
Reference exascale architecture

Martin Bobák, Ladislav Hluchý
Institute of Informatics

Slovak Academy of Sciences
Bratislava, Slovakia

{martin.bobak, ladislav.hluchy}@savba.sk

Adam S. Z. Belloum, Reginald Cushing
Informatics Institute

University of Amsterdam
Amsterdam, Netherlands

{a.s.z.belloum, r.s.cushing}@uva.nl

Jan Meizner, Piotr Nowakowski
ACC Cyfronet AGH

AGH University of Science and Technology
Krakow, Poland

{j.meizner, p.nowakowski}@cyfronet.pl

Viet Tran, Ondrej Habala
Institute of Informatics

Slovak Academy of Sciences
Bratislava, Slovakia

{viet.tran, ondrej.habala}@savba.sk

Jason Maassen
Netherlands eScience Center

Amsterdam, Netherlands

j.maassen@esciencecenter.nl

Balázs Somosköi
Lufthansa Systems
Berlin, Germany

balazs.somoskoi@lhsystems.com

Mara Graziani
University of Applied Sciences
Western Switzerland (HES-SO)

Sierre, Switzerland

mara.graziani@hevs.ch

Matti Heikkurinen
University of Applied Sciences
Western Switzerland (HES-SO)

Sierre, Switzerland

Ludwig-Maximilians Universität
Munich, Germany

matti.heikkurinen@iki.fi

Maximilian Höb, Jan Schmidt
Munich Network Management Team (MNM-Team)

Ludwig-Maximilians Universität
Munich, Germany

{hoeb, schmidtja}@nm.ifi.lmu.de

Abstract—While political commitments for building exascale
systems have been made, turning these systems into platforms
for a wide range of exascale applications faces several technical,
organisational and skills-related challenges. The key technical
challenges are related to the availability of data. While the first
exascale machines are likely to be built within a single site,
the input data is in many cases impossible to store within a
single site. Alongside handling of extreme-large amount of data,
the exascale system has to process data from different sources,
support accelerated computing, handle high volume of requests
per day, minimize the size of data flows, and be extensible
in terms of continuously increasing data as well as increase
in parallel requests being sent. These technical challenges are
addressed by the general reference exascale architecture. It is
divided into three main blocks: virtualization layer, distributed
virtual file system, and manager of computing resources. Its main
property is modularity which is achieved by containerization
at two levels: 1) application containers – containerization of
scientific workflows, 2) micro-infrastructure – containerization
of extreme-large data service-oriented infrastructure. The paper
also presents an instantiation of the reference architecture - the

This work is supported by “PROviding Computing solutions for ExaScale
ChallengeS” (PROCESS) project that has received funding from the European
Union’s Horizon 2020 research and innovation programme under grant agree-
ment No 777533, project APVV-17-0619 (U-COMP) “Urgent Computing for
Exascale Data”, and project VEGA 2/0167/16 “Methods and algorithms for
the semantic processing of Big Data in distributed computing environment”.

architecture of the PROCESS project (PROviding Computing
solutions for ExaScale ChallengeS) and discuss its relation to the
reference exascale architecture. The PROCESS architecture has
been used as an exascale platform within various exascale pilot
applications. This work will present the requirements and the
derived architecture as well as the 5 use cases pilots that it made
possible.

Index Terms—exascale computing; architecture; functional
design; qualitative analysis

I. INTRODUCTION

New scientific instruments (e.g. distributed radio telescopes

such as LOw-Frequency ARray – LOFAR, Square Kilometre

Array – SKA, space telescopes such as Copernicus sentinels,

etc.) are producing data at an accelerating pace. LOFAR

observations are stored in the long term archive (LTA) which

is distributed over Amsterdam, Jülich and Poznan. It currently

contains around 30 PB of data and grows with 5 to 7 PB/year.

