List of Figures
Figure 1: Sequence diagram describing the steps involved in execution of a typical application
scenario ... 9
Figure 2: Three measurement scenarios .. 11
Figure 3: Submission delay (T2) behaviour in PROCESS production prototype................................. 14
Figure 4: Submission delay in IEE batched by input data size. .. 15
Figure 5: Implicit staging overhead behaviour in PROCESS production prototype. 15
Figure 6: Overall overhead (T2 + implicit staging) behaviour in PROCESS production prototype....... 16
Figure 7: PROCESS scheduling overhead measurements from IEE ... 16
Figure 8: Scheduling delay measurements in PROCESS production prototype batched by input size.
 .. 17
Figure 9: Staging-in measurements in IEE production prototype. .. 17
Figure 10: Comparison of the standard SCP protocol and the containerized FDT protocol to transfer
from UvA to LMU. Time for transfer is reported against file size in Mb. FDT shows better performance
on files larger than 2Gb. ... 18
Figure 11: Transfer from LMU to UvA: comparison of the standard SCP protocol and the FDT protocol
in a containerized approach. FDT shows better performance on files larger than 2Gb. 19
Figure 12: UC2 data staging and transfer measurements. .. 21
Figure 13: UC4 data transfer measurements. ... 23
Figure 14: UC4 Random Forest model training time over sample size. ... 24
Figure 15: UC4 Deep Neural Network model training time over sample size. 24
Figure 16: UC4 Python and R versions Deep Neural Network model training comparison. 25
Figure 17: UC4 Python and R versions Random Forest model training comparison. 26
Figure 18: UC5 Measurements. .. 27
Figure 19: PROCESS T2 overhead models. ... 28
Figure 20: PROCESS scheduling overhead models in IEE production prototype............................... 29
Figure 21: PROCESS staging-in delay model in IEE. .. 29
Figure 22: PROCESS staging-in delay model in IEE. .. 30

List of Tables
Table 1: Performance Modelling Approaches, cited from [PMO] ... 7
Table 2: Description of the PROCESS measurands .. 10
Table 3: Measurements of copying the Camelyon16 dataset between PROCESS sites, with gridFTP
protocol in MB/s. .. 18
Table 4: Measurements of execution time vs data sizes for extracting high resolution patches from the
Camleyon17 dataset at the PROCESS AGH site. ... 19
Table 5: Parallel Model Training lower bounds expressed as number of trained models trained per
hour (on 50 Gb of training data) .. 20
Table 6: Wall clock times of the main steps of the data reduction pipeline. .. 21
Table 7: UC4 data generation time. .. 22
Table 8: UC4 model generation time. ... 23
Table 9: UC4 Python and R versions comparison. .. 25
Table 10: Use Case 5 measurements. .. 26

D3.3: Introduction

6

1 Introduction
This deliverable D3.3 updates the approach to model the performance of the PROCESS infrastructure
and its possible scalability towards exascale workflows. Based on D3.1 and D3.2 this deliverable D3.3
enhances and completes the process of developing a performance model. It gives the opportunity to
provide predictions of the architecture behaviour towards extreme large workflow executions.

In order to achieve exascale performance, we need on the one hand local computing centres capable
of running at such an exascale level. On the other hand, one also needs software being deployable
not only across several nodes, but also across different locations across Europe, the so-called sites.
For our use cases presented in earlier and related deliverables and based on PROCESS’s
architectural design decision, we consider this a prerequisite. In order to technically facilitate the
decision, we seek for the approach to containerize the architectural elements as well as to push all use
cases to design their execution in containers. This will allow for deploying instances of independent
executions on subsets of a given data set on different local nodes and at the same time on different
geographical based sites.

However, the hardware and the software development towards exascale is an ongoing process and
we have to face the challenge to predict a behaviour that cannot be verified within the lifetime of this
project. Therefore, we had to develop a prediction model based on measurable performance indicators
and from there on extrapolating runtime behaviour towards a much higher scale. The model needs to
meet the requirements to predict the behaviour of all our services and the PROCESS infrastructure as
a whole but must also be able to adapt new requirements coming from future and new applications.

To distinguish the most common approaches for performance prediction models, we will first give an
overview and classification of up-to-date performance modelling and prediction methods, on the basis
of which we will present the approach of choice for PROCESS.

1.1 Performance modelling approaches
Performance modelling is used for many computational and storage systems around Europe.
Regarding the exascale challenge, also other EU projects examine the needs and conclusions to
enable exascale performance.

The CRESTA8 project (Collaborative Research Into Exascale Systemware, Tools and Applications)
proposes a framework focusing on software and tool developments for end-user scientist. Their
solution is limited to local site needs and deals mainly with hardware decisions owners of
supercomputing centres will face in the next years.

1.1.1 Overview and classification
One of the CRESTA project partners is David Henty from the Edinburgh Parallel Computing Centre
(EPCC). In his publications he gives an overview on generic performance modelling techniques and a
classification of which. In Table 1 he defines four main categories varying from raw measurements,
over benchmarking and simulations to complex analytical modelling with a large number of
parameters.

8
 https://www.cresta-project.eu

D3.3: Introduction

7

Technique Description Purpose

Measurement running full applications under various
configurations

determine how well application performs

Microbenchmarking measuring performance of primitive
components of application

provide insight into application
performance

Simulation running application or benchmark on
software simulation

examine “what if” scenarios e.g.
configuration changes

Analytical Modelling devising parameterized, mathematical
model that represents the performance
of an application in terms of the
performance of processors, nodes, and
networks

rapidly predict the expected performance
of an application on existing or
hypothetical machines

Table 1: Performance Modelling Approaches, cited from [PMO]

Any of the techniques mentioned above will be useful within the PROCESS project:

Measurement
Both simple measurements as well as complex model measurement values are the basis of success.
In Section 2, we will define at which points of the execution sequence meaningful measurements can
be taken. Measurement values are to deliver input data for further modelling and prediction steps.

Microbenchmarking
Microbenchmarking is used to identify performance bottlenecks in the PROCESS architecture and
assists in debugging and verifying its correctness. The microbenchmark is a very simple application
(validation or test pipeline) running through the complete PROCESS architecture and gathering first
results.

Simulation and Analytical Modelling
Executing and measuring a given application running on PROCESS in different configurations and
settings forms the input dataset for this step. The goal of this step is to extrapolate the behaviour and
runtime of the application from the given observations. The resulting model will allow for predictions of
runtime behaviour beyond the configuration scales measured, which gives us the chance to forecast
the performance on an exascale level.

1.1.2 PROCESS Performance Model
Based on the previous description we choose a measurement-based approach with extrapolation
through analytical modelling. First the measurands are identified and measurements are performed. In
the next step a microbenchmark to evaluate these measurands is developed. Finally, to predict the
performance of PROCESS, we use these results to create an analytical model that will allow us to
extrapolate the performance based on given measurements.

D3.3: Identification of Measurands

8

2 Identification of Measurands
In the previous Section we categorized the approaches to performance modelling and prediction. One
of which was a measurement-based approach with extrapolation for performance prediction. To
achieve this goal, it is necessary to identify the appropriate measurands within the PROCESS
infrastructure that can be used to model the performance of the infrastructure and predict its scaling.

We stress that the hardware infrastructure such as computing, storage, and network have a big impact
on the performance of PROCESS services. However, as a project, we have no real influence on this
part of the infrastructure. Therefore, our performance measurands focus on the overhead introduced
by the software services, but also measure all other relevant numbers to identify relations between
them.

In the absence of true exascale systems, our objective, as stated in Section 1, is to achieve exascale
by combining the power of geographically distributed data centres. Unfortunately, the traditional
configuration of compute centres is more optimized for inner data transfer rather than for outside
transfers. While technical solutions to optimize data-transfers exist such as the Data Transfer
Nodes9,10, implementing those solutions is beyond the scope of the project. In PROCESS we try to
hide the data transfers by overlapping data transfer with computing or use pre-fetching and caching to
minimize the data transfers.

Based on the five use cases defined in PROCESS, we can think of a typical application as a pipeline
of data processes which typically requires a data stage-in step followed with an execution step, and
finally a data stage-out step. The time required for stage-in and out is expected to be significant,
because of the necessary data movement between data centres.

T1: Configuration

The Interactive Execution Environment provides an end-user web portal, where each run of
any application needs to be configured. For the different use cases, these configurations vary
as shown in the deliverables D4.2 and D5.2.

T2: Deployment Strategy
Part of T2 is the time needed to decide on which computing site[s] and storage site the
containers and their data will be deployed. It also needs to initiate the required micro-
architecture.

T3: Stage-In
Impact by the access to data services in data centre. However, if PROCESS can make use of
caching, proactive pre-fetching or pre-processing we can reduce the impact of T3 on the
overall execution performance

T4: Container selection
The workflow that has been defined in T1 specifies a container that will be executed as well as
its version. This version needs to be fetched from the container repository and later deployed
as a job in T5.

T5: Scheduling
The time a job spends in the queue of the compute resource. This time can vary and will be
hard to predict since it’s affected by each compute site’s scheduling system that isn’t in the
scope of PROCESS. We may however be able to estimate an upper bound on the queue
waiting time that could be added to the actual runtime prediction.

9 Building User-friendly Data Transfer Nodes, https://www.delaat.net/posters/pdf/2018-11-12-DTN-SURFnet.pdf
10 Pacific Research Platform https://bozeman-fiona-workshop.ucsd.edu/materials/20180303-dart-dtn-strategic-asset-v1.pptx/view

D3.3: Identification of Measurands

9

T6: Execution time
T6 is the time a job takes from leaving the queue to finishing its calculations on the compute
resource. This time is determined by the performance and scalability of the application on the
selected compute resource. To predict this time, an application specific performance model is
required.

T7: Stage-Out Strategy
After the job is done, it may have generated large amounts of output data that needs to be
transferred from the compute resource’s scratch space back to the PROCESS storage
infrastructure. Based on the amount of data and the specified workflow the data service needs
to choose a suitable stage-out strategy.

T8: Stage-Out
With the appropriate stage-out strategy the output data now needs to be transferred to the
chosen storage resource.

Figure 1 shows a sequence diagram describing all the steps involved in the execution of an
application scenario. For each step we define the time corresponding to its completion as follows:

Figure 1: Sequence diagram describing the steps involved in execution of a typical application scenario

D3.3: Identification of Measurands

10

Table 2 summarises the various identified times, we will use as performance measurands.

TX Name Description

T1 Configuration Time to configure the workflow for the application

T2 Deployment Strategy Time to select appropriate storage and computing site

T3 Stage-In Time to transfer data from source to selected storage site

T4 Container selection Time to select specified container for the workflow from repository

T5 Schedule Time the submitted job spends in queue

T6 Execution time Time spent executing the job on the compute resource

T7 Stage-Out Strategy Time to select appropriate storage site for output

T8 Stage-Out Time to transfer result to storage site

Table 2: Description of the PROCESS measurands

Using the identified performance measurands listed in Table 2 we propose a three-step approach to
the modelling and performance prediction of the PROCESS infrastructure. First, we will show that the
overhead of the PROCESS platform for a deployment on one site (initializing the micro-infrastructure
and scheduling) is negligible. Second, since the deployment strategy of process is to deploy every
application containerized, we show the weak scaling capabilities of PROCESS by deploying multiple
containers with a split of the input data on one site. And third, since the goal is to achieve an exascale
system solution, we enable applications to scale by splitting the data and deploying containers across
multiple sites of PROCESS.