SKA represents an even bigger challenge. It is expected that a

raw data will grow by zettabytes/year which will produce 130

to 300PB/year of correlated data. Copernicus sentinels also

present an exascale challenge. They produce approximately

7.5 PB of raw data each month.

479

2019 15th International Conference on eScience (eScience)

978-1-7281-2451-3/19/$31.00 ©2019 IEEE
DOI 10.1109/eScience.2019.00063

Another significant amount of data is generated by branches

that are digitized. A typical example is a medical science. The

final report of the High Level Expert Group on Scientific Data

[1] describes it as follows: “In 2010, about 2.5 petabytes –

more than a million, billion data units – are stored away each

year for mammograms in the US alone. World-wide, some

estimate, medical images of all kinds will soon amount to

30% of all data storage.”
With the rapid growth of data [2], [3] it is often required

to migrate data to a remote computation location [4]. Often

times the data structures are very complex and are stored

in a (geographically) distributed infrastructure. Those features

are so significant, that new approaches and methods need to

be investigated. This paper presents an architectural blueprint

that allows the whole data and compute infrastructure to draw

maximal benefits from the emerging exascale capacities.
The main aim of this paper is to describe the reference ar-

chitecture for exascale systems which starts from the gathering

of requirements to its application in real world use cases. In

the context of our work and of this paper, an exascale system

is one that uses exabytes of data or exaflops of computational

power. The design of the reference architecture is driven by

the requirements analysis of the various use cases which come

from diverse scientific communities as well as the industry.

Through the generalisation of them, the reference architecture

is proposed.
This paper has the following structure:

• Section II represents the requirements analysis of the

various exascale-related use cases

• Section III presents the reference exascale architecture

• Section IV describes the updated technology-based archi-

tecture of the PROCESS Project.

II. ANALYSIS OF THE USE CASES ON THE REQUIREMENTS

OF THE EXASCALE-READY DATA PLATFORM

There are many research communities reaching the exas-

cale threshold. This paper investigates requirements coming

from the following communities1: (a) medical science, (b)

astronomy, (c) behavioural modelling and analysis, and (d)

harvest prediction [5]. The requirements coming from the

communities can be divided into two groups: (i) computational

requirements, and (ii) accessing and processing of data sets

(exceeding petabytes). The two requirements categories are

not completely isolated. Contrariwise, both of them are tangled

which also creates new additional requirements. One of them

is distributed and/or parallel processing of data which is the

consequence of data amount generated by various simulations,

and observations conducted by the above mentioned exascale

research communities coming from distributed data sources

and/or laboratories.

A. Exascale learning on medical image data
The medical use case focuses on automated cancer diagnos-

tics and treatment planning. Its aim is to study cancer detec-

tion, localisation and stage classification. Cancer diagnostics

1They are part of the PROCESS project, http://process-project.eu/

is based on the automatic analysis of a biopsy or surgical

tissue specimens, which are captured by a high resolution

scanner and stored in a multi-resolution pyramid structure.

The amount of the data set is huge (up to PBs), since it also

includes tissue that is not relevant for cancer diagnosis (e.g.

background, stroma, healthy tissue etc.). The whole processing

workflow is depicted in Figure 1.

Fig. 1. Medical use case processing pipeline [5].

The key components of this use case are focused on pattern

recognition, statistical modelling and deep learning. However,

the approach could be relevant in modelling problems where

the amount of data to be analysed is the key challenge. The

typical requirement coming from this kind of data processing

tasks is huge amount of computing power [7], [8]. Extremely

large datasets might be difficult to download [9], and hospitals

might require a high level of confidentiality. As a generalised

solution, the “Evaluation as a Service” (EaaS) could be seen

as a “Clean slate” approach to deal with very large datasets,

especially ones that require sophisticated access control e.g.

due to privacy issues. In EaaS the data remains in a central

infrastructure and does not need to be moved. For example,

data might remain internal at hospitals, or be made available

in a closed cloud environment. The VISCERAL project2

represents an example where the data is kept in a central

space and the algorithms are moved to the data. The main

benefits involve the possibility of working with the data in

situ and therefore allowing hospitals not to reveal sensible

data. Moreover, the use of the computational resources is

reserved to the training of the models, which has the highest

computational demands.