We therefore describe three measurement scenarios:

Scenario 1: Single container – single site (Figure 3-a)
In this scenario we measure the execution time of processing the input sequentially within one
container running. This container uses the maximal possible and available number of compute
resources PROCESS can use at one single site (e.g. use case 2 running only at one cluster).

Scenario 2: Multiple containers – single site (Figure 3-b)
In the second scenario we submit several containers on one cluster. Here, we either expect a
speedup, since the container in scenario 1 eventually did not fully utilize compute resources or
the same runtime as before, since the overhead to deploy more than one container in parallel
should be minimal.

Scenario 3: Multiple containers – multiples sites (Figure 3-c)
This last scenario will deploy several containers in parallel on two different sites with an also
split input data set. We expect a significant speedup since multiple containers will be deployed
on multiple sites.

D3.3: Identification of Measurands

11

Figure 2: Three measurement scenarios

Figure 2: Three measurement scenarios: (a) Single container – single site, (b) Multiple container – single site, (c)
Multiple container – multiple site. In all three scenarios Stage-In and Stage-Out will down scale the system overall
performances, unless we address the data transfer over a wide area network.

After evaluating these scenarios and measurements, we will present a generic performance model
that allows to predict the scalability of the PROCESS infrastructure for a given application.

D3.3: Development of a balanced Prediction Model

12

3 Development of a balanced Prediction Model
In this section we will present our approach to determine the components of a simple predictive model
for workflow performance on the PROCESS infrastructure.

3.1 Runtime Composition
Based on Figure 2 the total runtime of an application can be defined as follows:

𝑅𝑢𝑛𝑡𝑖𝑚𝑒 = 𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 + 𝐷𝑎𝑡𝑎	𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 + 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔 + 	𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛	𝑇𝑖𝑚𝑒	

Where:

𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 = 𝑇1 + 𝑇2 + 𝑇4 + 𝑇7;	
𝐷𝑎𝑡𝑎	𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = 𝑇3 + 𝑇8, ;	
𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔 = 𝑇5;	
𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛	𝑇𝑖𝑚𝑒 = 𝑇6	

The overhead component contains all overhead directly related to the PROCESS services. This
includes selecting the appropriate resources for data access and compute in the Execution
Environment, configuring the micro-architecture of LOBCDER for data access, fetching the application
containers, and submitting the application to the selected resource using Rimrock.

To support exascale it is important that this overhead is low per submitted workflow and does not
depend on the scale of the compute resources which are targeted by PROCESS services. We expect
that this overhead component is orders of magnitude smaller than the other components and will
therefore be negligible.

The data transfer, scheduling and execution time components are mostly determined by factors
outside of the control of PROCESS services, such as network capacity, queue waiting times, and how
well a workflow performs and scales on a given resource. Nevertheless, having an estimate of the
data transfer and scheduling delay is useful for selecting a resource to which a workflow should be
submitted. If execution time estimates are available, this selection may be improved further, and a total
runtime estimate may be provided to the user.

The data transfer component is mainly determined by two parts: the time required by Dispel to perform
pre-processing of the data (if any), and the time required to transfer the resulting data volume given
the end-to-end transfer capacity between the storage and compute site. These two components may
largely overlap if the data pre-processing is simple and can be performed on the fly, but for complex
operations this may not be the case.

For the latter part, predicting large long-distance data transfers, a significant amount of research has
been performed in the last two decades. For example, [[Liu2017]] describes a model that predicts end-
to-end data transfer times with high accuracy based on logs of the Globus transfer service. Similarly,
much research has been done on estimating queue waiting times of HPC applications which
dominates the scheduling component. For example, [[Nurmi2007]] describes a model that provides
estimates with a high degree of accuracy and correctness for a large number of supercomputing sites.

For PROCESS we will re-use this existing work to provide estimates for both the data transfer and
scheduling components of the model.

Predicting the execution time is highly application specific and must be done separately for each of the
use cases. It may be dependent on input datasets, application parameters, number of resources used
(number and type of cores, amount and speed memory, availability and type of GPUs, etc).

Strong scalability of the use case applications is expected to be limited well below exascale, as
currently only few applications are able to exploit a petascale level. To determine the limits of the
strong scalability of the use case workflows, traditional performance benchmarking of the applications
can be used for representative input data sets and parameters. To circumvent limits in strong
scalability, we can exploit weak scalability, where multiple workflows are running at the same time to
process different datasets. However, doing so may shift the bottleneck from the application to other

D3.3: Development of a balanced Prediction Model

13

sources, such as the data service, or local storage on the resources. Such limits can be discovered by
performing weak scalability testing, both on a single site and multiple sites.

Unfortunately, it requires a large effort to create a complete and accurate model of the application
behaviour for each of the use cases. Although users may be willing to perform some testing in
advance to tune their application, they are mostly interested in obtaining application results. Therefore,
highly accurate modelling of the application workflows is not required, instead a rough estimate of the
processing time is generally enough.

We will initially assume the user will provide an estimate for the execution time, as is customary on
HPC systems. At a later stage, this estimate may be refined based on easy to determine parameters,
such as input data size and number of resources used, which may be extracted from the logs of
previous runs of the workflow. A significant amount of research has been done on estimating
application execution time based on limited information. For example, [Smith1998] presents a
technique that predicts application runtimes based on historical information of “similar” applications.
Search techniques are used to automatically determine the best definition of similarity. In
[Gaussier2015], a similar technique is used to fine tune the execution time estimate provided by the
user.