Cancer diagnostics is generally time consuming and reports

high disagreement rates between pathologists, since tumour

stages do not have defined boundaries. Through the visualisa-

tion and interpretation of the network decisions, the level of

objectivity in the diagnostics can be increased, consequently

reducing the analysis time and disagreement rates. The mole of

data to process to train models that can statistically generalize

to new patient cases is often of the size of several Ter-

abytes. The extraction of images of tissue from the gigapixel

histopathology images of breast cancer, can easily grow to

more than 60 thousand patches for the single record. Moreover,

2Visual Concept Extraction Challenge in Radiology., http://www.visceral.
eu/

480

Fig. 2. LOFAR use case processing pipeline [5], [6].

more than one record (between 5 and 20) is kept per each

patient. If state-of-the-art model for image classification are

used, the number of operations needed for training is of the

order of magnitude of 1017, with at least 3.6 GFLOPS required

per each full scan of the training data (i.e. epoch). If the

depth of the network is increased and more than one epoch

of training is considered, the computations required scale up

to the order of magnitude of ExaFlops and several days on a

single dedicated GPU. Moreover, such a large dataset (each

resolution level occupies on average 50 to 60 GB) calls for

a dedicated infrastructure to handle the storage requirements

and data processing.

The requirements analysis pointed out the need for Docker

or Singularity containers in the software environment. Singu-

larity containers are generally better suited to High Perfor-

mance Computing (HPC) clusters, as they provide essential

features such as improved security and portability, as well

as the ability to operate in userspace without the need for

root access on the HPC machine itself (which is typically not

provided to standard users). While Docker containers are more

flexible and often encountered in medical research applica-

tions, Singularity containers can be used to package entire

scientific workflows, software and libraries. Semiautomatic

conversion between Docker and Singularity containers also

remains an option.

As a consequence of these conflicting requirements, the

need of a flexible conversion from Docker containers to Sin-

gularity arises to guarantee software integration. Furthermore,

access to GPUs has to be ensured even in the Singularity

framework, as it is essential for the medical use case. The

Environments Manager has to guarantee a flexible building,

deployment and management of multiple running applications.

Training monitoring is one of the essential requirements for

exascale training [10]. The distribution of the training across

the different computing resources needs to be monitored

constantly.

A data storage system needs to take into account the

different image formats and resolutions across the datasets

and ensures flexibility and adaptation to a variety of datatypes.

For instance, WSIs are generally saved as BIGTIFF files, and

paired with annotation files that might be either XMLs or

CSVs of even TXTs. Moreover, datasets such as PubMed cen-

tral require the possibility to handle and process JPEG, MPEG

and more common image compression formats with the same

degree of elasticity. As exascale requirements, we need the

distribution of the datasets across the different computational

centres, ensuring fast connectivity between the local storage

and the computational resources to reduce internal latency.

Support of performing dense linear algebra on distributed-

memory HPC systems. Multiple GPU computation libraries

should be used to merge multiple CUDA kernels. Furthermore,

top-level development of the deep models should be performed

using the most common machine learning and deep learning

frameworks (e.g. Tensorflow 1.4.0, Keras 2.1.2, TFLearn,

Caffe, Microsoft CNTK, Nvidia DIGITS, Theano, etc.).

The distribution of training runs across different centres

requires automated detection of the optimal model parameters

and efficient scheduling of processes to the available resources.

Data acquired in conjunction with hospitals needs to be

pseudonymised, thus retaining a level of detail in the replaced

data that should allow tracking back of the data to its original

state. In this way the ethical constraints related to the usage

of patient data will also be addressed. However, the use of

sensible data sets the need for specific security requirements:

1) Access control. Access to the data should be restricted

to a subset of authorised users.

2) Traceability. It should be possible to trace back access

history to the user, place and date/time when the access

was performed.

3) The Evaluation-as-a-Service approach will address the

privacy constraints concerning the use of patient data

in research. Algorithms used to detect ROIs and visual

similarities in the data can be designed by using large

training datasets from a variety of sources, such as

481

cohort studies. In such a scenario, pattern detection and

classification are performed in a closed environment,

namely virtual machines or Docker containers. This

approach supports an open development of models and

algorithms, and avoids data protection issues by process-

ing information that should not leave the hospitals “in

situ”.

B. LOFAR use case

Low Frequency Array (LOFAR) is a state-of-the art radio

telescope capable of wide field imaging at low frequencies. It

has been ingesting data into a long-term archive (the LOFAR

LTA) since 2012 and its volume is now expanding at a rate of

approximately 5-7PB/year. Its current volume is about 28 PB.

This consists mostly of “Measurement Sets”, i.e. visibilities -

correlated signals from LOFAR stations. The LOFAR use case

is depicted in Figure 2.

The core requirement is the provision of a mechanism to run

containerized workflows, thereby improving the portability and

easy of use. Analysing the massive volumes of data stored in

the archive is an acute problem. The environment for selecting

the data and workflows has to be user-friendly , and it has

to support launching the workflows, monitoring the results

and downloading outputs. The whole workflow needs to be

containerized by Docker or Singularity containers as workflow

steps to allow each step to use different analysis tools and

dependencies.

The platform must have a mechanism to run the workflows

on suitable processing hardware. While some parts of the

workflow may run in parallel on relatively simple compute

nodes (24 cores, 8 GB memory, 100GB scratch storage),

other parts currently run sequentially on a fat node with

significant memory (256 GB or more, 3 TB scratch storage).

The data management system has to be capable of efficiently

transporting the Measurement Sets from the archive locations

in Amsterdam, Juelich and Poznan to the processing locations.

The capability to horizontally scale to a significant number

of compute resources to in order to run a large number of

(independent) workflows at the same time. Since processing

the entire archive for a single science case already requires

a significant amount of core hours O(47M), handling multi-

ple science cases simultaneously will require up to exascale

resources.

C. Ancillary pricing for airline revenue management

The ancillary pricing use case concentrates on an analysis

of current ancillary sales and hidden sales pattern. This aim

is tackled by machine learning approaches (e.g. random forest

and neural networks) for pricing of offered ancillaries. The

overview of the use case is shown in Figure 3.

The core requirement is a platform that is capable of

storing the incoming ancillary data in a way that allows easy

exploitation for airlines. On the one hand, the platform should

provide libraries for machine learning and quick processing for

the model learning, while on the other hand storing the models

in an efficient way such that several hundred million ancillary

pricing requests a day can be answered. The platform needs

to be capable to deal with the large passenger data sets that

airlines generate. It has to be based on a scalable architecture

which has to foster the following features:

• handle large amount of data

• handle data from different sources

• handle high volume of requests per day

• provide quick response times

• be extensible in terms of continuously increasing data as

well as increase in parallel requests being sent.

An average airline may handle approximately 100 million

passengers per year (the largest airlines carry up to twice

as many passengers), each of whom will buy on average 5

ancillaries. Each ancillary record can be several kilobytes in

size, and several years of data need to be processed. During

processing, the size of the data is further increased due to the

specifics of the used algorithms.

The data do not only need to be stored, but have to provide

efficient algorithmic usage which means on the one hand the

update of the model parameters within a reasonable timeframe

(e.g. within a nightly time slot). On the other hand, this

implies real-time responses with revenue-optimal prices upon

customer request. Tool-stack of the platform has to support

Lambda Architecture principles especially for historical data

and further statistical analyses (e.g. applying mathematical

and statistical algorithms on consolidated data structure to

identify an optimal reference model, or applying variables of

incoming requests on the optimal reference model to compute

probability, estimates and forecast). The platform has to also

support a processing of ongoing data streams to keep the

consolidated data structure up-to-date (i.e. learning new data

behaviour into reference data). Also distributed computing

fundamentals has to be one of the core features (e.g. support

of the Hadoop ecosystem).

Ancillary data are personal data. However, they do not

carry the strictest privacy requirements, since the data do not

contain names, addresses or credit card information. However

they may contain data that directly connect to a person such

as frequent traveller information. If using real data this will

be considered as confidential information provided by the

involved airlines. This results in the following requirements:

The software is supposed to be run at airlines in the Euro-

pean Union. Therefore it has to comply with the “EU General

Data Protection Regulation”, if applicable. The software needs

to be deployable on-site at the customer’s cloud service, for

example Microsoft Azure.