3.2 Model Verification
3.2.1 Benchmark Application
An artificial benchmark workflow will be created which allows configuration of the different aspects of a
workflow, such as the sizes and locations of in- and output data, pre- or post-processing requirements,
the number and type of compute resources required, the execution time of the application, etc. This
benchmark workflow can be used to test the functionality or the PROCESS services, determine the
initial values of the model, and validate model predictions.

By choosing minimal values for data transfer and execution time (for example 0 bytes and 0 seconds)
the lower bound for the runtime can be determined and the overhead of the PROCESS services can
be measured. By submitting large numbers of such workflows, the scalability of the services
themselves can be tested. By choosing large values for data transfer an initial estimate of the data
transfer capacity between locations can be made.

Similarly, different pre-processing patterns can be tested, ranging from straightforward filtering or
conversion to more complex operations such as mixing or transpositions, to create an initial estimate
of the Dispel overhead. By varying the target resources of the workflow, an initial estimate of the
scheduling delays in different locations can be made.

Once an initial model is available, this benchmark application can be used to validate it by comparing
the error rates of the predictions against actual measurements. This will allow us to iteratively refine
the model during the course of the project.

3.2.2 Use Case Workflows
As explained above, strong and weak scalability tests may be performed on the use case workflows to
determine the limits to their scalability and the initial parameters of the execution time models. Once
these parameters are available, an initial execution time model can be created, and its predictions can
be verified using the logs of subsequent workflow runs. Consistently measuring the workflow
performance and selected key parameters (such as input data size and type and number of resources
used) allows the model to be refined further. By default, a simple placeholder model will be used by
the PROCESS services. If necessary, a more detailed use case specific model may be created for a
use case and provided upon workflow submission.

3.3 Conclusion
In this section we have described the components of a simple predictive model for workflows
performance on the PROCESS infrastructure. The main goal of this model will be to verify that the
overhead incurred by the PROCESS services (the sum of T1, T2, T4 and T7 in Figure 1) is negligible
compared to the cost of data staging (T3 and T8), scheduling (T5) and execution (T6). Using this
model, we try to verify if the proposed services are capable of scaling into the exascale range.

D3.3: Measurements

14

4 Measurements

4.1 Platform-wide measurements
In this section, we report the overhead and scheduling measurements on the PROCESS platform in its
production prototype.

4.1.1 Overhead measurements
Due to some integration issues preventing us from using certain resources, the overhead
measurements are performed for scenarios 1 and 2 and are presented together. The measurements
are taken on Prometheus and each value is the average of four consecutive runs whenever possible.
Indeed, not all runs lead to data usable for the analysis. The benchmarking uses an event-based
approach, where the state transitions allow to extract event durations. Because of the polling required
to extract the events, most of the transitions are missed in normal operations, which is good from a
production point of view. Unfortunately, this leads to quite a small set of data points for most of our
performance analyses. In contrast to D3.2, other overhead factors are measured in addition to T2. The
operational conditions of the tests impose frequent polling, whose consequence is a dither of +/-5
seconds in the data, which are plotted in Figure 3 for T2 or submission delay. The main observation is
that, except for an outlier at container count 96, the overhead is small, almost constant and
independent of the number of containers. Indeed, both the submission and the scheduling delays (see
below) are not under the control of IEE; consequently, some jobs get stuck either waiting for or in the
queue of the job scheduler on the used HPC systems which leads to occurrences of outliers.

Figure 3: Submission delay (T2) behaviour in PROCESS production prototype

In Figure 4-a (left), the measured values of T2 are grouped by input data size of 10MB, 100MB, 1GB
and 10GB which are the test input data sizes. We observe that up to 1GB, the average value of T2 is
quite small with little deviation from that value. However, for the 10GB batch, the average value has
significantly increased with a large standard deviation. This is due to the outlier at container count 96
shown above. A plot without the outlier is shown in Figure 4-b (right). We can indeed observe that the
average submission delays are close within the 2-3 seconds range. The only reason the 10G batch is
larger is because of an outlier at container count 96 for this input data size.

D3.3: Measurements

15

Figure 4: Submission delay in IEE batched by input data size.

We also measure other overhead factors including the initial directory building, which creates a
directory structure to hold the input data and the intermediary results, and the implicit staging which
involves transferring the output of one step into the input directory of the subsequent step and a clean-
up step removing the above directory structure. While the first and last steps may happen on any data
processing infrastructure, the implicit staging is specific to IEE; consequently, this is the only one we
will consider here. The behaviour of the metric is shown in Figure 5 below. We observe that the implicit
staging is of the same order of magnitude as T2 but at a generally lower scale.

Figure 5: Implicit staging overhead behaviour in PROCESS production prototype.

The cumulative behaviour of T2 and implicit staging is illustrated in the Figure 6 below. The principal
observation is that the global overhead is moderate. It culminates at 25 s at container count 384.

D3.3: Measurements

16

Figure 6: Overall overhead (T2 + implicit staging) behaviour in PROCESS production prototype

4.1.2 Scheduling measurements
Overhead due to scheduling in IEE is measured as queueing times which are plotted in Figure 7 in
relation with the number of containers. The measurements are taken in the same conditions as for the
overhead and, each measurement is an average of up to four measurements. We observe that
scheduling does not harm PROCESS performance as its overhead is the order of tens of seconds for
most container counts. A few of the jobs got stuck in the queue, spending there much longer time than
average. The job with container count 192 is one of these.