D. Agricultural analysis based on Copernicus data

The main focus is on Multi-Model Simulations which

are seamlessly linked with observational data (including also

sources like social media and local sensor networks to com-

plement satellite observations) to improve accuracy, relevance

and efficiency beyond what would be possible to achieve using

either simulation or observational data on their own.

The key inputs for the analysis are the Copernicus datasets,

consisting of data from several satellites (Sentinel family) that

482

Fig. 3. The workflow of the ancillary pricing use case [5].

produce radar and visible light data with up to 10m resolution.

The use case uses is a tightly coupled with a modelling frame-

work PROMET (Processes of Mass and Energy Transfer) that

combines modelling the macro-scale carbon cycle, water and

energy inputs with the behaviour of water and key nutrients

in the soil with analysis of plant metabolism and even human

decision-making.

Fig. 4. The workflow of the Copernicus use case [5].

The use case requires linking and comparing modelling

and simulation results with the actual observational data,

supporting formation of hypotheses and quality assessment of

the simulation tools. Providing this functionality requires:

• Extraction of relevant time series from the Sentinel data

(up to 7.5PB per month)

• Storing the simulated data and associated metadata in a

way that it can be linked with the Sentinel time series

• Providing generic API for using Copernicus data with

any modelling framework

E. Supporting of next exascale communities

According to the previous use cases, the PROCESS plat-

form offers a generic environment capable to deploy fully

containerized scientific workflows. Through the distributed

virtual file system, the containers are able to access data

within the storage federation by pointers. The platform also

provides methods for metadata management and effective data

transferring on any hierarchical datasystem-based data source.
Supporting innovation based on global disaster risk data is

an use case which context is to show that it is possible to use

exascale tools to deploy and provide services to user that may

some day become the “long tail of exascale”. For now, we have

made available some of the datas ets behind the 2015 GAR and

2017 Risk Atlas, and are in the process of adding/cross-linking

with complementary hazard-specific data sets. However, as

the the 2019 GAR report indicates3, the risk assessment

community processes are undergoing a paradigm shift. Now

only are the hazard/exposure/vulnerability data sets becoming

more fine-grained and comprehensive (increasing the amount

of data), but the integrated, systems-based approach require

analysis that takes the interactions and feedback loops be-

tween different hazards into account. Simply analysing the

hydrologic impact of an earthquake and potential damages

caused by chemical spills triggered by the floods that have

been caused by landslides can quite easily turn probabilistic

hazard modelling into an exascale problem.

III. REFERENCE EXASCALE ARCHITECTURE

After reviewing of all requirements coming from differ-

ent user communities (such as medicine, radio astronomy,

3The new UNISDR Global Assessment Report was just published
(https://gar.unisdr.org/), in the recommendations (page 420) they recommend
that member states adapt and approach called “integrated risk governance
assessment” that takes “into account multiple hazards (man-made, natural
and mixed) and related risks, the way hazards, vulnerability and economic
activity interacts with the environment and with each other within and among
complex systems, and the need to adapt policy and implementation to enable
systems-based approaches to risk reduction.”

483

Fig. 5. Reference exascale architecture.

airline revenue management, etc.), the main challenge was

to propose an architecture that is suitable for all of them.

Their requirements can be divided into three main groups:

1) virtualization requirements, 2) data requirements, and 3)

computing requirements.
Virtualization requirements are very straightforwardly de-

rived from application platforms of our user communities –

support of containers which offers a lightweight virtualization

approach which is similar to application packages. Its advan-

tages include easy deployment and maintenance, flexibility,

reliability, scalability, etc. Since the users’ applications need

to be deployed on various computing infrastructures, portabil-

ity and interoperability are very important features of every

exascale-capable platform.
The core data requirement is handling of exascale data sets

or extreme data flows which is not possible to manipulate

and manage by a single data center nowadays. It brings a

very demanding and ambitious request – a data federation

across multiple data centers. It is also tangled with metadata

management (processing of such data is impossible without

their description – the metadata). The main challenge is

communication or data transmission in terms of data services.