Figure 7: PROCESS scheduling overhead measurements from IEE

A complementary explanation of the scheduling behaviours is given in Figure 8. Just as Figure 7
shows that T5 does not depend on the container count, Figure 8 shows it does not depend on the
input data size neither. The delay batches for 1GB and 10GB are both lower than that of 100M, which
is where the above outlier happens to be.

D3.3: Measurements

17

Figure 8: Scheduling delay measurements in PROCESS production prototype batched by input size.

4.1.3 Staging measurements
We also evaluate the staging performance, although this is better done with the data services inside
the use cases. However, this gives us a glimpse of their performance in the IEE context. In the latter,
the most interesting is the stage-in duration (T3) which involves real data transfer using PROCESS
data services, which we report in Figure 9. The stage-out depends on the use case and for the test or
validation pipeline it does not involve data services and does not correspond to any useful output. The
obvious note is that T3 does not depend on the container count, but rather on the input data size.
Indeed, although the transfer durations are almost indistinguishable for up to 1GB, the transfer
duration for 10GB clearly increases. This is expected as transfer time only depends on input size and
network performance and conditions. The latter is probably responsible for the important spread at
container count 192.

Figure 9: Staging-in measurements in IEE production prototype.

D3.3: Measurements

18

4.2 Use case specific measurements
4.2.1 UC1

Data transfer measurements
Measurements of data transfer rates with the SCP protocol were reported in D8.1. As reported in the
deliverable, frequent stalls and broken connections happened frequently in head nodes. The DTN
connection from LRZ to AMS and AMS to LISA showed 30% faster transfer than a direct copy (see
Table 6 in D8.1, page 11). In Table 3we report the measurements of copying the UC1 Camelyon16
dataset between PROCESS sites including our DTN using gridFTP.

Table 3: Measurements of copying the Camelyon16 dataset between PROCESS sites, with gridFTP protocol in
MB/s.

Camelyon 16 30Gb
transfer
source/destination

AMS-DTN LISA LMU-DTN AGH

AMS-DTN 0 324.17 494.51 25.53

LISA 549.62 0 324.97 0

LMU-DTN 405.32 25.53 0 19.55

AGH 51.07 0 14.71 0

The asymmetry in the measurements is due to different reasons. The lack of open ports of sites, for
example, reduced the possibility of having concurrent connections. Moreover, the sites have different
upload to download bandwidth ratios. Direct connectivity between Lisa and Prometheus was not
possible with gridFTP, since this would require one of the sites to act as a server and have open ports.
These many restrictions further emphasize the need for a DTN approach with more performance and
programmability for data transfers.

A further analysis concerning the usage of container protocols to program DTNs shows a better
amortization of the costs for data transfer (see Figure 10 and Figure 11):

Figure 10: Comparison of the standard SCP protocol and the containerized FDT protocol to transfer from UvA to
LMU. Time for transfer is reported against file size in Mb. FDT shows better performance on files larger than 2Gb.

D3.3: Measurements

19

Figure 11: Transfer from LMU to UvA: comparison of the standard SCP protocol and the FDT protocol in a
containerized approach. FDT shows better performance on files larger than 2Gb.

Figures show a comparative of using standard SCP protocol to transfer data between DTN nodes vs
the dynamically reprogram DTNs with different protocol containers. In this case we deploy FDT
protocol inside a container. What is evident is that for files smaller than 2Gb the overhead of deploying
the containers on the fly is greater than the transfer time which results in a degradation. For larger files
(around 2GB) the overhead is amortized by the better performing FDT protocol which at 10GB data
size, FDT is ~22% faster.
Note that this analysis can be applied to the five PROCESS use cases.

Execution time and/or FLOPS measurements vs data size

Initial measurements of the execution time for each software layer were reported in D8.1 Table 2 and
3, pages 8-9. In Table 4 we report the execution time against the size of the data in the data pre-
processing step, for each of the two methods proposed, namely random sampling and dense
sampling. Measurements were computed on the AGH site in Krakow, Poland. The execution time vs
data size is reported in s/Mb or s/Gb to show the scalability to increasingly larger datasets and the
gains in computing time which reach up to processing 1 Gb per second.

Table 4: Measurements of execution time vs data sizes for extracting high resolution patches from the
Camleyon17 dataset at the PROCESS AGH site.

Method # patches WSI
coverage data size sampling

time

 execution
time
(upper-
bound)

Execution
time vs.
data size

Random sampling 500 1 file 144 Mb 0.05 s 49.12 s 0.29 s/Mb

Random sampling
(in D8.1, Table 2)

5000 5 files 12 Gb 0.05 s 286.2. s 21.9 s/Gb

Dense sampling 118773 10% of 2%
of files

200 Gb 0.004 s 620.31 s 2.8 s/Gb

Dense sampling 1 Mill. 100% of
10% of files

1 Tb 0.004 s ~ 7500 s (2
hours)

1 s/Gb

Dense sampling
(sequential at
UISAV)

4.5 Mill 100% of
100% of
files

7 Tb 0.02 s ~ 739651 s
(8.5 days)

106 s/Gb

D3.3: Measurements

20

Table 5: Parallel Model Training lower bounds expressed as number of trained models trained per hour (on 50 Gb
of training data)

Number of models GPUs Model complexity in
number of parameters

Model Training time
(upper bound in
hours:minutes)

1 x ResNet 50 1 x Nvidia K80 23 Million 07:00

1 x ResNet 50 1 x Nvidia V100 23 Million 06:00

1 x ResNet 101 2 x Nvidia K80 44.5 Million 05:00

1 x Inception V3 1 x Nvidia V100 23.83 Million 07:00

100 x Inception V3 3 x Nvidia V100 7149 Million (7 Billion) 36:00

4.2.2 UC2

Data transfer measurements
Since the benchmarks carried out in D8.1, the services for the data transfer between the LOFAR long-
term archive (LTA) and the HPC cluster sites (CYF, LISA, and LRZ) have been further developed. To
measure the effect of these developments, part of the benchmarking has been redone. The queuing
time and staging time at the side of the LTA has not been benchmarked again, since this mechanism
has not been updated and is out of our control. Therefore, the existing results, as outlined in Section
3.2 of D8.1, still remain accurate.

For completeness, we recall here our findings from D8.1. We performed three types of measurements:
estimating the queueing and preparation time on LOFAR LTA tape archive, total staging time as a
function of total size and data transfer speed from the archive to the HPC sites. We have found the
queueing durations quite variable in and across LOFAR LTA locations, those variations being
attributed to differing configurations and/or loads at the respective locations. We have also found the
staging durations to be variable because of the shared nature of the tape systems. Finally, the data
transfers between the LTA locations and the various computing sites are shown to be suboptimal
(roughly in the range of 5 to 12 MB/s) and constitute a bottleneck that needs to be overcome. The
updated transfer speed benchmark (Figure 12) shows an improved average speed. It is expected that
this is due to a switch in the Globus library used for the transfers (from a Java to a C library) and the
use of concurrent transfers, instead of transferring files one by one.

In most cases, the transfer speed is increased to roughly the 80 to 120 MB/s range. With an exception
being the transfers between LISA and the Amsterdam LTA location, which is significantly higher, but not
changed since the previous benchmark. This is expected, since both locations operate on SURFsara’s
optimized grid infrastructure11. The other exception are the transfers from the Ponzán LTA location to
the LRZ and LISA clusters, although a modest speed improvement has been achieved. It remains
unclear why this is not at the same level as the other transfers. It may be due to the particular (public)
network in place or load thereof, configuration, temporary disruption.

11 https://www.surf.nl/en/use-case-space-research-with-grid-infrastructure

D3.3: Measurements

21

Figure 12: UC2 data staging and transfer measurements.

Although we were able to improve the transfer speeds, the conclusion as provided in D8.1 still holds. In
the extreme-scale data services that we are targeting, the current speeds are still too low compared to
the size of the files that we would like to transfer. Therefore, the transfer speed is still considered a
bottleneck, when not using an optimized network, e.g. with DTNs.

Execution time and/or FLOPS measurements vs data size
For UC2, we only measure the execution time for the time being as the most intensive components
capable of generating high FLOPS values are currently sequential or multithreaded. The wall clock
times of the main steps of the data reduction pipeline are given in Table 6. The main conclusion to
draw from the very high magnitude of these values is that the overhead due to scheduling and
interaction between platform components as seen in the previous section is negligible.

Table 6: Wall clock times of the main steps of the data reduction pipeline.

step data size (GB) execution time (s)

calibrator DI 25 8534

target DI 433 11909

init-subtract 76 37212

DD2 (FACTOR) 76 ~5d

4.2.3 UC4

Data transfer measurements
Since there are still ongoing negotiations with our customer about the usage of their database, the
measurement of real data transfer cannot happen during the project. To be able to run the model
training container we prepared a test data generator as already mentioned earlier in deliverable
documents. The test data generator is able to generate the data directly into the PROCESS
environment running at UISAV. We have taken the measurements of how long the data generation
takes which also measures the times of inserting data into HDFS. Please see Table 7 and Figure 13.

D3.3: Measurements

22

The average times for inserting batches of 1 million records were oscillating near 50ms. There is a
noticeable increase in the insertion time during a few first inserts which application does where many
inserts take more than 100ms and some even take about a second. There are also occasional spikes
of about 500ms inserts. But with a large number of inserts done any of the mentioned spikes are
negligible.

Table 7: UC4 data generation time.

Records amount Generation time [min] Records generated / s

10,000,000 0.33 499,226.20

20,000,000 0.85 391,910.96

50,000,000 1.79 465,783.54

100,000,000 2.45 679,564.81

200,000,000 4.66 715,241.07

250,000,000 5.85 712,147.24

300,000,000 6.93 721,780.20

350,000,000 8.09 721,192.98

400,000,000 9.38 710,389.99

450,000,000 9.77 767,523.85

500,000,000 11.25 740,792.32

1,000,000,000 22.40 744,071.42

2,000,000,000 45.07 739,653.72

D3.3: Measurements

23

Figure 13: UC4 data transfer measurements.

Execution time and/or FLOPS measurements vs data size
Based on the generated data we measured the execution time of training the machine learning
models. Two types of models were generated, a random forest model and a deep neural network
model. Both models were trained with the same dataset. Measured time was increasing exponentially
for random forest model and linearly for deep neural network model. The biggest issue was that both
the application and the H2O cluster [H2Ocluster] were deployed in the same container. Furthermore,
the H2O cluster sometimes did not have enough memory to load all the data. The maximum amount
that we were able to load were bookings and services generated for 350 million flights (Table 8 and
Figure 14, Figure 15).

Table 8: UC4 model generation time.

Records amount
Model training time [H:MM:SS]

Random Forest Total Deep Neural Network Total

10,000,000 0:00:05 0:02:04

20,000,000 0:00:06 0:05:19

50,000,000 0:00:07 0:13:55

100,000,000 0:00:09 0:30:38

200,000,000 0:00:12 1:02:24

250,000,000 0:00:19 1:14:24

300,000,000 0:00:24 1:56:24

350,000,000 0:00:40 2:16:48

D3.3: Measurements

24

Figure 14: UC4 Random Forest model training time over sample size.