The exascale platform has to support huge data transfers across

the whole infrastructure.
The main computing requirement is supporting high-

performance computing as well as cloud computing which is

able to offer accelerated computing also – a computing envi-

ronment for the application containers. The other significant

requirement is performance optimization. The current trends in

the scientific applications are the following: high distribution

across different research computing centers or nodes, and a

degree of parallelism and concurrency also increased. Those

challenges need to be taken into account during designing of

computing management.

The proposed architecture is driven by modularity and

scalability. These two approaches are the most suitable for an

environment in which the core features are high distribution

and massive parallelism. The modularity also enables to extend

and adjust the platform, according to the needs of new user

communities. It gives flexibility in using its sub-modules in a

way which exploits the heterogeneous resources of exascale

systems the most efficiently.

The aim of the proposed reference architecture is to char-

acterize key attributes and properties that have to be handled

by every scientific application using exascale data and com-

putations. From altogether viewpoint, the reference exascale

architecture (see Figure 5) is divided into the following parts

(from top to bottom):

• Users of the exascale scientific applications (in yel-

low) - the exascale system has to support functionali-

ties required by its user communities. That also means

to support legacy applications in some cases (see the

Copernicus use case). According to the initial and up-

484

Fig. 6. PROCESS architecture (the yellow “M” token represents connection with a monitoring system. The PROCESS platform uses Zabbix as a monitoring
agent.).

485

dated requirements analysis, the best way is to build it

on containerization. All of the applications are stored

in a containerized repository which is available to use

communities. The users are accessing the exascale plat-

form through virtualized scientific portals which are also

containers providing a user friendly graphical interface.

The proposed GUI is easily templated and so modified ac-

cording to the needs of its user community. The container-

ization approach is flexible, scalable, reusable and ready

to use. Moreover, it does not require any special technical

skills (especially, related to integration - exascale data

processing is often contingent on complex software tools

involving expert knowledge about its management) to

make it run on the resource infrastructure (see the LOFAR

use case).

• Virtualization layer (in blue) - is situated between the

containerized application repository and platform infras-

tructure managers. Interoperability of data and computing

infrastructure is the key and critical requirement of the

exascale systems. To use both infrastructures in the most

efficient way, we propose the exascale reference architec-

ture based on containerisation instead of virtual machines.

The performance of the infrastructure as the whole is

utilized in a better way. It is caused by minimization of

overheads (e.g. software duplications). Thus virtualization

layer based on containerization approach exploits the

infrastructure resources in the most optimal way and also

it supports the requirements from our user communities.

The main requirement coming from the users is support-

ing of various application containers. According to a type

of computing resources, they can be divided into two

groups: 1) HPC containers, and 2) cloud containers. Thus

the virtualization layer has to be capable to handle them

in cooperation with lower layers (data management and

computing management).

• Data management (in green) - requirements coming

from the exascale scientific applications could be divided

into two main groups: distributed data federation, and

metadata. It is very common that the exascale scientific

applications have highly complicated datasets, that need

to handled and processed by relevant systems. For that

purpose, its file systems must have a module capable

to work with metadata. The metadata module has to

be federated and distributed as well as the management

system for the data infrastructure itself. At this level of

the infrastructure, the system architect has to be careful

whether the component will be containerized, or not. On

the one hand, the exascale system has to avoid overhead

and latency (according to our experiments, it is caused

by needless duplication of software) thus we prefer con-

tainers to virtual machines. However, on the other hand,

all infrastructural services do not need to be virtualized.

For example, virtualization of HBase (through containers,

or virtual machines) is not necessary because it leads to

dataset duplication in the worst case or a performance

overhead in the best case. Thus a better approach is to

support infrastructural services ecosystem through micro-

services. Micro-services serve as adapters and connectors

to infrastructural services. They are integrated into a

containerized micro-infrastructure, which is customized

according to requirements coming from a use case and

connecting them to a distributed virtual file system.

The micro-infrastructure allows for application-defined

infrastructures with the main advantages being threefold:

First, services can be customized for the application;

e.g., data staging service. Second, minimizing global state

management (a major scaling issue); e.g., instead of hav-

ing one global index for all files for all applications, have

micro-infrastructures manage their own local indices and

states. Third, micro-infrastructures are isolated from each

other, which increases security between users of different

applications. The PROCESS distributed file system layer

needs to be virtualized because it has to run on top of

multiple file systems. Also, it is crucial that access to

a data storage federation is unified. Thus the virtual file

system is distributed.

• Computing Management (in red) - this part of the

infrastructure is related to scheduling and monitoring

computing resources. The infrastructure has to be loaded

as balanced as possible. Two kinds of resources was

recognized as suitable for exascale scientific applications

by our user communities, namely: high performance

computing (HPC) resources, and cloud resources. HPC

manager is based on a queuing approach. Manager of

cloud resources is based on REST API. Both types

of resources are often enriched by support from high-

throughput resources or accelerated resources. For exam-

ple, GPU utilization within machine learning and deep

learning application is very commonly required by those

user communities, however, the requirement is still quite

hard to satisfy. Since clusters build on CPUs can be used

by every community, big clusters with strong GPUs are

not very common nowadays.

IV. PROCESS ARCHITECTURE – AN EXAMPLE OF AN

EXASCALE ARCHITECTURE

The PROCESS project is one of exascale research projects

funded by the European Union’s Horizon 2020 research and

innovation programme. One of its main outputs will be a

modular software platform which will be capable to handle

exascale challenges coming from both scientific communities

as well as industry.

The PROCESS architecture shows how the exascale plat-

forms look in the real world. It was introduced in [5] and ex-

tended by a micro-services approach which is described in the

following text. Micro-infrastructure 4 is a very specialized and

autonomous set of services and adaptors which interact across

the extreme large data service-oriented infrastructure. Along-

side the efficiency mentioned above, the approach supports

scalability, high adaptability, modularity, and straightforward

4The set of integrated micro-services.

486

integration with the virtual layer. Since each use case has its

own requirements and dependencies, modularity together with

high adaptability are very important and useful properties of

every exascale environment.

The data services expose interaction points through a REST

management API where users can manage their private micro-

infrastructure and a set of external infrastructure endpoints

such as WebDAV. The authorization to the web services is

ensured through tokens. Generation of the access tokens is

achieved through a global access and authorization service.

Another typical characteristic of the exascale environment

is handling of different elements for processing, distribu-

tion, and management, which requires specific hardware, or

nodes. These requests are possible to satisfy by the micro-

infrastructure composed of dedicated nodes, or services ad-

dressing a particular request. Since the requirements are

handled by virtualization typically (abstracting details of the

hardware infrastructure, or the software stack), and so the

micro-infrastructure offers a natural solution.

Figure 6 depicts the changes of the initial PROCESS ar-

chitecture [5], [11] needed to involve the micro-infrastructure

approach into the initial architecture. All the changes are

highlighted in magenta. The main change is a new way

of accessing data sources (through data adapters). The de-

scribed approach also simplifies it. The new version has one

“branch” instead of two “branches” (one dedicated to pre/post

processing tools; e.g., DISPEL, and the other dedicated to

pure data access through the distributed virtual file system;

e.g., LOBCDER). It also influences IEE (Jupyter is a part

of micro-infrastructure, thus the IEE needs only a plugin for

it), and LOBCDER (the data infrastructure management layer

responsible for integration of lower adjacent tools was added).

The PROCESS architecture is also a result of applying

the reference exascale architecture which represents the com-

mon features of the PROCESS platform (as well as every

exascale-related platform, or application). On its top users

are interacting with the platform through a secure access.

IEE represents the environment for users, however, security

is out of the project scope. Therefore, this aspect is not

investigated anymore. The whole resource infrastructure is

orchestrated by the virtual layer. The technology responsible

for it is Cloudify. Below that layer is situated a virtual file

system alongside HPC and Cloud managers. The virtual file

system is containerized through micro-infrastructure. The main

reason behind this decision is that the use cases have different

requirements (e.g. need to access various data sources). Micro-

infrastructure containers are managed by Kubernetes. Last but

not least, HPC and Cloud managers. Both of them have to be

scheduled and users have to have information coming from

monitoring tools about their task as well as raw hardware

infrastructure. Rimrock is used as a unified environment for

managing HPC resources, and Atmosphere for managing of

cloud resources.