Figure 15: UC4 Deep Neural Network model training time over sample size.

The version of Use Case 4 written in R language had problems with very long build times which
hindered the possibility of fast prototyping. Because the H2O framework library is also available for
Python it was decided that the whole application could be rewritten in that language. Performance of
both build times (Table 9) and model training times were measured (Figure 16, Figure 17) to confirm
that build times are now faster and model training times are similar to the R version of the application.
It was measured by using an external H2O cluster with a minimal set of 2 nodes, 4 cores and 2GB of

D3.3: Measurements

25

memory in total. Build times were significantly better but there was a slight decrease in performance of
calculating deep neural network models.

Average build time of Docker container [H:MM:SS]: ()

● without cache (R version) - 0:36:10
● without cache (Python version) - 0:25:40
● with cache, code change, no Dockerfile change (R version) - 0:16:18
● with cache, code change, no Dockerfile change (Python version) - 0:02:36

Table 9: UC4 Python and R versions comparison.

Records
amount DRF (Python) DRF (R) DNN (Python) DNN (R)

20,000,000 0:00:07 0:00:08 0:03:33 0:02:58

50,000,000 0:00:10 0:00:11 0:08:35 0:07:24

100,000,000 0:00:12 0:00:12 0:16:42 0:14:58

200,000,000 0:00:20 0:00:20 0:30:49 0:24:55

350,000,000 0:00:25 0:00:26 0:49:38 0:44:56

400,000,000 0:00:29 0:00:33 0:52:28 0:46:20

450,000,000 0:00:38 0:00:32 1:04:02 1:02:24

500,000,000 0:00:51 0:00:35 1:15:46 1:01:12

Figure 16: UC4 Python and R versions Deep Neural Network model training comparison.

D3.3: Measurements

26

Figure 17: UC4 Python and R versions Random Forest model training comparison.

4.2.4 UC5

Data analysis based on satellite data from the Copernicus project to model agricultural usage is an
important task and impacts not only academic but also industrial research. Within PROCESS this Use
Case is driven by the proprietary SME software, PROMET, which is executed as a closed source
application on a distinct target system. As reported in D8.1, Section 6, this execution is connected to
PROCESS via an API as an intermediary between the IEE and the target system. The resulting
workflow overview was presented in D8.1, Figure 9, and detailed in a sequence diagram shown in
D8.1, Figure 10.
This sequence diagram allows a very precise mapping of the described measurements T1 to T8 as
explained in the following Table 10.

Table 10: Use Case 5 measurements.

TX Name Realisation

T1 Configuration Each run is configured manually in the IEE, where different values of the
software can be set. Additionally, a demonstration workflow can be executed
without any interaction.

T2 Deployment Strategy The selection of storage and computing sites is not applicable to this use
case, since the software is bound to a closed source target system. The
deployment is done with one API call.

T3 Stage-In Input data is not transferred to the target site, since it is proprietary and not
publicly available.

T4 Container selection Within the deployment API call, also a specific version of the software can be
chosen within T1.

D3.3: Measurements

27

T5 Schedule

Although scheduling and execution is part of the closed target system, these
measurements are provided by the use case. T6 Execution time

T7 Stage-Out Strategy
The output is accessible by the end user through the IEE. The data storage is
predefined and the transport is done via LOBCDER. The measurement
therefore includes only the transfer time. T8 Stage-Out

Based on the presented measurements the resulting data is shown in Figure 18. The plot includes
error bars with the standard deviation of each measurement, which is quite high in T1, T5 and T6. T1
is dependent on the user’s input and configuration and differs therefore based on several reasons, e.g.
amount of choices, experience, distraction. The scheduling in T5 of the actual job is dependent on the
load of the whole system and is not controllable by PROCESS. Although the execution time of the
software is slightly influenced by the overall load on a HPC cluster, the displayed spread is based on
the execution of very different configurations and therefore resulting in very different execution times.
The interaction of the API and IEE is negligible, since it requires only one call to start the deployment
and another one for confirmation. T3, T4 and T7 are not applicable to this Use Case. T8 measures the
transport of a 10.4 GB output file through LOBCDER including the necessary protocol steps. The
average bandwidth is 0.34 GB/s which is limited by the transport network, which is not controlled by
PROCESS.
Overall, the UC5’s measurements show a very efficient usage of the PROCESS ecosystem.
Throughout this deployment no overhead introduced by PROCESS could be observed. All queuing
times and transport delays are directly connected to systems and networks not controlled by
PROCESS.

Figure 18: UC5 Measurements.

Comparing the actual scheduling (T5), computation (T6) and data transfer (T8) time on the compute
resource with the overall deployment and execution time logged in the IEE, we can reduce the
introduced overhead to seconds. This overhead is limited to the communication between the IEE and
the UC’s API.

D3.3: Application of the Prediction Model to actual Measurement Results and Conclusion

28

5 Application of the Prediction Model to actual
Measurement Results and Conclusion

5.1 Overhead model and projection
Using the measurement data collected in Section 4, we model the behaviour of the platform overhead
using regression analysis to get insight into the data. However, because of the occurrence of outliers
here and there, we do use robust regression to down weight extreme values. Modelling results for
overhead are shown in Figure 17. The linear model (equation: overhead (o) = 0.011 * (number of
containers (c)) + 20) of the data shows a very slow variation of the overhead in function of the number
of containers, which is very important for PROCESS scalability. Although the very small value of the
slope implies that the increase is very slow, so we can consider this overhead as practically constant
and independent of the number of containers. To put this in context, we can confidently assert that the
overhead of processing the entire LOFAR LTA archive (around 1800 observations of 16TB) would only
be about 40 seconds.

Figure 19-a (left) plots the residual values for each observation and allows to check whether the
regression model is appropriate for the dataset. If it does, then the values should be randomly
scattered around the value y = 0. As this is what we observe in Figure 19-b (right), we are confident
that our approach is appropriate.

Figure 19: PROCESS T2 overhead models.

5.2 Scheduling model and projection
Similar to the general overhead, we use the measurements in Section 4 to model the behaviour of the
platform scheduling overhead. As illustrated in Figure 20, the IEE model shows a moderate variation of
the scheduling overhead proportionally to the number of containers (o = 1.67* c + 160) . The principal
observation is that the scheduling due to PROCESS creates some burden, the latter is moderate and is
not under the control of PROCESS services. Indeed, depending on the resources and load on the used
HPC clusters, some jobs get stuck in the workload management system queues for unpredictable
durations. And the more jobs, the more probable some will get stuck.

D3.3: Application of the Prediction Model to actual Measurement Results and Conclusion

29

Figure 20: PROCESS scheduling overhead models in IEE production prototype.

5.3 Data transfer model and projection

In section 4.1.3, we showed that the staging performance is independent of the container count. This
is illustrated by the linear model of the staging delays in function of the number of containers as a
practically horizontal line in Figure 21.

Figure 21: PROCESS staging-in delay model in IEE.

We know that the staging (in and out) performance depends instead on the input data size whose
linear model is shown below in Figure 22. The equation of the shown linear model is T3 = 0.032 * M +
39 where M is the size of the input data in MB.

D3.3: Application of the Prediction Model to actual Measurement Results and Conclusion

30

Figure 22: PROCESS staging-in delay model in IEE.

According to the linear model, it would take on average about 359s to transfer 10GB of data which
makes for an average speed of about 27.85MB/s; at this speed, it would take 574,506,283 seconds
(or 18 years 79 days 9 hours 4 minutes and 43 seconds!) to stage in a full LOFAR observation of
16TB.

5.4 Conclusion and discussion
In this section we model the measurements detailed in section 4. Mainly, three models have been
built, for PROCESS platform overhead, scheduling overhead and data staging and transfer.

The platform overhead model validates the choices made in PROCESS architecture and
implementation by exhibiting quite a low burden even in case of high load in terms of number of
concurrently running containers.

The scheduling overhead model also shows that the scheduling due to PROCESS creates a moderate
burden and does not constitute a bottleneck. Finally, the staging model shows that staging can take
quite some time, especially for UC2. Unfortunately, it is beyond the control of PROCESS. The very low
transfer rates observed for the staging-in is likely due to throttling of local data transfer as the staging
uses a shared file system.

D3.3: Conclusion

31

6 Conclusion

In this deliverable and the previous related documents we laid down the foundations for the definition
and use of a predictive model based on clearly defined performance indicators and scenarios. We
briefly reviewed relevant approaches to performance modelling and devised an approach for
PROCESS based on a combination of measurements, micro benchmarking and analytical modelling.

An analysis of the architectural components clearly identified the performance indicators or
measurands and the scenarios in which they are measured. Then, the measurands were categorized
into overhead, attributable to PROCESS, and otherwise, including scheduling and staging. The main
goal of the predictive model was to verify that the overhead incurred by the PROCESS services is
negligible compared to the other cost factors and that these services are capable of scaling to the
exascale range.

The performance indicators were measured across different PROCESS service prototypes and use
cases, culminating at the production prototype in this deliverable. Each time, the three main categories
(overhead, scheduling and staging) of measurands are modelled and projections to the exascale
realised. Our results show that the overhead of the PROCESS platform is generally found to be low,
validating the architectural choices made for the project. The scheduling overhead is generally shown
to be moderate, but out of the control of the PROCESS project. Finally, the last metric consistently
shows that data staging is a bottleneck, especially for use cases involving transfer of large datasets
such as UC2. This data transfer performance is highly dependent upon external components such as
interconnection networks which are out of scope of PROCESS. Solutions for optimising network
performance such as data transfer nodes and FTS are being investigated and implemented.

D3.3: References

32

7 References

[PMO] Performance Modelling, David Henty, EPCC, The University of Edinburgh [online:
http://www.archer.ac.uk/training/course-material/2018/07/ScaleMPI-MK/Slides/Performance
Modelling.pdf]

[Liu2017] Liu, Z., Balaprakash, P., Kettimuthu, R. and Foster, I., 2017, June. Explaining wide area data
transfer performance. In Proceedings of the 26th International Symposium on High-Performance
Parallel and Distributed Computing (pp. 167-178). ACM.

[Nurmi2007] Nurmi, D., Brevik, J. and Wolski, R., 2007, June. QBETS: queue bounds estimation from
time series. In Workshop on Job Scheduling Strategies for Parallel Processing (pp. 76-101). Springer,
Berlin, Heidelberg.

[Smith1998] Smith, W., Foster, I. and Taylor, V., 1998, March. Predicting application run times using
historical information. In Workshop on Job Scheduling Strategies for Parallel Processing (pp. 122-142).
Springer, Berlin, Heidelberg.

[Gaussier2015] Gaussier, E., Glesser, D., Reis, V. and Trystram, D., 2015, November. Improving
backfilling by using machine learning to predict running times. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis (p. 64). ACM.

[H2Ocluster]
https://h2o-release.s3.amazonaws.com/h2o/rel-lambert/5/docs-website/deployment/multinode.html