V. CONCLUSION

This paper presents the requirements analysis of four use

cases from the PROCESS project. The medical use case

represents a computationally intensive application requiring

accelerated computing. The LOFAR use case requires highly

effective exascale workflows for exascale datasets. The ancil-

lary pricing use case embodies exascale throughput require-

ments. The Copernicus use case requests for exascale data

extraction methods.

According to the requirements analysis, the reference ex-

ascale architecture is proposed. The reference architecture

combines several design approaches (e.g. modularity, service-

oriented architectures) with computational paradigms (e.g.

high-performance computing, cloud computing, accelerated

computing). Consequently, the reference architecture is used

within the PROCESS project as a blueprint for the PROCESS

architecture.

REFERENCES

[1] P. Wittenburg, H. Van de Sompel, J. Vigen, A. Bachem, L. Romary,
M. Marinucci, T. Andersson, F. Genova, C. Best, W. Los et al., “Riding
the wave: How europe can gain from the rising tide of scientific data,”
2010.

[2] J.-G. Lee and M. Kang, “Geospatial big data: challenges and opportu-
nities,” Big Data Research, vol. 2, no. 2, pp. 74–81, feb 2015.

[3] R. Kune, P. K. Konugurthi, A. Agarwal, R. R. Chillarige, and R. Buyya,
“The anatomy of big data computing,” Software: Practice and Experi-
ence, vol. 46, no. 1, pp. 79–105, oct 2016.

[4] S. Ashby, P. Beckman, J. Chen, P. Colella, B. Collins, D. Crawford,
J. Dongarra, D. Kothe, R. Lusk, P. Messina et al., “The opportunities
and challenges of exascale computing–summary report of the advanced
scientific computing advisory committee (ascac) subcommittee,” US
Department of Energy Office of Science, 2010.

[5] L. Hluchý, M. Bobák, H. Müller, M. Graziani, J. Maassen, H. Spreeuw,
M. Heikkurinen, J. Pancake-Steeg, S. Spahr, N. O. vor dem
Gentschen Felde, M. Höb, J. Schmidt, A. S. Z. Belloum, R. Cushing,
P. Nowakowski, J. Meizner, K. Rycerz, B. Wilk, M. Bubak, O. Habala,
M. Šeleng, S. Dlugolinský, V. Tran, and G. Nguyen, “Heterogeneous
exascale computing,” in Recent Advances in Intelligent Engineering,
L. Kovács, T. Haidegger, and A. Szakál, Eds. Cham, Switzerland:
Springer Nature Switzerland AG, 2020, ch. 5, pp. 81–110.

[6] T. Shimwell, H. Röttgering, P. N. Best, W. Williams, T. Dijkema,
F. De Gasperin, M. Hardcastle, G. Heald, D. Hoang, A. Horneffer et al.,
“The lofar two-metre sky survey-i. survey description and preliminary
data release,” Astronomy & Astrophysics, vol. 598, p. A104, 2017.

[7] O. Jimenez-del Toro, S. Otálora, M. Andersson, K. Eurén, M. Hedlund,
M. Rousson, H. Müller, and M. Atzori, “Analysis of histopathology im-
ages: From traditional machine learning to deep learning,” in Biomedical
Texture Analysis. Elsevier, 2018, pp. 281–314.

[8] G. Montavon, W. Samek, and K.-R. Müller, “Methods for interpreting
and understanding deep neural networks,” Digital Signal Processing,
vol. 73, pp. 1–15, 2017.

[9] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 1–9.

[10] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning effi-
cient convolutional networks through network slimming,” in Computer
Vision (ICCV), 2017 IEEE International Conference on. IEEE, 2017,
pp. 2755–2763.

[11] M. Bobák, A. S. Z. Belloum, P. Nowakowski, J. Meizner, M. Bubak,
M. Heikkurinen, O. Habala, and L. Hluchý, “Exascale computing and
data architectures for brownfield applications,” in Fuzzy Systems and
Knowledge Discovery (FSKD), 2018 14th International Conference on.
IEEE, 2018, pp. 461 – 468.

487

